首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Glucorticoids and adrenergic stimulation are both thought to control the development of beta-adrenergic receptors/responses. In the current study, rats were exposed to dexamethasone or terbutaline during late gestation and the development of beta-receptor binding capabilities and adenylate cyclase activity evaluated in membrane preparations from kidney and lung. Prenatal dexamethasone exposure produced postnatal adrenergic hyperreactivity of kidney adenylate cyclase; the effect resulted from increases in the enzyme itself, as both basal adenylate cyclase and forskolin-stimulation of the enzyme were also increased by dexamethasone. Similarly, prenatal terbutaline exposure evoked increases in basal, isoproterenol-stimulated and forskolin-stimulated adenylate cyclase in the kidney. In the lung, dexamethasone produced an initial postnatal deficit in basal adenylate cyclase and deficient responsiveness to isoproterenol, but the deficit resolved shortly after birth. Terbutaline selectively promoted the ability of isoproterenol to stimulate lung adenylate cyclase in the first few days after birth, without alterations in basal adenylate cyclase; this was followed by a period of prolonged subsensitivity of both basal and isoproterenol-stimulated activity. Although dexamethasone and terbutaline also caused significant changes in development of beta-receptor binding capabilities, in neither tissue could these effects account for the direction or magnitude of the changes in adenylate cyclase reactivity. Thus, glucocorticoids and beta-agonists can participate in the programming of development of postsynaptic reactivity by exerting actions upon post-receptor coupling mechanisms.  相似文献   

2.
beta-Adrenergic receptor stimulation of adenylyl cyclase involves the activation of a GTP-binding regulatory protein (G-protein, termed here Gs). Inactivation of this G-protein is associated with the hydrolysis of bound GTP by an intrinsic high affinity GTPase activity. In the present study, we have characterized the GTPase activity in a Gs-enriched rat parotid gland membrane fraction. Two GTPase activities were resolved; a high affinity GTPase activity displaying Michaelis-Menten kinetics with increasing concentrations of GTP, and a low affinity GTPase activity which increased linearly with GTP concentrations up to 10 mM. The beta-adrenergic agonist isoproterenol (10 microM) increased the Vmax of the high affinity GTPase component approx. 50% from 90 to 140 pmol/mg protein per min, but did not change its Km value (approximately 450 nM). Isoproterenol also stimulated adenylyl cyclase activity in parotid membranes both in the absence or presence of GTP. In the presence of a non-hydrolyzable GTP analogue, guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), isoproterenol increased cAMP formation to the same extent as that observed with AlF-4. Cholera toxin treatment of parotid membranes led to the ADP-ribosylation of two proteins (approximately 45 and 51 kDa). Cholera toxin also specifically decreased the high affinity GTPase activity in membranes and increased cAMP formation induced by GTP in the absence or the presence of isoproterenol. These data demonstrate that the high affinity GTPase characterized here is the 'turn-off' step for the adenylyl cyclase activation seen following beta-adrenergic stimulation of rat parotid glands.  相似文献   

3.
The effects of pertussis toxin on the steady-state levels of G-protein alpha- and beta-subunits were investigated both in vitro and in vivo. The steady-state level Go alpha, a major substrate for pertussis toxin-catalyzed ADP-ribosylation, was unaltered by pertussis toxin treatment for periods up to 100 h for 3T3-L1 cells in culture or up to 3 days in vivo. In 3T3-L1 cells pertussis toxin treatment did not alter levels of Gs alpha-subunits; in S49 cells the level of Gs alpha-subunits declined moderately following by pertussis toxin treatment. The steady-state levels of G beta-subunits, in contrast, were found to decline to less than 50% of the normal cellular complement following pertussis toxin treatment in vitro and in vivo. Inhibitory control of adenylate cyclase, pertussis toxin-catalyzed ADP-ribosylation of Gi alpha and Go alpha, and the GTP-dependent shift in agonist-specific binding to beta-adrenergic receptors were attenuated or abolished within 5 h of pertussis toxin treatment, representing "early" effects of the toxin. Stimulatory regulation of adenylate cyclase, in contrast, displayed a progressive enhancement that was first observed 4 h after pertussis toxin treatment, increasing thereafter up until 100 h, the last time point measured. This progressive enhancement of the stimulatory pathway of adenylate cyclase was not manifest at the level of stimulatory receptors, since the Kd and Bmax for one such receptor, the beta-adrenergic receptor, were shown to be unaltered in toxin-treated cells. Furthermore, the potentiation of stimulation of adenylate cyclase was observed in cells stimulated by the beta-adrenergic agonist isoproterenol and PGE1 alike. The progressive enhancement of the stimulatory pathway correlated best with the decline in G beta-subunit levels that occurs following pertussis intoxication. The changes in both of these parameters occur "late" (12-48 h), as compared to the early events that occur within 5 h. Pertussis toxin action appears to be composed of two, temporally distinct, groups of effects. Pertussis toxin-catalyzed ADP-ribosylation of G alpha-subunits, attenuation of the inhibitory regulation of adenylate cyclase, and attenuation of the ability of GTP to induce an agonist-specific shift in receptor affinity are members of the early group of effects. The second group of late effects includes the decline in G beta-subunit levels and the progressive enhancement of the stimulatory pathway of adenylate cyclase. This enhanced stimulatory control at these later times cannot be explained by the attenuation of the inhibitory pathway occurring early, but rather appears as G beta-subunit levels decline.  相似文献   

4.
The effects of the muscarinic cholinergic agonist methacholine on affinity of beta-adrenergic receptors for isoproterenol and on isoproterenol-induced stimulation of adenylate cyclase activity were assessed in canine myocardium. GTP and guanyl-5'-yl imidoiphosphate both decreased the affinity of beta-adrenergic receptors for isoproterenol without altering the affinity of these receptors for propranolol. Methacholine (10 nM to 10 micronM) antagonized the guanine nucleotide-induced reduction in beta-adrenergic receptor affinity for isoproterenol. This effect of methacholine was reversed by atropine. The choline ester had no effect on the affinity of beta-adrenergic receptors for isoproterenol in the absence of guanine nucleotides. Likewise, methacholine had no effect on the affinity of beta-adrenergic receptors for propranolol, either in the presence or absence of guanine nucleotides. Methacholine also attenuated GTP-induced activation of adenylate cyclase or isoproterenol-induced activation of the enzyme in the presence of GTP. The effects of methacholine on myocardial adenylate cyclase activity were apparent only in the presence of GTP. These effects were also reversed by atropine. The choline ester had no effect on adenylate cyclase activity in the presence of guanyl-5'-yl imidodiphosphate or NaF. The results of the present study suggest that muscarinic cholinergic agonists can regulate both beta-adrenergic receptors and adenylate cyclase by modulating the effects of GTP.  相似文献   

5.
The diterpene forskolin has been reported to activate adenylate cyclase in a manner consistent with an interaction at the catalytic unit. However, some of its actions are more consistent with an interaction at the coupling unit that links the hormone receptor to the adenylate cyclase activity. This report adds support to the latter possibility. Under conditions that lead to stimulation of adenylate cyclase in turkey erythrocyte membranes by GTP, forskolin also becomes more active. Additional evidence to support an influence of forskolin upon adenylate cyclase via the GTP-coupling protein N includes the following: (i) forskolin, at submaximal concentrations, leads to enhanced sensitivity and responsiveness of isoproterenol-dependent adenylate cyclase activity in turkey erythrocyte membranes; (ii) under specified conditions, the nucleotide GDP, an inhibitor of the stimulating nucleotide GTP and its analog, guanyl imidodiphosphate (Gpp(NH)p), also markedly inhibits the action of forskolin; (iii) both Gpp(NH)p and forskolin are associated with a decrease in agonist affinity for the beta-adrenergic receptor. However, actions of forskolin in the turkey erythrocyte are not identical to those of GTP: (i) forskolin is never as potent as Gpp(NH)p in activating adenylate cyclase; (ii) the magnitude of synergism between isoproterenol and forskolin is not equal to that observed with isoproterenol and Gpp(NH)p; (iii) at high concentrations, forskolin inhibits antagonist binding to the beta-receptor. Forskolin appears to have several sites of action in the turkey erythrocyte membrane, including an influence upon the adenylate cyclase regulatory protein N.  相似文献   

6.
Cultured rat glioma C6 cells exfoliate membrane vesicles which have been termed 'exosomes' into the culture medium. The exosomes contained both stimulatory and inhibitory GTP-binding components of adenylate cyclase (the stimulatory, Gs, and the inhibitory, Gi, regulatory components) and beta-adrenergic receptors but were devoid of adenylate cyclase activity. It was therefore apparent that the catalytic component of adenylate cyclase was either not exfoliated or was inactivated during the exfoliation process. The presence of Gs or Gi in the exosomes was detected by ADP ribosylation using [alpha-32P]NAD in the presence of cholera or pertussis toxins, respectively. The exosomal concentration of each of the two components was estimated to be about one fifth of that of the cell membrane when expressed on a per mg protein basis. Exosomal Gs was almost as active as the membrane-derived Gs in its ability to reconstitute NaF- and guanine nucleotide-stimulated adenylate cyclase activity in membranes of S49 cyc- cells, which lack a functional Gs. The ability of exosomal Gs to reconstitute isoproterenol-stimulated activity, however, was much lower than that of membrane Gs. The density of beta-adrenergic receptors in the exosomes was much less than that found in the membranes. Although the exosomal receptors bound the antagonist iodocyanopindolol with the same affinity as receptors from the cell membrane, the affinity for the agonist isoproterenol was 13- to 18-fold lower in the exosomes. In addition, this affinity was not modulated by GTP in the exosomes. Thus, exfoliated beta-adrenergic receptors seem to be impaired in their ability to couple to and activate Gs. This was directly tested by coupling the receptors to a foreign adenylate cyclase using membrane fusion. The fusates were then assayed for agonist-stimulated activity. While significant stimulation of the acceptor adenylate cyclase was obtained using C6 membrane receptors, the exosomal receptors were completely inactive. Thus during exfoliation, there appear to be changes in the components of the beta-adrenergic-sensitive adenylate cyclase that results in a nonfunctional system in the exosomes.  相似文献   

7.
The influence of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on adenylate cyclase responsiveness in cultured osteoblastic cells was studied using a human osteosarcoma cell line SaOS-2. 1,25(OH)2D3 treatment had no effect on cell growth, cell protein and alkaline phosphatase activity. 1,25(OH)2D3 did not alter the basal production of cyclic AMP (cAMP) in intact cells, but the cAMP formation in response to parathyroid hormone (PTH), isoproterenol (ISO) and cholera toxin was attenuated by 1,25(OH)2D3. The response to forskolin, however, was unaffected by 1,25(OH)2D3 treatment. Islet activating protein failed to modify these 1,25(OH)2D3 effect. In cell free experiments, 1,25(OH)2D3 showed similar effect--that is, PTH and ISO-stimulated adenylate cyclase activity were attenuated, but forskolin-stimulated adenylate cyclase was unaffected. 1,25(OH)2D3 treatment had no effect on the kinetics of PTH binding to PTH receptor and on the ADP ribosylation of GTP stimulatory binding protein (Gs) in SaOS-2 cells. According to these results, 1,25(OH)2D3 appeared to change the coupling of Gs with adenylate cyclase, but does not affect receptor, Gs and adenylate cyclase themselves, nor GTP inhibitory binding protein.  相似文献   

8.
T Asano  E M Ross 《Biochemistry》1984,23(23):5467-5471
The stimulatory GTP-binding protein of adenylate cyclase, Gs, and beta-adrenergic receptors were reconstituted into unilamellar phospholipid vesicles. The kinetics of the quasiirreversible binding of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) to Gs, equivalent to Gs activation by nucleotide, was studied with respect to the stimulation of this process by beta-adrenergic agonists and Mg2+. The rate of GTP gamma S binding displayed apparent first-order kinetics over a wide range of nucleotide, agonist, and Mg2+ concentrations. In the absence of agonist, the apparent first-order rate constant, kapp, was 0.17-0.34 min-1 and did not vary significantly with the concentration of nucleotide. At 50 mM MgCl2, kapp increased somewhat, to 0.26-0.41 min-1, and remained invariant with the nucleotide concentration. In the presence of agonist, kapp was dependent on nucleotide concentration. At 10(-9) M GTP gamma S, the addition of (-)-isoproterenol caused at most a 2-fold stimulation of kapp. However, kapp measured in the presence of isoproterenol increased as an apparently saturable function of the GTP gamma S concentration, such that isoproterenol caused a 17-fold increase in kapp at 1 microM GTP gamma S. The effect of isoproterenol on kapp also appeared to saturate at high isoproterenol concentration, yielding a kapp approximately 6 min-1 at high concentrations of both nucleotide and agonist. These data suggest that the receptor-agonist complex acts by increasing the rate of conversion of a lower affinity Gs-GTP gamma S complex to the stable activated state.  相似文献   

9.
The deletion of residues 239-272 from the hamster beta-adrenergic receptor resulted in a loss of the ability of the receptor, expressed in mouse L cells, to stimulate adenylate cyclase (Dixon, R. A. F., Sigal, I. S., Rands, E., Register, R. B., Candelore, M. R., Blake, A. D., and Strader, C. D. (1987) Nature 326, 73-77). This mutant receptor (D(239-272)beta AR) bound the agonist isoproterenol with a single class of binding sites, in contrast to the wild-type beta-adrenergic receptor, which exhibited two classes of agonist affinity sites. We now report that the affinity of D(239-272)beta AR for isoproterenol is relatively insensitive to detergent solubilization or to treatment with either GTP or NaF, indicating the absence of a receptor-Gs interaction. Whereas deletions within the region of amino acids 229-258 did not reduce the ability of the receptor to couple to Gs or to stimulate adenylate cyclase, the deletion of either of the regions 222-229 or 258-270 resulted in receptors which were unable to couple to Gs. The affinities of D(222-229)beta AR, D(239-272)beta AR, and D(258-270)beta AR toward isoproterenol were greater than that observed for the low affinity, uncoupled form of the wild-type receptor. These results suggest a role for the regions of the beta-adrenergic receptor encompassing amino acids 222-229 and 258-270, which are predicted to form amphiphilic helices, in the agonist-promoted activation of Gs.  相似文献   

10.
S Kassis 《Biochemistry》1985,24(20):5666-5672
Exposure of HeLa cells to 5 mM sodium butyrate, but not 0.6 mM, resulted in a more efficient coupling between their beta-adrenergic receptors and the guanine nucleotide binding stimulatory (Ns) component of adenylate cyclase. Both concentrations of the fatty acid, however, caused an increase in receptor number. beta receptors from control and butyrate-treated cells had the same affinity for isoproterenol. Modulation of this affinity by GTP was greatly enhanced, however, in cells treated with 5 mM butyrate compared to untreated and 0.6 mM butyrate treated cells. The concentration of isoproterenol required to half-maximally stimulate adenylate cyclase (Kact) was reduced in cells treated with 5 mM butyrate. In addition, the Kact for GTP in the presence, but not the absence, of isoproterenol was reduced. The effect of butyrate on the coupling between beta receptors and Ns was analyzed in detail by monitoring the activation of Ns by guanine 5'-O-(3-thiotriphosphate) (GTP gamma S) in a two-step assay. In the absence of isoproterenol, Ns from control and 5 mM butyrate treated cells was activated to the same extent with the same time course and Kact for GTP gamma S. In the presence of isoproterenol, Ns from 5 mM butyrate treated cells was activated more rapidly and extensively than Ns from control cells. The Kact for both GTP gamma S and isoproterenol also was reduced. The rate of agonist-mediated activation of Ns was strongly dependent on temperature, which accentuated the differences between 5 mM butyrate treated and control cells. At 4 degrees C, the difference in rate was 8.8-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Cholesterol, a major structural component of plasma membranes, has a profound influence on cell surface receptor characteristics and on adenylate cyclase activity. beta-Adrenergic receptor number, adenylate cyclase activity, and receptor-cyclase coupling were assessed in rat lung membranes following preincubation with cholesteryl hemisuccinate. beta-Adrenergic receptor number increased by 50% without a change in antagonist affinity. However, beta-adrenergic receptor affinity for isoproterenol increased 2-fold as a result of an increase in the affinity of the isoproterenol high-affinity binding site. The increase in agonist affinity did not potentiate hormone-stimulated adenylate cyclase activity, which decreased 3-fold following cholesterol incorporation. However, the ratio of isoproterenol to GTP-stimulated activity was unchanged with cholesterol. Stimulation distal to the receptor by GTP, NaF, GppNHp, Mn2+ and forskolin also demonstrated 50-80% reduced enzyme activity following cholesterol incorporation. These data suggest that membrane cholesterol incorporation decreases catalytic unit activity without affecting transduction of the hormone signal.  相似文献   

12.
The postnatal development of skeletal muscle is accompanied by an increased capacity for glycogenolysis and anaerobic glycolysis. In the present study, regulatory features of cAMP synthesis were examined in neonatal and adult rabbit sarcolemmal membranes. Adult sarcolemma exhibited a 3-, 6-, and 10-fold greater adenylate cyclase activity than neonate for basal, NaF, and isoproterenol plus GTP, respectively. The Km for activation by isoproterenol was 1.4 X 10(-8) M and 6 X 10(-8) M for GTP. The number of beta-receptors was similar (0.9-1.2 pmol/mg). 10 microM GTP shifted isoproterenol EC50 from 1 X 10(-8) M to 1 X 10(-7) M in adult; neonatal agonist affinity was unaffected by GTP. Cholera toxin stimulated adenylate cyclase activity 2-fold and catalyzed 32P ribosylation of a Mr = 42,000 peptide in adult sarcolemma; both activities were low or absent in neonate. Isoproterenol-stimulated GTPase activity was elevated 4-fold in adult compared to neonatal sarcolemma. Mn2+ ion-stimulated basal activity, an indicator of catalytic function of adenylate cyclase, was also elevated in adult. Together, these findings suggest that the development of catecholamine-sensitive cAMP synthesis in muscle is governed by the coordinate expression of the regulatory and catalytic proteins of adenylate cyclase, but not the beta-receptor.  相似文献   

13.
The 45-kDa alpha subunit of the signal transducing Gs protein complex, which stimulates receptor-coupled adenylate cyclase, incorporated less of the photoaffinity probe, 8N3-[gamma-32P]GTP, in extracts from tumorigenic cell lines in comparison with nontumorigenic cell lines derived from mouse lung epithelium. Immunoblotting experiments using anti-Gs alpha antibodies demonstrated that tumor cells do not have a decreased amount of Gs alpha and photolabeling of tumor cell Gs alpha increased when the rate of nucleotide exchange was promoted. Therefore, tumor cell Gs alpha function may be altered. Consistent with this hypothesis is the observation that the tumor cells exhibited decreased responsiveness to the beta-adrenergic agonist, isoproterenol. Gs alpha photolabeling in growing nontumorigenic cells was reduced to a level resembling that observed in tumor cells, but photolabeling increased when cells became contact-inhibited. This increase in 8N3-[gamma-32P]GTP incorporation into Gs alpha by normal cells at confluence was not seen in the tumorigenic cells. Since Gs alpha photolabeling was inversely proportional to the percentage of [3H]thymidine-labeled nuclei at confluence, we suggest that the altered Gs alpha in tumor cells is involved in the loss of cell growth regulation.  相似文献   

14.
beta-Adrenergic receptors and the inhibitory GTP-binding protein, Gi of the adenylate cyclase system were reconstituted into phospholipid vesicles by the method described previously for reconstituting receptors and the stimulatory GTP-binding protein, Gs (Brandt, D. R., Asano, T., Pedersen, S. E., and Ross, E. M. (1983) Biochemistry 22, 4357-4362). In the receptor-Gi vesicles, beta-adrenergic agonists stimulated both the high-affinity binding of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) to Gi and GTPase activity to an extent similar to that observed in vesicles containing beta-adrenergic receptors and Gs. Stimulation required receptors and displayed appropriate beta-adrenergic specificity. The prior treatment of receptor-Gi vesicles with islet-activating protein (pertussis toxin) plus NAD markedly inhibited both the isoproterenol-stimulated binding of GTP gamma S and the isoproterenol-stimulated GTPase activity. No contamination of Gi by Gs was apparent. These data suggest that receptors that typically stimulate adenylate cyclase activity may also activate the inhibitory system, perhaps as one mechanism of desensitization.  相似文献   

15.
Guanine nucleotide-dependent modulation of agonist binding to the beta-receptor reflects coupling of the receptor to the nucleotide regulatory protein. Similarly, guanine nucleotide-dependent stimulation of adenylate cyclase can be used as an index of coupling between the regulatory protein and the catalytic unit of the cyclase. Using both approaches we have studied coupling in the beta-adrenergic receptor-adenylate cyclase system in rabbit liver during neonatal development. With [3H]dihydroalprenolol as ligand, the Bmax was relatively unchanged (200-300 fmol/mg of protein) between birth and end of day 1 and was similar to adult values. Guanyl-5'-yl imidodiphosphate-dependent shift in agonist (l-isoproterenol) competition curves was biphasic, decreasing from 10-fold in membranes isolated from animals at term to about 6-fold in membranes from 6-h-old neonates, and increasing progressively in older animals to a maximal measurable value of 42-fold in the adult. The ability of guanyl-5'-yl imidodiphosphate, GTP, GTP plus isoproterenol, NaF, or forskolin to activate adenylate cyclase was also biphasic and age-dependent. With Mn2+ the measured activity was not at any time greater than the activity at term. Pretreatment of membranes with cholera toxin resulted in differential levels of enhancement of adenylate cyclase activity wherein much lower enhancement was observed in membranes from neonatal animals. With [32P]NAD as substrate, cholera toxin-catalyzed ADP-ribosylation of membranes indicated development-dependent accumulation of Ns peptides. From these results we suggest that there is a decreased efficiency in the coupling of the beta-adrenergic receptor to hepatic adenylate cyclase in early neonatal life. The molecular basis for the biphasic nature of the coupling is presently unclear.  相似文献   

16.
Pertussis-toxin-catalyzed ADP-ribosylation of Gi in S49 membranes, but not in S49AC- membranes, which lack Gs, induces a threefold reduction of isoproterenol affinity to the beta-adrenoceptors. A similar treatment of turkey erythrocyte membranes, which are devoid of functional Gi, has no effect on beta-agonist affinity to their beta-adrenoceptors. Non-hydrolyzable analogs such as GTP[S] induce a larger decrease in beta-adrenoceptor affinity in S49 cells towards the agonist isoproterenol as compared to pertussis-toxin-catalyzed ADP-ribosylation of Gi. These results suggest that Gi affects beta-adrenoceptor affinity to its agonist and that this interaction requires the presence of Gs. It seems, therefore, that Gi physically interacts with Gs to exert its effects on the receptor and probably on adenylate cyclase as well. Our ability to detect (a) the effect of pertussis-toxin-catalyzed ADP-ribosylation in S49 cells on beta-agonist affinity and (b) the quantitative difference between the effect of pertussis toxin (approx. threefold) and GTP[S] (fivefold to sevenfold) depends on the use of a simple but rigorous method to study in detail the affinity of beta-agonists to their receptors. This method seems to be superior to the analysis of displacement curves as a means to examine receptor-ligand interactions.  相似文献   

17.
The maturing rat reticulocyte was used as a model system in which to study developmental changes in the protein components of hormone-sensitive adenylate cyclase. Plasma membranes from rat erythrocytes display 10 to 20% of the adenylate cyclase activity and 30 to 50% of the beta-adrenergic receptors which are measured in membranes from rat reticulocytes, as noted by others. Reticulocyte membranes also display equal activities in response to (-)-isoproterenol in the presence of either GTP or GTP gamma S, whereas erythrocyte membrane adenylate cyclase is twice as active in the presence of isoproterenol plus GTP gamma S as in the presence of isoproterenol plus GTP. We have studied this system in greater detail by developing or applying independent assays for the catalytic protein (C) and the guanine nucleotide-binding regulatory protein (G/F) of adenylate cyclase. C was assayed in membranes by its intrinsic Mn2+-stimulated activity. It was also measured by reconstituting membranes with saturating amounts of GTP gamma S-activated G/F, yielding an operationally defined Vmax for the catalyst. By either assay, reticulocytes display about 3-fold greater C activity than do erythrocytes. G/F was assayed by its ability to confer GTP gamma S-stimulated activity upon C (which was supplied by membranes of cyc- S49 lymphoma cells). This assay indicates that reticulocyte membranes contain about 3 times as much G/F as do erythrocyte membranes. Cholera toxin and [32P]NAD were used to [32P]ADP-ribosylate the 45,000- and 52,000-dalton subunits of G/F. Total incorporation of 32P into these subunits decreased 3- to 4-fold with reticulocyte maturation. The ratio of label in the 52,000-dalton peptide to that in the 45,000-dalton peptide decreased from 0.29 in reticulocyte membranes to 0.14 in erythrocyte membranes. The apparently coordinate decrease in the amounts of C, G/F, and beta-adrenergic receptors suggest that the stoichiometry between these components is maintained during maturation, and may account for the decrease in adenylate cyclase in the membranes. However, the qualitative changes in responsiveness to hormones in the presence of GTP or GTP gamma S may be related to loss or proteolysis of the 52,000-dalton subunit of G/F.  相似文献   

18.
We have examined several features of the regulation of cyclic AMP accumulation in lymphoid cells isolated from peripheral blood of human subjects and in the murine T-lymphoma cell line, S49, S49 cells are unique because of the availability of variant clones with lesions in the pathway of cyclic AMP generation and response. We found that human lymphoid cells prepared at 4 degrees C showed substantially greater cyclic AMP accumulation in response to histamine and the beta-adrenergic agonist isoproterenol than did cells prepared at ambient temperature. The muscarinic cholinergic agonist carbamylcholine and peptide hormone somatostatin failed to inhibit cyclic AMP accumulation in human lymphoid cells and treatment with pertussis toxin (which blocks function of Gi, the guanine nucleotide binding protein that mediates inhibition of adenylate cyclase) only minimally increased cyclic AMP levels in these cells. Thus the Gi component of adenylate cyclase appears to play only a small role in modulating cyclic AMP levels in this mixed population of lymphoid cells. Incubation of whole blood with isoproterenol desensitized human lymphocytes to subsequent stimulation with beta agonist. This desensitization was associated with a redistribution of beta-adrenergic receptors such that a substantial portion of the receptors in intact cells could no longer bind a hydrophilic antagonist. Wild-type S49 lymphoma cells showed a similar redistribution of beta-adrenergic receptors after a few minutes' incubation with agonist. Based on studies in S49 variants, this redistribution is independent of components distal to receptors in the adenylate cyclase/cyclic AMP pathway. By contrast, a more slowly developing, agonist-mediated down-regulation of beta-adrenergic receptors was blunted in variants with defective interaction between receptors and Gs, the guanine nucleotide binding protein that mediates stimulation of adenylate cyclase. Unlike results in human lymphoid cells, S49 cells show a prominent inhibition of cyclic AMP accumulation mediated by Gi; this inhibition is promoted by somatostatin and blocked by pertussis toxin. Inhibition by Gi is unable to account for the marked decrease in ability of the diterpene forskolin to maximally stimulate adenylate cyclase in S49 variants having defective Gs. These results emphasize that both Gs and Gi component are important in modulating cyclic AMP accumulation and receptors linked to adenylate cyclase in S49 lymphoma cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The role of beta-adrenoceptor regulation in the mechanisms controlling beta-adrenergic responsiveness in hepatocytes was explored, using primary monolayer cultures. When plated in vitro, these cells gradually acquire a strong catecholamine-sensitive adenylate cyclase activity and an enhanced ability to bind the beta-adrenoceptor ligand [125I]iodocyanopindolol (125ICYP). Examination of the time course showed that the increase in the number of 125ICYP binding sites was detectable within 1-2 h of culturing and slightly preceded the elevation of isoproterenol-responsive activity. Then the responsiveness rose steeply and between about 5-24 h it closely followed the increase in beta-receptor binding. Addition of isoproterenol (10 microM) to cells after 20 h of culturing caused a rapid homologous desensitization of the adenylate cyclase (50% after about 5 min). This was paralleled by a down-regulation of beta-adrenoceptors measured both in membrane particles and in total cell lysates. Removal of isoproterenol led to a resensitization of the adenylate cyclase, which was rapid and protein-synthesis-independent after a brief (10-min) desensitization, or slow and cycloheximide-sensitive after prolonged (4-h) exposure to the agonist. In both cases an up-regulation of the 125ICYP binding paralleled the recovery from refractoriness. In contrast, no concurring changes in 125ICYP binding were measured when the beta-adrenoceptor-linked adenylate cyclase activity was enhanced by pretreatment with pertussin toxin (islet-activating protein, IAP) or was desensitized by exposure of the cells to glucagon or 8-bromo-cAMP; however, these modulations of the adenylate cyclase were nonselective, since the pretreatments with IAP, glucagon or 8-bromo-cAMP affected both isoproterenol-sensitive and glucagon-sensitive activities. The results suggest that, in hepatocytes, regulation at the beta-adrenoceptor level is a major determinant for both short-term and long-term selective changes of the beta-adrenergic responsiveness.  相似文献   

20.
Aging decreases hormone responsiveness in several receptor systems. In this article I consider both physiological and biochemical studies supporting the hypothesis that beta-adrenergic receptor responsiveness is reduced with aging in humans. Reduced chronotropic and vasodilator responses to the beta-receptor agonists isoproterenol and metaproterenol have been demonstrated. In human leukocytes a reduction in adenylate cyclase (EC 4.6.1.1) activity occurs with aging. More recently it has been suggested that this reduction in beta-adrenergic responsiveness with aging may be caused by an uncoupling of the beta receptor from the catalytic component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号