首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A 75Se-labeled hydrogenase was purified to near homogeneity from extracts of Methanococcus vannielii cells grown in the presence of [75Se]selenite. The molecular weight of the enzyme was estimated as 340,000 by gel filtration. The enzyme tends to aggregate and occurs also as a larger protein species (Mr = 1.3 x 10(6)). The same phenomenon was observed on native gel electrophoretic analysis. Hydrogenase activity exhibited by these two protein bands was proportional to protein and 75Se content. Both molecular species reduce the natural cofactor, 8-hydroxy-5-deazaflavin, and tetrazolium dyes with molecular hydrogen. Sodium dodecyl sulfate-gel electrophoresis of 75Se-labeled enzyme showed that 75Se is present exclusively in an Mr = 42,000 subunit. A value of 3.8 g atoms of selenium/mol of enzyme (Mr = 340,000) was determined by atomic absorption analysis. The chemical form of selenium in the enzyme was shown to be selenocysteine. This was identified as the [75Se]carboxymethyl and [75Se]carboxyethyl derivatives in acid hydrolysates of alkylated 75Se-labeled protein. The hydrogenase is extremely oxygen-sensitive but can be reactivated by incubation with molecular hydrogen and dithiothreitol.  相似文献   

2.
The membrane-bound hydrogenase from Paracoccus denitrificans was purified 68-fold with a yield of 14.6%. The final preparation had a specific activity of 161.9 mumol H2 min-1 (mg protein)-1 (methylene blue reduction). Purification involved solubilization by Triton X-114, phase separation, chromatography on DEAE-Sephacel, ammonium-sulfate precipitation and chromatography on Procion-red HE-3B-Sepharose. Gel electrophoresis under denaturing conditions revealed two non-identical subunits with molecular masses of 64 kDa and 34 kDa. The molecular mass of the native enzyme was 100 kDa, as estimated by FPLC gel filtration in the presence of Chaps, a zwitterionic detergent. The isoelectric point of the Paracoccus hydrogenase was 4.3. Metal analysis of the purified enzyme indicated a content of 0.6 nickel and 7.3 iron atoms/molecule. ESR spectra of the reduced enzyme exhibited a close similarity to the membrane-bound hydrogenase from Alcaligenes eutrophus H16 with g values of 1.86, 1.92 and 1.98. The half-life for inactivation under air at 20 degrees C was 8 h. The Paracoccus hydrogenase reduced several electron acceptors, namely methylene blue, benzyl viologen, methyl viologen, menadione, cytochrome c, FMN, 2,6-dichloroindophenol, ferricyanide and phenazine methosulfate. The highest activity was measured with methylene blue (V = 161.9 U/mg; Km = 0.04 mM), whereas benzyl and methyl viologen were reduced at distinctly lower rates (16.5 U/mg and 12.1 U/mg, respectively). The native hydrogenase from P. denitrificans cross-reacted with purified antibodies raised against the membrane-bound hydrogenase from A. eutrophus H16. The corresponding subunits from both enzymes also showed immunological relationship. All reactions were of partial identity.  相似文献   

3.
L C Seefeldt  D J Arp 《Biochimie》1986,68(1):25-34
Azotobacter vinelandii hydrogenase has been purified to homogeneity from membranes. The enzyme was solubilized with Triton X-100 followed by ammonium sulfate-hexane extractions to remove lipids and detergent. The enzyme was then purified by carboxymethyl-Sepharose and octyl-Sepharose column chromatography. All purification steps were performed under anaerobic conditions in the presence of dithionite and dithiothreitol. The enzyme was purified 143-fold from membranes to a specific activity of 124 mumol of H2 uptake . min-1 . mg protein-1. Nondenaturing polyacrylamide gel electrophoresis of the hydrogenase revealed a single band which stained for both activity and protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed two bands corresponding to peptides of 67,000 and 31,000 daltons. Densitometric scans of the SDS-gel indicated a molar ratio of the two bands of 1.07 +/- 0.05. The molecular weight of the native enzyme was determined by three different methods. While gel permeation gave a molecular weight of 53,000, sucrose density gradient centrifugation and native polyacrylamide gel electrophoresis gave molecular weights of 98,600 +/- 10,000 and 98,600 +/- 2,000, respectively. We conclude that the A. vinelandii hydrogenase is an alpha beta dimer (98,000 daltons) with subunits of 67,000 and 31,000 daltons. Analyses for nickel and iron indicated 0.68 +/- 0.01 mol Ni/mol hydrogenase and 6.6 +/- 0.5 mol Fe/mol hydrogenase. The isoelectric point of the enzyme was 6.1 +/- 0.01. In addition, several catalytic properties of the enzyme have been examined. The Km for H2 was 0.86 microM, and H2 evolution was observed in the presence of reduced methyl viologen. The pH profile of enzyme activity with methylene blue as the electron acceptor has been determined, along with the Km and Vmax for various electron acceptors.  相似文献   

4.
报道了室温、空气环境下聚球藻Synechococcus sp.PCC7942氢酶的分离纯化.经过超声破碎、超速离心、离子交换层析、疏水层析及凝胶层析等步骤,氢酶被纯化了218倍,得率为6.5%,比活为1.46U·mg-1蛋白.纯化氢酶的SDS-PAGE图显示五条蛋白带,分子量约为83kDa,60kDa,47kDa,30kDa和27kDa.该氢酶为可溶性的双向氢酶,其催化放氢的最佳电子供体为还原态的甲基紫精,最适温度50℃,最适pH8.0.  相似文献   

5.
Structural and catalytic properties of hydrogenase from Chromatium.   总被引:11,自引:0,他引:11  
P H Gitlitz  A I Krasna 《Biochemistry》1975,14(12):2561-2568
The enzyme hydrogenase, from the photosynthetic bacterium Chromatium, was purified to homogeneity after solubilization of the particulate enzyme with deoxycholate. The purification procedure included ammonium sulfate fractionation, treatment with manganous phosphate gel, heating at 63 degrees, DEAE-cellulose chromatography, and isoelectric focusing. The last step gave two active enzyme fractions with isoelectric points of 4.2 and 4.4. It was shown that the two fractions were different forms of the same protein. The enzyme was obtained in 23% yield and was purified 1700-fold. The enzyme had a molecular weight of 98,000, a sedimentation coefficient of 5.16 S and gave a single protein and activity band on disc gel electrophoresis. Sodium dodecyl sulfate gel electrophoresis gave a single band of mol wt 50,000, suggesting that the active enzyme was composed of two subunits of the same molecular weight. The pure hydrogenase contained four atoms of iron and four atoms of acid-labile sulfide, and had a visible absorption peak at 410 nm. Electron paramagnetic resonance (EPR) spectroscopy at 10--15 K showed a free-radical signal at g' = 2.003 in the oxidized enzyme and signals at g' = 2.2 and 2.06 in the reduced enzyme. These findings suggest that Chromatium hydrogenase is an iron-sulfur protein. The pure hydrogenase catalyzed the exchange reaction between H2 and HDO or HTO, the reduction of Benzyl Viologen and Methylene Blue, and the evolution of hydrogen from reduced Methyl Viologen. The mechanism of hydrogen activation was shown to be heterolytic cleavage to an enzyme hydride and a proton. Hydrogenase could not catalyze reduction of pyridine nucleotides or ferredoxin with H2. The effect of pH and various inhibitors on the enzymatic activity has been studied.  相似文献   

6.
A soluble [NiFe] hydrogenase has been partially purified from the obligate thermophilic sulfate-reducing bacterium Thermodesulfobacterium mobile. A 17% purification yield was obtained after four chromatographic steps and the hydrogenase presents a purity index (A398 nm/A277 nm) equal to 0.21. This protein appears to be 75% pure on SDS-gel electrophoresis showing two major bands of molecular mass around 55 and 15 kDa. This hydrogenase contains 0.6-0.7 nickel atom and 7-8 iron atoms per mole of enzyme and has a specific activity of 783 in the hydrogen uptake reaction, of 231 in the hydrogen production assay and of 84 in the deuterium-proton exchange reaction. The H2/HD ratio is lower than one in the D2-H+ exchange reaction. The enzyme is very sensitive to NO, relatively little inhibited by CO but unaffected by NO2-. The EPR spectrum of the native hydrogenase shows the presence of a [3Fe-4S] oxidized cluster and of a Ni(III) species.  相似文献   

7.
Soybean nodule bacteroids and Bradyrhizobium japonicum free-living cells induced for H2-uptake hydrogenase, actively catalyze the evolution of H2 in a reaction highly dependent on the pH. The optimal pHs for the evolution and uptake reactions were 4.0 and 7.5-8.0, respectively. No differences were found between free-living cells and bacteroids with respect to hydrogen acceptor specificity, although absolute rates of H2 uptake were higher for free-living cells. Both types of cells were able to evolve hydrogen from reduced methyl viologen at low pH. These intact cells also catalyzed the exchange reaction between tritium and water in the absence of oxygen. The pH profile of the exchange activity showed two peaks at values near the optimal pHs for the evolution and uptake reactions.  相似文献   

8.
The soluble hydrogenase (hydrogen: NAD+ oxidoreductase, EC 1.12.1.2) from Alcaligenes eutrophus H 16 was purified 68-fold with a yield of 20% and a final specific activity (NAD reduction) of about 54 mumol H2 oxidized/min per mg protein. The enzyme was shown to be homogenous by polyacrylamide gel electrophoresis. Its molecular weight and isoelectric point were determined to be 205 000 and 4.85 respectively. The oxidized hydrogenase, as purified under aerobic conditions, was of high stability but not reactive. Reductive activation of the enzyme by H2, in the presence of catalytic amounts of NADH, or by reducing agents caused the hydrogenase to become unstable. The purified enzyme, in its active state, was able to reduce NAD, FMN, FAD, menaquinone, ubiquinone, cytochrome c, methylene blue, methyl viologen, benzyl viologen, phenazine methosulfate, janus green, 2,6-dichlorophenoloindophenol, ferricyanide and even oxygen. In addition to hydrogenase activitiy, the enzyme exhibited also diaphorase and NAD(P)H oxidase activity. The reversibility of hydrogenase function (i.e. H2 evolution from NADH, methyl viologen and benzyl viologen) was demonstrated. With respect to H2 as substrate, hydrogenase showed negative cooperativity; the Hill coefficient was n = 0.4. The apparent Km value for H2 was found to be 0.037 mM. The absorption spectrum of hydrogenase was typical for non-heme iron proteins, showing maxima (shoulders) at 380 and 420 nm. A flavin component could be extracted from native hydrogenase characterized by its absorption bands at 375 and 447 nm and a strong fluorescense at 526 nm.  相似文献   

9.
A ferredoxin-dependent nitrite reductase from Spinacea oleracea was purified approximately 180-fold, with a specific activity of 285 units/mg protein. This purified enzyme also had methyl viologen-dependent nitrite reductase activity, with a specific activity of 164 units/mg protein. After disc electrophoresis with polyacrylamide gel, the purified enzyme showed one major and one minor protein band.

The molecular weight of the enzyme was estimated to be 86,000 from Ultrogel filtration. This purified enzyme in oxidized form had absorption peaks at 278, 390, 573 and 690 nm. The absorbance ratios, A390: A278 and A673: A390 were 0.61 and 0.37, respectively.

By applying the purified enzyme to DEAE-Sephadex A–50 column chromatography, the ferredoxin-dependent nitrite reductase activity was selectively decreased. However, the methyl viologen-dependent nitrite reductase activity was increased, with a specific activity of 391 units/mg protein. This modified enzyme was homogeneous by disc electrophoresis with polyacrylamide gel.  相似文献   

10.
Soluble hydrogenase was isolated from the hydrogen-oxidizing bacterium Alcaligenes eutrophus Z-1 and purified to electrophoretical homogeneity. The purification procedure included fractionation by ammonium sulfate, ion-exchange chromatography on DEAE-cellulose and gelfiltration through Ultragel AcA-34. The resulting preparation had a specific activity of 25 mkmoles H2.min-1.mg of protein as measured by the rate of hydrogen evolution from sodium dithionite-reduced methyl viologen. The enzyme has a molecular weight of 200,000 and is made up of two subunits with mol. weights of 30,000 and two subunits with mol. weights of 65,000. The effects of pH, oxidants and reducers, as well as aerobic and anaerobic conditions on the hydrogenase preparations inactivation kinetics in intact cells and in a highly purified state were studied. The kinetic data suggest a possible existence of two enzyme forms differing in their activities and stabilities to denaturating influences.  相似文献   

11.
Cathepsin D of human leukocytes was isolated and characterized. Purified leukocytes were lysed under nitrogen pressure and the proteinase activity precipitated by centrifugation at 48,000 x g. The precipitate was extracted by various buffers. The yield of cathepsin D was almost pH-independent but could be increased by Triton X-100. Employing gel chromatography the activity was found at a molecular mass close to 42,000 Da. Purification of the enzyme was performed by a two-step procedure using pepstatin-Sepharose chromatography and ion exchange chromatography. Three multiple forms of the enzyme were separated by ion exchange chromatography. The isoelectric points of the three forms of the enzyme were close to pH 5.0. The enzyme showed the typical characteristics of the acid proteinase cathepsin D. Enzyme activity was influenced by heavy metals such as Hg2 and Fe3 as well as by typical inhibitors for carboxyl-proteinases such as diazoacetyl-DL-norleucine methyl ester, 1,2-epoxy-3-(4-nitrophenoxy)propane and 4-bromo-phenacylbromide. An immunological comparison with cathepsin D from human liver by immunodiffusion and immunoelectrophoresis indicates identity of the two enzymes.  相似文献   

12.
The nitrogen-fixing, aerobic hydrogen-oxidizing bacterium Alcaligenes latus forms hydrogenase when growing lithoautotrophically with hydrogen as electron donor and carbon dioxide as sole carbon source or when growing heterotrophically with N2 as sole nitrogen source. The hydrogenase is membrane-bound and relatively oxygen-sensitive. The enzymes formed under both conditions are identical on the basis of the following criteria: molecular mass, mobility in polyacrylamide gel electrophoresis, Km value for hydrogen (methylene blue reduction), stability properties, localization, and cross-reactivity to antibodies raised against the 'autotrophic' hydrogenase. The hydrogenase was solubilized by Triton X-100 and deoxycholate treatment and purified by ammonium sulfate precipitation and chromatography on Phenyl-Sepharose C1-4B, DEAE-Sephacel and Matrix Gel Red A under hydrogen to homogeneity to a specific activity of 113 mumol H2 oxidized/min per mg protein (methylene blue reduction). SDS gel electrophoresis revealed two nonidentical subunits of molecular weights of 67 000 and 34 000, corresponding to a total molecular weight of 101 000. The pure enzyme was able to reduce FAD, FMN, riboflavin, flavodoxin isolated from Megasphaera elsdenii, menadione and horse heart cytochrome c as well as various artificial electron acceptors. The reversibility of the hydrogenase function was demonstrated by H2 evolution from reduced methyl viologen.  相似文献   

13.
Regulation of hydrogen utilisation in Rhizobium japonicum by cyclic AMP.   总被引:11,自引:0,他引:11  
Utilisation (uptake) of hydrogen gas by whole cells of Rhizobium japonicum was found to be influenced by the carbon source(s) present in the growth medium, with activity being highest in a medium containing sugars. Tricarboxylic acid cycle intermediates, such as malate, significantly reduced H2 utilisation. No reduction in the hydrogenase activity is observed when the enzyme is assayed directly by the tritium exchange method, indicating that the decrease in hydrogen uptake activity is not due to repression of hydrogenase biosynthesis. Cyclic AMP was found to alleviate the inhibition of H2 uptake by malate, and this requires new protein synthesis. Addition of chloramphenicol or rifampicin simultaneously with cyclic AMP eliminated the stimulation of H2 uptake in the malate medium. These results show that in R. japonicum cyclic AMP plays a major role in the regulation of H2 metabolism.  相似文献   

14.
A tritium exchange assay and a sensitive gas chromatographic technique were used to demonstrate that hydrogenase was active and that hydrogen was produced by Methanosarcina barkeri strain MS grown on acetate. Both methane and hydrogen production rates were dependent on the concentration of acetate in the medium. H2 was produced at 0.5–2% of the rate of CH4 formation. Chloroform and potassium cyanide, inhibitors of methanogenesis from acetate, inhibited H2 production but not hydrogenase activity. The addition of hydrogen gas to cell suspensions did not inhibit CH4 or carbon dioxide production from the methyl group of acetate. H2 production appears to be linked to several intracellular redox processes which follow the cleavage of acetate.  相似文献   

15.
花生根瘤菌类菌体经超声波破碎,TritonX-100溶解,正已烷-硫酸铵处理后,再经DEAE-纤维素和Sephacryl凝胶柱层析等纯化步骤,获得凝胶电泳纯的膜结合态氢酶,比活为71.4μmolH2mg-1Protmin-1,为类菌体吸H2活性的211倍。纯化的氢酶分子量为110kD。经SDS-PAGE后,呈现两个蛋白带,分子量分利为65kD和35kD。纯酶的Ni含量为0.62molNi/mol氢酶。在磷酸缓冲液中其活性的最适pH为6.5。DCIP、亚甲蓝、铁氰化钾、细胞色素C均可作为氢酶的电子受体,其中以DCIP为最适。  相似文献   

16.
E. coli K10 was found to grow anaerobically on molecular hydrogen by reducing nitrate, fumarate, and trimethylamine N-oxide when peptone was added to the culture medium. Molar growth yields based on consumed hydrogen estimated from the amounts of reduction products were all 7.8 g cells/mol, suggesting that 1 mol of ATP was produced in the oxidation of 1 mol of hydrogen. Hydrogenase activity measured in terms of hydrogen evolution was several times higher in cells grown on glucose than in cells grown on hydrogen in the presence of fumarate and trimethylamine N-oxide, while hydrogenase activity measured in terms of hydrogen uptake was unchanged in both cases. The ratio of hydrogenase activities measured in terms of hydrogen uptake and evolution was also high in the extract and centrifugal fractions from cells grown in hydrogen. The soluble fraction and trypsin digest of the precipitate at 100,000 X g were subjected to polyacrylamide disc gel electrophoresis and hydrogenase bands were stained by reduction of benzyl viologen with hydrogen and by oxidation of reduced methyl viologen. The resulting patterns suggest that multiple forms of hydrogenase are present and that the amounts of forms functioning in hydrogen evolution were greatly decresed in cells grown on hydrogen in the presence of acceptors.  相似文献   

17.
The effect of several transition metals on the activity of Desulfovibrio gigas hydrogenase has been studied. Co(II) and Ni(II) at a concentration of 1 mM did not modify the activity of the enzyme; nor did they affect the pattern of activation/deactivation. Cu(II) inhibited the active hydrogenase, prepared by treatment with hydrogen, but had little effect on the 'unready' enzyme unless a reductant such as ascorbate was present, in which case inactivation took place either in air or under argon. Hg(II) also inactivated the enzyme irreversible in the 'unready' state without the requirement for reductants. The reaction of H2 uptake with methyl viologen was much more sensitive to inhibition than the H2/tritium exchange activity. EPR spectra of this preparation showed that the rates of decline were [3Fe-4S] signal greater than H2-uptake activity greater than Ni-A signal. Similar results were obtained when the protein was treated with Hg(II). The results demonstrate that the [3Fe-4S] cluster is not essential for H2-uptake activity with methyl viologen, but the integrity of [4Fe-4S] clusters is probably necessary to catalyze the reduction of methyl viologen with hydrogen. D. gigas hydrogenase was found to be highly resistant to digestion by proteases.  相似文献   

18.
Pyrodictium brockii is a hyperthermophilic archaebacterium with an optimal growth temperature of 105 degrees C. P. brockii is also a chemolithotroph, requiring H2 and CO2 for growth. We have purified the hydrogen uptake hydrogenase from membranes of P. brockii by reactive red affinity chromatography and sucrose gradient centrifugation. The molecular mass of the holoenzyme was 118,000 +/- 19,000 Da in sucrose gradients. The holoenzyme consisted of two subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The large subunit had a molecular mass of 66,000 Da, and the small subunit had a molecular mass of 45,000 Da. Colorometric analysis of Fe and S content in reactive red-purified hydrogenase revealed 8.7 +/- 0.6 mol of Fe and 6.2 +/- 1.2 mol of S per mol of hydrogenase. Growth of cells in 63NiCl2 resulted in label incorporation into reactive red-purified hydrogenase. Growth of cells in 63NiCl2 resulted in label incorporation into reactive red-purified hydrogenase. Temperature stability studies indicated that the membrane-bound form of the enzyme was more stable than the solubilized purified form over a period of minutes with respect to temperature. However, the membranes were not able to protect the enzyme from thermal inactivation over a period of hours. The artificial electron acceptor specificity of the pure enzyme was similar to that of the membrane-bound form, but the purified enzyme was able to evolve H2 in the presence of reduced methyl viologen. The Km of membrane-bound hydrogenase for H2 was approximately 19 microM with methylene blue as the electron acceptor, whereas the purified enzyme had a higher Km value.  相似文献   

19.
Two mutant strains of Escherichia coli, AK11 and AK22, express normal levels of hydrogenase activity, assayed by deuterium exchange, when grown on glucose or complex medium but cannot reduce methyl viologen by H2 nor grow on fumarate plus H2. The mutant strains also lack formate hydrogenlyase and formate dehydrogenase activities. The mutation in these strains was located near minute 17 of the genome map and a single mutation was shown to be responsible for loss of both hydrogen uptake and formate-related activities. Membrane vesicles and solubilized membranes of strains AK11 and AK22 were capable of methyl viologen reduction by H2 and had the normal complement of hydrogenase isoenzymes 1 and 2. Intact cells of the mutant strains could reduce fumarate by H2 but could not grow under these conditions. A plasmid, pAK11, was isolated, as well as smaller plasmids derived from it, which restored the hydrogen uptake activities in the two mutant strains, the smallest active DNA fragment being 1.4 kb. The formate activities were partially restored by some of the plasmids. The plasmids which restored hydrogen uptake activities led to synthesis of a polypeptide of subunit molecular mass 30 kDa.  相似文献   

20.
NADH:nitrate reductase (EC 1.6.6.1) from Chlorella vulgaris has been purified 640-fold with an over-all yield of 26% by a combination of protamine sulfate fractionation, ammonium sulfate fractionation, gel chromatography, density gradient centrifugation, and DEAE-chromatography. The purified enzyme is stable for more than 2 months when stored at minus 20 degrees in phosphate buffer (pH 6.9) containing 40% (v/v) glycerol. After the initial steps of the purification, a constant ratio of NADH:nitrate reductase activity to NADH:cytochrome c reductase and reduced methyl viologen:nitrate reductase activities was observed. One band of protein was detected after polyacrylamide gel electrophoresis of the purified enzyme. This band also gave a positive stain for heme, NADH dehydrogenase, and reduced methyl viologen:nitrate reductase. One band, corresponding to a molecular weight of 100, 000, was detected after sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme contains FAD, heme, and molybdenum in a 1:1:0.8 ratio. One "cyanide binding site" per molybdenum was found. No non-heme-iron or labile sulfide was detected. From a dry weight determination of the purified enzyme, a minimal molecular weight of 152, 000 per molecule of heme or FAD was calculated. An s20, w of 9.7 S for nitrate reductase was found by the use of sucrose density gradient centrifugation and a Stokes radius of 89 A was estimated by gel filtration techniques. From these values, and the assumption that the partial specific volume is 0.725 cc/g, a molecular weight of 356, 000 was estimated for the native enzyme. These data suggest that the native enzyme contains a minimum of 2 molecules each of FAD, heme, and molybdenum and is composed of at least three subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号