首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
A covalent dimer of interleukin (IL)-2, produced in vitro by the action of a nerve-derived transglutaminase, has been shown previously to be cytotoxic to mature rat brain oligodendrocytes. Here we report that this cytotoxic effect operates via programmed cell death (apoptosis) and that the p53 tumor suppressor gene is involved directly in the process. The apoptotic death of mature rat brain oligodendrocytes in culture following treatment with dimeric IL-2 was demonstrated by chromatin condensation and internucleosomal DNA fragmentation. The peak of apoptosis was observed 16-24 h after treatment, while the commitment to death was already observed after 3-4 h. An involvement of p53 in this process was indicated by the shift in location of constitutively expressed endogenous p53 from the cytoplasm to the nucleus, as early as 15 min after exposure to dimeric IL-2. Moreover, infection with a recombinant retrovirus encoding a C-terminal p53 miniprotein, shown previously to act as a dominant negative inhibitor of endogenous wild-type p53 activity, protected these cells from apoptosis.  相似文献   

5.
All organisms end with their death, and many parts of cells die through intrinsic suicide machineries in response to diverse stimuli. These intrinsic cell death pathways are often termed as programmed cell deaths (PCDs), and are critical for organism development, tissue homeostasis and various diseases. Recent evidence has revealed that most of PCDs involve a tumor suppressor p53 and components of the intra-mitochondria. Furthermore, the movement and positioning of p53 in cells affect the induction of each PCD pathway. Here we provide a comprehensive review on p53-related PCD mechanisms via the mitochondria, namely classical apoptosis, non-classical apoptosis, autophagic cell death, ferroptosis, necroptosis. In addition, we discuss the roles of p53 in each PCD pathway by focusing its altered intracellular localization in response to diverse cellular stresses.  相似文献   

6.
During many forms of apoptosis, Bax, a pro-apoptotic protein of the Bcl-2 family, translocates from the cytosol to the mitochondria and induces cytochrome c release, followed by caspase activation and DNA degradation. Both Bcl-X(L) and the protein phosphatase inhibitor calyculin A have been shown to prevent apoptosis, and here we investigated their impact on Bax translocation. ML-1 cells incubated with either anisomycin or staurosporine exhibited Bax translocation, cytochrome c release, caspase 8 activation, and Bid cleavage; only the latter two events were caspase-dependent, confirming that they are consequences in this apoptotic pathway. Both Bcl-X(L) and calyculin A prevented Bax translocation and cytochrome c release. Bcl-X(L) is generally thought to heterodimerize with Bax to prevent cytochrome c release and yet they remain in different cellular compartments, suggesting that their heterodimerization at the mitochondria is not the primary mechanism of Bcl-X(L)-mediated protection. Using chemical cross-linking agents, Bax appeared to exist as a monomer in undamaged cells. Upon induction of apoptosis, Bax formed homo-oligomers in the mitochondrial fraction with no evidence for cross-linking to Bcl-2 or Bcl-X(L). Considering that both Bcl-X(L) and calyculin A inhibit Bax translocation, we propose that Bcl-X(L) may regulate Bax translocation through modulation of protein phosphatase or kinase signaling.  相似文献   

7.
Popov LS  Korochkin LI 《Genetika》2004,40(2):149-166
Extensively and successfully studied problems of programmed cell death are considered. Recent evidence on apoptosis genes is presented, including the bcl-2 family and other genes with similar functions. A scheme of pathways of the main apoptosis mechanism is constructed. Examples of associations of apoptosis and diseases are presented in a special section.  相似文献   

8.
Yao H  Feng Y  Zhou T  Wang J  Wang ZX 《Biochemistry》2012,51(13):2684-2693
Human programmed cell death 5 (PDCD5) is a protein playing a significant role in regulating both the apoptotic and paraptotic cell deaths. Resent findings show that PDCD5 is a positive regulator of Tip60 and also has a potential ability to interact with p53. Here we aim to experimentally characterize the nature of the interactions between PDCD5 and the p53 N-terminal domain (NTD) and to depict the binding mode between two proteins. The interprotein binding interfaces were determined by NMR experiments performed with PDCD5 and various fragments of p53 NTD. The binding affinity was investigated using the NMR titration experiments. Analysis revealed that the PDCD5 binding site on p53 is localized within residues 41-56 of p53 TAD2 subdomain while p53 binds preferentially to the positively charged surface region around the C-terminals of helices α3 and α5 and the N-terminal of helix α4 of PDCD5. The binding is mainly mediated through electrostatic interactions. The present data suggested a model for the interaction between PDCD5 and the p53 NTD.  相似文献   

9.
动物细胞培养过程中的细胞自然凋亡   总被引:3,自引:0,他引:3  
细胞培养过程中的细胞自然凋亡是细胞受环境压力的影响而发生的现象。随着细胞自然凋亡的分子生物学和生物化学研究的深入,对以动物细胞产品生产为目的的细胞培养产业将产生极有价值的影响。采用DNA重组技术把预防细胞自然凋亡的基因导入细胞和在培基中加入具有抗细胞自然凋亡的化合物等手段已用于预防或减缓细胞培养过程中的细胞自然凋亡。这些技术将大大延长细胞达到饱和密度后的培养时间,从而使细胞培养系统的生产效率得以显著提高。  相似文献   

10.
11.
Our previous studies have shown that cells conditionally deficient in Tsg101 arrested at the G(1)/S cell cycle checkpoint and died. We created a series of Tsg101 conditional knock-out cell lines that lack p53, p21(Cip1), or p19(Arf) to determine the involvement of the Mdm2-p53 circuit as a regulator for G(1)/S progression and cell death. In this new report we show that the cell cycle arrest in Tsg101-deficient cells is p53-dependent, but a null mutation of the p53 gene is unable to maintain cell survival. The deletion of the Cdkn1a gene in Tsg101 conditional knock-out cells resulted in G(1)/S progression, suggesting that the p53-dependent G(1) arrest in the Tsg101 knock-out is mediated by p21(Cip1). The Cre-mediated excision of Tsg101 in immortalized fibroblasts that lack p19(Arf) seemed not to alter the ability of Mdm2 to sequester p53, and the p21-mediated G(1) arrest was not restored. Based on these findings, we propose that the p21-dependent cell cycle arrest in Tsg101-deficient cells is an indirect consequence of cellular stress and not caused by a direct effect of Tsg101 on Mdm2 function as previously suggested. Finally, the deletion of Tsg101 from primary tumor cells that express mutant p53 and that lack p21(Cip1) expression results in cell death, suggesting that additional transforming mutations during tumorigenesis do not affect the important role of Tsg101 for cell survival.  相似文献   

12.
PARP-1-deficient mice display a severe defect in the base excision repair pathway leading to radiosensitivity and genomic instability. They are protected against necrosis induced by massive oxidative stress in various inflammatory processes. Mice lacking p53 are highly predisposed to malignancy resulting from defective cell cycle checkpoints, resistance to DNA damage-induced apoptosis as well as from upregulation of the iNOS gene resulting in chronic oxidative stress. Here, we report the generation of doubly null mutant mice. We found that tumour-free survival of parp-1(-/-)p53(-/-) mice increased by 50% compared with that of parp- 1(+/+)p53(-/-) mice. Tumour formation in nude mice injected with oncogenic parp-1(-/-)p53(-/-) fibroblasts was significantly delayed compared with parp-1(+/+)p53(-/-) cells. Upon gamma-irradiation, a partial restoration of S-phase radiosensitivity was found in parp-1(-/-)p53(-/-) primary fibroblasts compared with parp-1(+/+)p53(-/-) cells. In addition, iNOS expression and nitrite release were dramatically reduced in the parp-1(-/-)p53(-/-) mice compared with parp-1(+/+)p53(-/-) mice. The abrogation of the oxydated status of p53(-/-) cells, due to the absence of parp-1, may be the cause of the delay in the onset of tumorigenesis in parp-1(-/-)p53(-/-) mice.  相似文献   

13.
Mutations in DJ-1 lead to early onset Parkinson's disease (PD). The aim of this study was to elucidate further the underlying mechanisms leading to neuronal cell death in DJ-1 deficiency in vivo and determine whether the observed cell loss could be prevented pharmacologically. Inactivation of DJ-1 in zebrafish, Danio rerio, resulted in loss of dopaminergic neurons after exposure to hydrogen peroxide and the proteasome inhibitor MG132. DJ-1 knockdown by itself already resulted in increased p53 and Bax expression levels prior to toxin exposure without marked neuronal cell death, suggesting subthreshold activation of cell death pathways in DJ-1 deficiency. Proteasome inhibition led to a further increase of p53 and Bax expression with widespread neuronal cell death. Pharmacological p53 inhibition either before or during MG132 exposure in vivo prevented dopaminergic neuronal cell death in both cases. Simultaneous knockdown of DJ-1 and the negative p53 regulator mdm2 led to dopaminergic neuronal cell death even without toxin exposure, further implicating involvement of p53 in DJ-1 deficiency-mediated neuronal cell loss. Our study demonstrates the utility of zebrafish as a new animal model to study PD gene defects and suggests that modulation of downstream mechanisms, such as p53 inhibition, may be of therapeutic benefit.  相似文献   

14.
Activation of Checkpoint kinase 1 (Chk1) following DNA damage mediates cell cycle arrest to prevent cells with damaged DNA from entering mitosis. Here we provide a high-resolution analysis of cells as they undergo S- and G₂-checkpoint bypass in response to Chk1 inhibition with the selective Chk1 inhibitor GNE-783. Within 4–8 h of Chk1 inhibition following gemcitabine induced DNA damage, cells with both sub-4N and 4N DNA content prematurely enter mitosis. Coincident with premature transition into mitosis, levels of DNA damage dramatically increase and chromosomes condense and attempt to align along the metaphase plate. Despite an attempt to congress at the metaphase plate, chromosomes rapidly fragment and lose connection to the spindle microtubules. Gemcitabine mediated DNA damage promotes the formation of Rad51 foci; however, while Chk1 inhibition does not disrupt Rad51 foci that are formed in response to gemcitabine, these foci are lost as cells progress into mitosis. Premature entry into mitosis requires the Aurora, Cdk1/2 and Plk1 kinases and even though caspase-2 and -3 are activated upon mitotic exit, they are not required for cell death. Interestingly, p53, but not p21, deficiency enables checkpoint bypass and chemo-potentiation. Finally, we uncover a differential role for the Wee-1 checkpoint kinase in response to DNA damage, as Wee-1, but not Chk1, plays a more prominent role in the maintenance of S- and G₂-checkpoints in p53 proficient cells.  相似文献   

15.
16.
Programmed cell death (PCD) is an essential mechanism of antimicrobial defense. Recent work has revealed an unexpected diversity in the types of PCD elicited during infection, as well as defined unique roles for different PCD modalities in shaping the immune response. Here, we review recent work describing unique ways in which PCD signaling operates within the infected central nervous system (CNS). These studies reveal striking complexity in the regulation of PCD signaling by CNS cells, including both protective and pathological outcomes in the control of infection. Studies defining the specialized molecular mechanisms shaping PCD responses in the CNS promise to yield much needed new insights into the pathogenesis of neuroinvasive viral infection, informing future therapeutic development.  相似文献   

17.
K F Macleod  Y Hu    T Jacks 《The EMBO journal》1996,15(22):6178-6188
Extensive apoptosis occurs in the nervous system of mouse embryos homozygous mutant for a targeted disruption of the retinoblastoma (Rb) gene. This cell death is present in both the central (CNS) and peripheral nervous systems (PNS) and is associated with abnormal S phase entry of normally post-mitotic neurons. Aberrant proliferation in the CNS correlates with increased free E2F DNA binding activity and increased expression of cyclin E, an E2F target gene and critical cell cycle regulator. Cell death in the CNS is accompanied by increased levels of the p53 tumor suppressor gene product and increased expression of the p53 target gene, p21Waf-1/Cip-1. However, induction of p53 is not observed in the PNS of Rb-mutant embryos, nor does loss of p53 function inhibit cell death in the PNS. Surprisingly, p21Waf-1/Cip-1 is induced in the sensory ganglia of Rb-mutant embryos in a p53-independent manner. Although loss of p53 gene function prevents cell death in the CNS of Rb-mutant embryos, it does not restore normal proliferative control.  相似文献   

18.
19.
Non-proliferating oocytes within avascular regions of the ovary are exquisitely susceptible to chemotherapy. Early menopause and sterility are unintended consequences of chemotherapy, and efforts to understand the oocyte apoptotic pathway may provide new targets for mitigating this outcome. Recently, the c-Abl kinase inhibitor imatinib mesylate (imatinib) has become the focus of research as a fertoprotective drug against cisplatin. However, the mechanism by which imatinib protects oocytes is not fully understood, and reports of the drug''s efficacy have been contradictory. Using in vitro culture and subrenal grafting of mouse ovaries, we demonstrated that imatinib inhibits the cisplatin-induced apoptosis of oocytes within primordial follicles. We found that, before apoptosis, cisplatin induces c-Abl and TAp73 expression in the oocyte. Oocytes undergoing apoptosis showed downregulation of TAp63 and upregulation of Bax. While imatinib was unable to block cisplatin-induced DNA damage and damage response, such as the upregulation of p53, imatinib inhibited the cisplatin-induced nuclear accumulation of c-Abl/TAp73 and the subsequent downregulation of TAp63 and upregulation of Bax, thereby abrogating oocyte cell death. Surprisingly, the conditional deletion of Trp63, but not ΔNp63, in oocytes inhibited apoptosis, as well as the accumulation of c-Abl and TAp73 caused by cisplatin. These data suggest that TAp63 is the master regulator of cisplatin-induced oocyte death. The expression kinetics of TAp63, c-Abl and TAp73 suggest that cisplatin activates TAp63-dependent expression of c-Abl and TAp73 and, in turn, the activation of TAp73 by c-Abl-induced BAX expression. Our findings indicate that imatinib protects oocytes from cisplatin-induced cell death by inhibiting c-Abl kinase, which would otherwise activate TAp73-BAX-mediated apoptosis. Thus, imatinib and other c-Abl kinase inhibitors provide an intriguing new way to halt cisplatin-induced oocyte death in early follicles and perhaps conserve the endocrine function of the ovary against chemotherapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号