首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Citrulline is synthesized in mitochondria of Neurospora crassa from ornithine and carbamoyl phosphate. In mycelia grown in minimal medium, carbamoyl phosphate limits citrulline (and arginine) synthesis. Addition of arginine to such cultures reduces the availability of intramitochondrial ornithine, and ornithine then limits citrulline synthesis. We have found that for some time after addition of excess arginine, carbamoyl phosphate synthesis continued. Very little of this carbamoyl phosphate escaped the mitochondrion to be used in the pyrimidine pathway in the nucleus. Instead, mitochondrial carbamoyl phosphate accumulated over 40-fold and turned over rapidly. This was true in ornithine- or ornithine carbamoyltransferase-deficient mutants and in normal mycelia during feedback inhibition of ornithine synthesis. The data suggest that the rate of carbamoyl phosphate synthesis is dependent to a large extent upon the specific activity of the slowly and incompletely repressible synthetic enzyme, carbamoyl-phosphate synthetase A. In keeping with this conclusion, we found that when carbamoyl-phosphate synthetase A was repressed 2-10-fold by growth of mycelia in arginine, carbamoyl phosphate was still synthesized in excess of that used for residual citrulline synthesis. Again, only a small fraction of the excess carbamoyl phosphate could be accounted for by diversion to the pyrimidine pathway. The continued synthesis and turnover of carbamoyl phosphate in mitochondria of arginine-grown cells may allow rapid resumption of citrulline formation after external arginine disappears and no longer exerts negative control on ornithine biosynthesis.  相似文献   

2.
The arginine pathway is a complex one, having many branch points and effector interactions. In order to assess the quantitative role of the various mechanisms that influence the flux in the pathway, the system was divided experimentally into two moieties by the introduction of a genetic block abolishing ornithine carbamoyltransferase activity. This normally produces citrulline from ornithine within the mitochondria. The endogenous citrulline supply was replaced by citrulline in the growth medium, and control of the influx rate was achieved by using glycine or histidine as uptake inhibitors. By modulating the influx rate over a large range of values, the importance of such factors as reversibility, saturation, inhibition and induction in affecting the flux and the sizes of intermediate pools between citrulline and arginine was assessed. The role of expansion fluxes as important controls in the exponentially growing system was established.  相似文献   

3.
Guanosine metabolism in Neurospora crassa   总被引:1,自引:0,他引:1  
Two aspects of guanosine metabolism in Neurospora have been investigated. (a) The inability of adenine mutants (blocked prior to IMP synthesis) to use guanosine as a nutritional supplement; and (b) the inhibitory effect of guanosine on the utilization of hypoxanthine as a purine source for growth by these mutants. Studies on the utilization of guanosine indicated that the proportion of adenine derived from guanosine may be limiting for the growth of adenine mutants. In wild type, adenine is produced through the biosynthetic pathway when grown in the presence of guanosine. The amount of adenine produced through the de novo biosynthesis in wild type increases with increasing concentrations of guanosine in the medium. However, the total purine synthesis does not increase. Guanosine inhibits the uptake of hypoxanthine severely. In addition, guanosine and its nucleotide derivatives also inhibit the hypoxanthine phosphoribosyltransferase activity, at the same time stimulating the adenine phosphoribosyltransferase activity. Guanosine's effects on the uptake of hypoxanthine and its conversion to the nucleotide form may be the reasons why guanosine inhibits the utilization of hypoxanthine but not adenine by these mutants.  相似文献   

4.
The utilization of thymidine by Neurospora crassa is initiated by the pyrimidine deoxyribonucleoside 2'-hydroxylase reaction and the consequent formation of thymine and ribose. Thymine must then be oxidatively demethylated by the thymine 7-hydroxylase and uracil-5-carboxylic acid decarboxylase reactions. This article shows that the 2'-hydroxylase reaction can be regulated differently than the oxidative demethylation process and suggests that the 2'-hydroxylase has, in addition to the role of salvaging the pyrimidine ring, the role of providing ribose not only for the utilization of the demethylated pyrimidine but also for other metabolic processes. One way that this difference in regulation was observed was with the uc-1 mutation developed by Williams and Mitchell. The present communication shows that this mutation increases the activities of the 7-hydroxylase and the decarboxylase but has no comparable effect on the 2'-hydroxylase. Qualitatively similar effects on these enzymes were bought about by growth of wild-type Neurospora in media lacking ammonium ion, such as the Westergaard-Mitchell medium. The 2'-hydroxylase and 7-hydroxylase are also differently affected by the carbon dioxide content of the atmosphere above the growing culture and the growth temperature. Studies with inhibitors indicated that the carbon dioxide effect is dependent on protein synthesis.  相似文献   

5.
Glutamine metabolism and cycling in Neurospora crassa.   总被引:4,自引:0,他引:4  
Evidence for the existence of a glutamine cycle in Neurospora crassa is reviewed. Through this cycle glutamine is converted into glutamate by glutamate synthase and catabolized by the glutamine transaminase-omega-amidase pathway, the products of which (2-oxoglutarate and ammonium) are the substrates for glutamate dehydrogenase-NADPH, which synthesizes glutamate. In the final step ammonium is assimilated into glutamine by the action of a glutamine synthetase (GS), which is formed by two distinct polypeptides, one catalytically very active (GS beta), and the other (GS alpha) less active but endowed with the capacity to modulate the activity of GS alpha. Glutamate synthase uses the amide nitrogen of glutamine to synthesize glutamate; glutamate dehydrogenase uses ammonium, and both are required to maintain the level of glutamate. The energy expended in the synthesis of glutamine drives the cycle. The glutamine cycle is not futile, because it is necessary to drive an effective carbon flow to support growth; in addition, it facilitates the allocation of nitrogen or carbon according to cellular demands. The glutamine cycle which dissipates energy links catabolism and anabolism and, in doing so, buffers variations in the nutrient supply and drives energy generation and carbon flow for optimal cell function.  相似文献   

6.
The energy requirements for the uptake and retention of arginine by vacuoles of Neurospora crassa have been studied. Exponentially growing mycelial cultures were treated with inhibitors of respiration or glycolysis or an uncoupler of respiration. Catabolism of arginine was monitored as urea production in urease-less strains. The rationale was that the rate and extent of such catabolism was indicative of the cytosolic arginine concentration. No catabolism was observed in cultures treated with an inhibitor or an uncoupler of respiration, but cultures treated with inhibitors of glycolysis rapidly degraded arginine. These differences could not be accounted for by alterations in the level or activity of arginase. Mycelia growing in arginine-supplemented medium and treated with an inhibitor or uncoupler of respiration degraded an amount of arginine equivalent to the cytosolic fraction of the arginine pool. The inhibitors and the uncoupler of respiration reduced the ATP pool and the energy charge. The inhibitors of glycolysis reduced the ATP pool but did not affect the energy charge. The results suggest that metabolic energy is required for the transport of arginine into the vacuoles but not for its retention. The latter is affected by inhibitors of glycolysis. The form of energy and the nature of the vacuolar transport mechanism(s) are discussed.  相似文献   

7.
Control of arginine utilization in Neurospora.   总被引:8,自引:6,他引:2       下载免费PDF全文
The response of Neurospora to changes in the availibility of exogenous arginine was investigated. Upon addition of arginine to the growth medium, catabolism is initiated within minutes. This occurs prior to expansion of the arginine pool or augmentation of catabolic enzyme levels. (Basal levels are approximately 25% of those found during growth in arginine-supplemented medium.) Catabolism of arginine is independent of protein synthesis, indicating that the catabolic enzymes are active but that arginine is not available for catabolism unless present in the medium. Upon exhaustion of the supply of exogenous arginine, catabolism ceases abruptly, despite an expanded arginine pool and induced levels of the catabolic enzymes. The arginine pool supports protein synthesis until the cells regain their normal capacity for endogenous arginine synthesis. These observations, combined with the known small level of induction of arginine catabolic enzymes, non-repressibility of most biosynthetic enzymes, and vesicular localization of the bulk of the arginine pool, suggest that compartmentation plays a significant role in controlling arginine metabolism in Neurospora.  相似文献   

8.
During nitrogen deprivation, de novo synthesis of glutamine synthetase was induced in non-growing conidia of Neurospora crassa. When ammonia or glutamine was added to conidia which had been deprived of nitrogen, glutamine and arginine accumulated at a higher rate than in condia not deprived of nitrogen. The degradation of exogenous glutamine to glutamate is apparently a necessary step in the accumulation of glutamine and arginine within the conidia. In non-growing conidia, a cycle probably operates in which glutamine is degraded and resynthesized. The advantages of such a cycle would be that the carbon and nitrogen could be used to synthesize amino acids in general, as well as for the synthesis and accumulation of arginine and/or glutamine in particular.  相似文献   

9.
The flux into the arginine biosynthetic pathway of Neurospora crassa was investigated using a mutant strain lacking the ornithine-degrading enzyme ornithine aminotransferase (EC 2.6.1.13). Flux was measured by the increase in the sum of the radioactivity (derived from [14C]glutamic acid) in the ornithine pool, the arginine pool, and arginine incorporated into proteins. Complete cessation of flux occurred immediately upon the addition of arginine to the growth medium. This response occurred prior to expansion of the arginine pool. After short-term exposure to arginine (80 min), flux resumed quickly upon exhaustion of arginine from the medium. This took place despite the presence of an expanded arginine pool. Initiation of flux required approximately 80 min when the mycelia were grown in arginine-supplemented medium for several generations before exhaustion of the exogenous arginine. The arginine pool of such mycelia was similar to that found in mycelia exposed to exogenous arginine for only 80 min. The results are consistent with rapid onset and release of feedback inhibiton of arginine biosynthesis in response to brief exposure to exogenous arginine. The insensitivity of flux to the size of the arginine pool is consistent with a role for compartmentation in this regulatory process. The lag in initiation of flux after long-term growth in the presence of exogenous arginine suggests the existence of an additional regulatory mechanism(s). Several possibilities are discussed.  相似文献   

10.
Compartmentation and control of arginine metabolism in Neurospora.   总被引:15,自引:13,他引:2       下载免费PDF全文
The fate of [14-C]arginine derived from the medium or from biosynthesis has been examined in Neurospora growing in arginine-supplemented medium. In both cases the label enters the cytosol, where it is used efficiently for both protein synthesis and catabolism before mixing with the majority of the endogenous [12C]arginine pool. Both metabolic processes appear to use the same cytosolic arginine pool. It is calculated that the nonorganellar cytoplasm contains approximately 20% of the intracellular arginine pool when the cells are growing in arginine-supplemented medium. The results suggest that compartmentation of arginine is a significant factor in controlling arginine metabolism in Neurospora. The significance of these results for studies of amino acid metabolism in other eukaryotic systems is discussed.  相似文献   

11.
Guanine uptake and metabolism in Neurospora crassa   总被引:1,自引:0,他引:1       下载免费PDF全文
Guanine is transported into germinated conidia of Neurospora crassa by the general purine base transport system. Guanine uptake is inhibited by adenine and hypoxanthine but not xanthine. Guanine phosphoribosyltransferase (GPRTase) activity was demonstrated in cell extracts of wild-type germinated conidia. The Km for guanine ranged from 29 to 69 micro M in GPRTase assays; the Ki for hypoxanthine was between 50 and 75 micro M. The kinetics of guanine transport differ considerably from the kinetics of GPRTase, strongly suggesting that the rate-limiting step in guanine accumulation in conidia is not that catalyzed by GPRTase. Efflux of guanine or its metabolites appears to have little importance in the regulation of pools of guanine or guanine nucleotides since very small amounts of 14C label were excreted from wild-type conidia preloaded with [8-14C]guanine. In contrast, excretion of purine bases, hypoxanthine, xanthine, and uric acid appears to be a mechanism for regulation of adenine nucleotide pools (Sabina et al., Mol. Gen. Genet. 173:31-38, 1979). No label from exogenous [8-14C]guanine was ever found in any adenine nucleotides, nucleosides, or the base, adenine, upon high-performance liquid chromatography analysis of acid extracts from germinated conidia of wild-type of xdh-l strains. The 14C label from exogenous [8-14C]guanine was found in GMP, GDP, GTP, and the GDP sugars as well as in XMP. Xanthine and uric acid were also labeled in wild-type extracts. Similar results were obtained with xdh-l extracts except that uric acid was not present. The labeled xanthine and XMP strongly suggest the presence of guanase and xanthine phosphoribosyltransferase in germinated conidia.  相似文献   

12.
Mutants affecting thymidine metabolism in Neurospora crassa   总被引:11,自引:8,他引:3       下载免费PDF全文
When (14)C-thymidine labeled only in the ring is administered to Neurospora crassa, the majority of the recovered label is found in the ribonucleic acid (RNA). Three mutants were isolated in which different steps are blocked in the pathway that converts the pyrimidine ring of thymidine to an RNA precursor. Evidence from genetic, nutritional, and accumulation studies with the three mutants shows the pathway to proceed as follows: thymidine --> thymine --> 5-hydroxymethyluracil --> 5-formyluracil --> uracil --> uridylic acid. A mutant strain in which the thymidine to thymine conversion is blocked is unable to metabolize thymidine appreciably by any route, including entry into nucleic acids. This suggests that Neurospora lacks a thymidine phosphorylating enzyme. A second mutation blocks the pathway at the 5-hydroxymethyluracil to 5-formyluracil step, whereas a third prevents utilization of uracil and all compounds preceding it in the pathway. The mutant isolation procedures yielded three other classes of mutations which are proposed to be affecting, respectively, regulation of the thymidine degradative pathway, transport of pyrimidine free bases, and transport of pyrimidine nucleosides.  相似文献   

13.
Nitrogen starvation has been shown to increase the cytosolic arginine concentration and to accelerate protein turnover in mycelia of Neurospora crassa. The cytosolic arginine is derived from a metabolically inactive vacuolar pool. Redistribution of arginine between cytosolic and vacuolar compartments is the result of mobilization of this metabolite in response to nitrogen starvation. Mobilization of arginine (and purines) also occurred in response to glutamine limitation, but arginine accumulated upon proline starvation. These observations indicate that mobilization is a consequence of glutamine limitation rather than a general response to amino acid starvation (or limitation). Analysis of the amino acid pools in mycelia subjected to starvation or limitation suggests that glutamine (or a metabolite derived from glutamine) provides a signal which determines the metabolic fate of vacuolar arginine. The results are consistent with the hypothesis that vacuolar compartmentation provides a readily available store of nitrogen-rich compounds to be utilized during differentiation or under conditions of nutritional stress.  相似文献   

14.
The radioisotopic method used to assay acetylglutamate kinase (EC 2.7.2.8) of Neurospora crassa has been shown to detect two distinct enzymatically catalyzed reactions. The enzymes were separated by differential centrifugation into a cytosolic activity and an organellar activity. Both activities required ATP and were thermal-labile. The cytosolic activity was insensitive to inhibition by arginine and formed a stable reaction product in the absence of hydroxylamine. The organellar activity had an absolute requirement for hydroxylamine in order to form a stable reaction product. The product of the cytosolic activity was separated from acetylglutamate hydroxamate (the product of the organellar activity) and was identified as the cyclic amide pyroglutamate by cation exchange chromatography. The organellar activity has been implicated in arginine biosynthesis by the following criteria: it was completely and specifically inhibited by arginine concentrations as low as 200 microM; its level was elevated 2-fold in a mutant strain with derepressed levels of arginine biosynthetic enzymes; and it was absent in an arginine auxotrophic strain (the cytosolic activity was present). The organellar activity co-sedimented with mitochondria during isopycnic gradient centrifugation. The metabolic problems posed by a mitochondrial location of a feedback-sensitive enzyme and the cytosolic location of its effector are discussed.  相似文献   

15.
The influence of particular enzyme activities on the flux of metabolites in a pathway can be estimated by 'modulating' enzymes (i.e. changing turnover or concentration) and measuring the response in various parts of the system. By controlling the nuclear ration of two genetically different nuclear types in heterokaryons, the enzyme concentrations at four different steps in the arginine pathway were decreased over a range. This range was extended by the use of bradytrophs, mutant strains specifying enzymes with greatly diminished enzyme activities. Strains altered simultaneously at more than one step were also constructed by genetic recombination. By measuring the outputs of the pathway and the steady-state concentrations of intermediate pools, the fluxes in different parts of the pathway were calculated. This allowed the construction of flux/enzyme relationships, the slope of which is a measure of the sensitivity of a flux to the change in enzyme activity at that step. All fluxes were found to be considerably buffered for quite substantial decreases in the activities of all enzymes. Mass action plays an important part in this phenomenon, as do inhibition and repression. Because of the existence of expansion fluxes in growing systems, we find quantitatively different fluxes in different parts of the single pathway. For the same reason some enzyme modulations given decreased fluxes in one part and increased fluxes in another. The understanding of control in the pathway thus involves consideration of many mechanisms operating simultaneously and the estimation of changes in the whole system. The concept of a 'rate-limiting step' is found to be inadequate and is replaced by a quantitative measure, the Sensitivity Coefficient, which takes account of all the interactions. It is shown that control of the flux is shared among all the enzymes of the pathway. The results are discussed in terms of the theory of flux control.  相似文献   

16.
17.
Tryptophan Transport in Neurospora crassa II. Metabolic Control   总被引:13,自引:10,他引:3       下载免费PDF全文
The rate of tryptophan transport in Neurospora is regulated by the intracellular pool of tryptophan. When cells were shifted from growth in minimal medium to tryptophan-containing medium for 10 min, there was a 50% reduction in the rate of tryptophan transport. Intracellular tryptophan pools derived from indole were equally effective in reducing the rate of transport as externally supplied tryptophan. The regulatory influence of tryptophan on the transport system appears to be a property of all the amino acids transported by the tryptophan transport site or sites. Lysine and glutamic acid are not transported by the tryptophan transport site or sites and are ineffective in the regulation of tryptophan uptake. Continued protein synthesis is required for the maintenance of a functional tryptophan transport system. The half-life of the transport system, estimated by inhibiting protein synthesis with cycloheximide, was about 15 min. Turnover of the system occurred at 30 C but not at 4 C, suggesting that the breakdown of the system is enzymatically mediated. It was inferred that the rate of tryptophan transport in Neurospora is modulated through the maintenance of a delicate balance between the synthesis and breakdown of some component of the transport system.  相似文献   

18.
The steady state concentrations of arginine and related intermediary metabolites of the arginine biosynthetic pathway in the eukaryote Neurospora crassa were varied and the concurrent de-repression of the enzymes ornithine transcarbamylase, argininosuccinate synthetase and argininosuccinase was measured. Pool variation was achieved endogenously by the introduction and combination of mutant enzymes with reduced specific activities. Measurements of activities of the mutationally unaltered enzymes showed various degrees of de-repression. The highest activity level for each of the three enzymes was about five times that found in the fully repressed wild-type strain. The variations observed in the pools were as follows: ornithine, 7-fold; citrulline, 700-fold; argininosuccinic acid, 400-fold; arginine, 300-fold.By this means a quantitative analysis of the process of repression is made possible. A strong correlation was found between the degree of de-repression of the three enzymes and the concentration of arginine. The de-repression follows a sigmoid curve with respect to arginine concentration. This is consistent with the interpretation that the pathway enzymes are subject to a repression system with arginine, or a simple derivative of it, acting as a co-repressor.  相似文献   

19.
20.
The bulk of the intracellular arginine pool in exponentially growing mycelia of Neurospora crassa is sequestered in the vacuoles. Vacuolar arginine effluxes from the vacuoles into the cytosol and is catabolized to ornithine and urea upon nitrogen starvation. The energy requirement for mobilization has been studied by treating nitrogen-starved mycelia with inhibitors or respiration or glycolysis or an uncoupler of respiration. Mobilization was inhibited by the inhibitors or the uncoupler of respiration, but not by the inhibitors of glycolysis. The inhibitors and the uncoupler of respiration reduced the ATP pool and the energy charge of the treated mycelia. The inhibitors of glycolysis reduced the ATP pool but had no effect on the energy charge. The results indicate that mobilization of arginine from the vacuoles requires metabolic energy. The forms of this energy and the mode of its association with the mobilization process are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号