首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
C B Reed  W Tang  V A Ziboh 《Life sciences》1991,49(17):1221-1227
The culture of a human acute myelogenous leukemic cell line (KG-1) with a synthetic ether-linked phospholipid: 1-0-octadecyl-2-0-methylglycerol phosphocholine (ET-18-OCH3), suppressed the growth of the KG-1 cells while the variant subline, (KG-1a cells) similarly treated was unresponsive. The growth inhibition of the KG-1 cells was accompanied by morphological changes into cells of the monocyte/macrophage lineage. Histochemically, the ET-18-OCH3-treated KG-1 cells increase 17-fold in the nonspecific esterase activity when compared to control non-treated cells, whereas they responded negatively in the assay for the reduction of soluble nitroblue tetrazolium into insoluble blue formazan deposits (a marker for cells of the granulocytic lineage). Taken together, our data revealed that the synthetic ether-lipid inhibited the growth of the KG-1 acute myelogenous leukemic cells while inducing the differentiation of these cells into cells of the monocyte/macrophage-lineage. These effects of the synthetic ether lipid raise the possibility that naturally occurring ether-linked phospholipids may likewise function in vivo to modulate hyperproliferative processes and thus warrant further explorations.  相似文献   

2.
A glycerophosphonocholine analog of the ether-linked lipid, rac-1-O-octadecyl-2-O-methyl-glycero-3-phosphocholine (ET-18-OCH3-GPC), was synthesized in which the head group is nonhydrolyzable by phospholipase C. The phosphonate analog used in this study is rac-3-octadecyloxy-2-methoxy-propyl-phosphonocholine, C18H37OCH2CH(OCH3)CH2P(O)(O)OCH2CH2N+(CH3)3. The activity of the synthetic phosphonate was tested in the human leukemic cell line, HL-60, and the human undifferentiated cervical carcinoma, C-41. The glycerophosphonocholine inhibited [3H]thymidine uptake by HL-60 cells with an EC50 value of 5-7 microM. The glycerophosphate ET-18-OCH3-GPC had an EC50 value of approximately 2 microM against HL-60 cells. The EC50 values estimated from cell viability experiments were similar to that for [3H]thymidine uptake. The EC50 value for C-41 cells was about 10-15 microM. The data demonstrate that the glycerophosphonocholine is a promising anti-cancer drug for the treatment of both leukemia and solid tumors. Furthermore, the data demonstrate that phospholipase C-catalyzed hydrolysis of ET-18-OCH3-GPC does not play an important role in the cytotoxic action of the ether-linked glycerolipids.  相似文献   

3.
The antineoplastic ether phospholipid 1-O-octadecyl-2-O-methyl-sn-glycero-3-phophocholine (ET-18-OCH3) was incorporated into dimyristoylglycerophosphocholine (Myr2Gro-PCho)/dimyristoylglycerophosphoserine (Myr2Gro-PSer) (4 : 1 molar ratio) mixtures. Electron microscopy showed that the addition of ET-18-OCH3 reduced the size of the vesicles. Small vesicles could be detected even at 60 mol% ET-18-OCH3. Sedimentation studies showed the increasing presence of phospholipids in the supernatant, while turbidity measurements indicated a decrease in absorbance as the ET-18-OCH3 concentration was increased. These findings may be explained by the formation of small vesicles and/or mixed micelles. Infrared spectroscopy showed that at 60 mol% the fluidity of the membrane was considerably increased at temperatures below the phase transition, with only a small increase in the proportion of gauche isomers after the gel-to-fluid phase transition of this sample. On the other hand, protein kinase Calpha (PKCalpha) activity progressively decreased when ET-18-OCH3 was incorporated into multilamellar vesicles, reaching a minimum value at 20 mol%, this inhibition being attributed to the modification of the membrane produced by a cone-shaped molecule. At higher concentrations, however, ET-18-OCH3 activated the enzyme with a maximum being attained at 50 mol%. This activation being attributed to the formation of small vesicles and/or micelles. At still higher concentrations of ET-18-OCH3 the enzyme was once again inhibited, inhibition being almost complete at 80 mol%. When PKC was assayed using large unilamellar vesicles a slight activation was observed at very low ET-18-OCH3 concentrations.  相似文献   

4.
BACKGROUND: Choline is an essential nutrient in methylation, acetylcholine and phospholipid biosynthesis, and in cell signaling. The demand by an embryo or fetus for choline may place a pregnant woman and, subsequently, the developing conceptus at risk for choline deficiency. METHODS: To determine whether a disruption in choline uptake and metabolism results in developmental abnormalities, early somite staged mouse embryos were exposed in vitro to either an inhibitor of choline uptake and metabolism, 2-dimethylaminoethanol (DMAE), or an inhibitor of phosphatidylcholine synthesis, 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH(3)). Cell death following inhibitor exposure was investigated with LysoTracker Red and histology. RESULTS: Embryos exposed to 250-750 microM DMAE for 26 hr developed craniofacial hypoplasia and open neural tube defects in the forebrain, midbrain, and hindbrain regions. Embryos exposed to 125-275 microM ET-18-OCH(3) exhibited similar defects or expansion of the brain vesicles. ET-18-OCH(3)-affected embryos also had a distended neural tube at the posterior neuropore. Embryonic growth was reduced in embryos treated with either DMAE (375, 500, and 750 microM) or ET-18-OCH(3) (200 and 275 microM). Whole mount staining with LysoTracker Red and histological sections showed increased areas of cell death in embryos treated with 275 microM ET-18-OCH(3) for 6 hr, but there was no evidence of cell death in DMAE-exposed embryos. CONCLUSIONS: Inhibition of choline uptake and metabolism during neurulation results in growth retardation and developmental defects that affect the neural tube and face.  相似文献   

5.
Oral administration of dodecylglycerol, inflammatory product of cancerous tissues, and the alkyl lysophospholipid derivative, 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH3-choline), greatly activated mouse peritoneal macrophages. The activation was dose related and was assessed as increased Fc-mediated ingestion of red blood cells, superoxide production, chemiluminescence activity, and incorporation of radioactive thymidine and leucine. Furthermore, the data show that dodecylglycerol or ET-18-OCH3-choline was capable of inducing equally high levels of macrophage activation and cytotoxic action on tumor cells, just as occurs with intraperitoneal administration. Dodecylglycerol appeared to activate the macrophages at a relatively lower dose (5 micrograms/mouse) than ET-18-OCH3-choline (15 micrograms/mouse). The optimal oral doses required to activate macrophages for ingestion and cytotoxic activities were relatively higher than previously observed when these agents were administered intraperitoneally. Thus, the dose difference provided crucial information for correlating oral dosages with in vivo concentration of these agents as bioassayed by macrophage activation. These observations have extended and further support our earlier findings that these agents are effective immunopotentiators and thus could therapeutically be used to activate macrophages for cytotoxic effects on tumor cells via the oral route.  相似文献   

6.
Alkyllysophospholipids (ALP) which are 1-O-alkyl analogs of the cell membrane component 1-acyl-sn-glycero-3-phosphocholine (1-acyl-GPC) represent a family of new antitumor drugs. Susceptibility of cells to ALP is correlated to a selective inhibition of fatty acid incorporation into 1,2-diacyl-sn-glycero-3-phosphocholine in intact cells. This report examines oleoyl-CoA-1-acyl-GPC acyl-transferase activities in cell-free systems of ALP-sensitive methylcholanthrene-induced fibrosarcoma cells (MethA cells) and ALP-resistant bone marrow-derived murine macrophages (BMM phi). The specific activities for the oleoyl-CoA-1-acyl-GPC acyltransferases were 1.05 +/- 0.06 nmol X mg-1 X min-1 and 2.98 +/- 0.27 nmol X mg-1 X min-1, respectively. The kinetic parameters for 1-palmitoyl-GPC were Km = 16.6 microM, Vmax = 4.3 nmol X mg-1 X min-1 (BMM phi) and Km = 7.6 microM, Vmax = 2.0 nmol X mg-1 X min-1 (MethA cells). In the presence of 1-O-octadecyl-2-O-methyl racemic glycero-3-phosphocholine (ET-18-OCH3), one of the most potent cytotoxic ALP, the acyltransferase was dose dependently inhibited in MethA cells with a 50% inhibition concentration at 40 micrograms/ml. The BMM phi-acyltransferase was not affected up to 80 micrograms of ET-18-OCH3/ml. The kinetic parameters (Km' = 15.4 microM, Vmax' = 2.2 nmol X mg-1 X min-1) suggest that ET-18-OCH3 is a competitive inhibitor in MethA cells. Inhibitor constants for ET-18-OCH3, calculated from Dixon plots, were found to be 423 microM (BMM phi) and 13 microM (MethA cells) indicating a 33-fold larger affinity of ET-18-OCH3 to the MethA cells than to the BMM phi acyltransferase. From these data we assume that the inhibition of oleic acid incorporation into cellular phosphocholine during the antineoplastic action of ALP may be due to different affinities of the inhibitor to the 1-acyl-GPC acyltransferases in different cell types.  相似文献   

7.
1-O-Octadecyl-2-O-methyl-glycero-3-phosphocholine (ET-18-OCH(3)) selectively inhibits the growth of cancer cells. Here we show that in some cell types ET-18-OCH(3)and liposome-associated ET-18-OCH(3)inhibit cell division without concurrent inhibition of nuclear division, leading to multinucleate cell formation, and cell death through apoptosis. Cell cycle analysis revealed that ET-18-OCH(3)-treated U-937 cells continued to move through the cell cycle, but many cells were not able to divide and instead accumulated as tetraploid cells or octaploid cells in the G0/G1 phase of the cell cycle. Inhibition of cytokinesis has been shown to be paralleled by activation of U-937 cells, including upregulation of some cell-surface markers, acquisition of phagocytic activity, and secretion of tumor necrosis factor (TNF)-alpha (Pushkareva et al., 2000). Furthermore, treatment of cells with ET-18-OCH(3)results in the accumulation of apoptotic cells in time- and dose-dependent manner. It is possible that inhibition of cytokinesis may be related to cytoskeletal effects.  相似文献   

8.
The mechanism of induction of apoptosis by the novel anti-cancer drug 1-O-octadecyl-2-methyl-rac-glycero-3-phosphocholine (ET-18-OCH3) was investigated in p53-defective SV40 immortalized rat hepatocytes (CWSV1). Exposure to 12 microM ET-18-OCH3 for 36 h induced apoptosis as determined using classical morphological features and agarose gel electrophoresis of genomic DNA. Increased levels of reactive oxygen species (ROS) were detected spectrophotometrically using a nitroblue tetrazolium (NBT) assay in cells treated with ET-18-OCH3. Both the increased generation of ROS and the induction of apoptosis were inhibited when cells were treated concurrently with ET-18-OCH3 in the presence of the antioxidant alpha-tocopherol. Similar results were achieved when cells were switched acutely to choline-deficient (CD) medium in the presence of the antioxidant. The possible role of mitochondria in the generation of ROS was investigated. Both ET-18-OCH3 and CD decreased the phosphatidylcholine (PC) content of mitochondrial and associated membranes, which correlated with depolarization of the mitochondrial membrane as analyzed using 5,5',6,6'-tetramethylbenzimidazolcarbocyanine iodide (JC-1), a sensitive probe of mitochondrial membrane potential. Rotenone, an inhibitor of the mitochondrial electron transport chain, significantly reduced the intracellular level of ROS and prevented mitochondrial membrane depolarization, correlating with a reduction of apoptosis in response to either ET-18-OCH3 or CD. Taken together, these results suggest that the form of p53-independent apoptosis induced by ET-18-OCH3 is mediated by alterations in mitochondrial membrane PC, a loss of mitochondrial membrane potential, and the release of ROS, resulting in completion of apoptosis.  相似文献   

9.
The capacity of the antineoplastic ether lipid 1-O-octadecyl-2-O-methyl-glycero-3-phosphocholine (ET-18-OCH3) to modulate the polymorphic properties of dielaidoylphosphatidylethanolamine has been studied using biophysical techniques. Differential scanning calorimetry showed that ET-18-OCH3 depresses the onset of the Lbeta to Lalpha phase transition, decreasing also DeltaH of the transition. At the same time, the onset of the transition from Lalpha to inverted hexagonal HII phase was gradually increased as the ether lipid concentration was increased, totally disappearing at concentrations higher than 5 mol%. Small-angle X-ray diffraction and 31P-NMR confirmed that ET-18-OCH3 induced that the appearance of the inverted hexagonal HII phase was shifted towards higher temperatures completely disappearing at concentrations higher than 5 mol%. These results were used to elaborate a partial phase diagram and they were discussed as a function of the molecular action of ET-18-OCH3.  相似文献   

10.
The effects of the anti-neoplastic ether lipid ET-18-OCH3 and some structural homologues on the activity of protein kinase C alpha (PKC alpha) were studied and compared with the effects the same had on the activity of PKC epsilon. ET-18-OCH3 progressively inhibited the activity of PKC alpha as the concentration was increased up to 30 mol% of the total lipid, above which the effect was one of activation. The experiments carried out with the homologues showed that the methoxy group bound at the sn-2 position of the glycerol of ET-18-OCH3 is essential for both the initial inhibitory effect and the subsequent activation effect. On the other hand, variations in the type of bond linking substitutions in the sn-1 position, ether or ester, do not seem to play an important role in determining the activity of the enzyme. The effects were different on PKC epsilon since ET-18-OCH3 had a triphasic effect, activating the enzyme at low concentrations, inhibiting it at slightly higher concentrations and then activating it again at higher concentrations. In this case, when the homologues were used, it was observed that the presence of the methoxy group linked to the sn-2 position of glycerol and the type of bond linking substitutions to the sn-1 position were important for activating the enzyme, so that only homologues with ester bonds as LPC and PAPC were able to induce the initial activation step in a way similar to ET-18-OCH3. Substitution of the phosphocholine group of ET-18-OCH3 by phosphoserine led to a greater activation of PKC alpha, an effect that comes from the Ca(2+)-phospholipid binding site probably because of the specific interaction of this site with the phosphoserine group. The action of ET-18-OCH3 and its homologues, as demonstrated in this paper, may permit the selective inhibition or activation of PKC alpha and PKC epsilon by using the most suitable range of concentrations.  相似文献   

11.
To test the hypothesis that the action of antineoplastic ether-linked lipids in leukemic cells is associated with their ability to inhibit protein kinase C (PKC), we have compared the effects of two ether-linked lipids, 1-O-hexadecyl-2-O-methyl-sn-glycero-3-phosphocholine (ET16-OCH3-GPC) and 1-O-hexadecyl-2-O-methyl-sn-glycero-3-(S-beta-D-1'- thioglucopyranosyl)-sn-glycerol (ET16-OCH3-beta-thio-Glc), on two different leukemic cell lines (WEHI-3B and R6X-B15). ET16-OCH3-GPC killed WEHI-3B cells with an EC50 value of 2.5 microM, whereas it was far less effective against R6X-B15 cells (EC50 = 40 microM). In contrast, the beta anomer of ET16-OCH3-beta-thio-Glc did not kill either cell line at concentrations up to 40 microM. Both ET16-OCH3-GPC and ET16-OCH3-thio-Glc inhibited 12-O-tetradecanoylphorbol 12,13-dibutyrate (TPA)-induced PKC translocation in both WEHI-3B and R6X-B15 cells. When WEHI-3B cells were first exposed to TPA, and then to ET16-OCH3-GPC, no significant decrease in PKC activity in the particulate fraction was noticed. When, however, the cells were first exposed to ET16-OCH3-GPC and then to TPA, the enzyme activity in the particulate fraction was decreased by 20-30%. A phorbol dibutyrate binding assay showed that the decrease in membrane-associated PKC activity and the increase in cytosolic PKC activity did not result from impeded enzyme translocation. These results suggest that the similar PKC inhibitory potency of ET16-OCH3-GPC and ET16-OCH3-beta-thio-Glc: (a) is not correlated with the widely different cytotoxicities of these agents and (b) is probably due to interference with the binding of diacylglycerol/phosphatidylserine or TPA to PKC. Taken together, these results suggest that the ether-linked lipids compete with diacylglycerol/phosphatidylserine or TPA for binding sites on PKC required for enzyme activation.  相似文献   

12.
Incorporation of ET-18-OCH3 into well-characterized liposomes known as ELL-12 has eliminated its gastrointestinal and hemolytic toxicity without loss of growth inhibiting activity. ET-18-OCH3, but not ELL-12, blunted the increase in membrane protein kinase C (PKC) activity induced by 12-O-tetradecanoylphorbol 13-myristate (TPA) and markedly reduced levels of PKC alpha in NIH 3T3 fibroblasts. Furthermore, prolonged treatment with ELL-12 neither inhibited TPA-induced translocations of PKC alpha and PKC delta to the particulate fraction nor caused down-regulation, and did not affect the cellular distribution of TPA-insensitive PKC zeta. In Jurkat T cells, where ELL-12 markedly induced apoptosis that was blocked by an inhibitor of caspase-3-like activities, it had no effect on PKC activity or translocation induced by TPA. Thus, it seems unlikely that PKC is involved in the therapeutic effects of ELL-12.  相似文献   

13.
We report here the complete synthesis of the spin-labeled derivative of an antitumor ether phospholipid, 1-O-octadecyl-2-O-(4'-doxylpentyl)-rac-glycerol-3-phosphocholine. This also represents the first time that the synthesis of a nitroxide spin-labeled diether phospholipid is described. In vitro experiments showed that at micromolar concentrations, this new analog is readily incorporated into the plasma membranes of human HL60 and mouse E8/AK.D1 leukemic cells, and subsequently kills the cells. The availability of this new probe should permit the electron spin resonance spectroscopic approach to investigate ways by which anti-tumor ether phospholipids selectively destroy the tumor cells.  相似文献   

14.
2-O-Methyl analogs of platelet activating factor (PAF) are potent anticancer agents. The sites of action and mechanisms of cell toxicity of these agents are as yet unknown. To better understand the mode of action of this class of anticancer agents, we examined the ability of 1-O-hexadecyl-2-acetylglycero-3-phosphocholine with the S or R configuration at C2 ((R)-PAF and (S)-PAF) and 1-O-hexadecyl-2-methoxyglycero-3-phosphocholine with the S or R configuration at C2 ((R)-ET-16-OCH3-GPC and (S)-ET-16-OCH3-GPC) to induce rabbit platelet aggregation and to inhibit [3H]thymidine uptake into WEHI-3B cells, HL-60 cells, and normal blood lymphocytes. The four chiral ether-linked lipids caused aggregation of rabbit platelets with the following order of potency: (R)-PAF greater than (S)-PAF greater than (R)-ET-16-OCH3-GPC greater than (S)-ET-16-OCH3-GPC; the EC50 values were 1 pM, 50 nM, 1 microM, and 50 microM, respectively. The cytotoxic effects of these ether lipids in leukemic cells was in reverse order to that observed for aggregation of platelets. The order of potency for inhibition of [3H]thymidine uptake by WEHI-3B and HL-60 cells was (R)-ET-16-OCH3-GPC = (S)-ET-16-OCH3-GPC greater than (S)-PAF greater than (R)-PAF; the EC50 values were 2, 2, 15, and greater than 40 microM, respectively. PAF antagonists (WEB 2086, CV 3988, triazolam, and SRI 63,441) blocked the action of the four ether lipids on platelets, while SRI 63,441 blocked the antineoplastic activity of the ether lipids on WEHI-3B and HL-60 cells. None of the four lipids was able to kill normal lymphocytes significantly. Scatchard analysis of PAF receptor binding revealed that HL-60 and WEHI-3B cells, which are sensitive to the cytotoxic action of ether-linked lipids, do not possess PAF receptors, whereas both normal lymphocytes and platelets do possess a PAF receptor. The present data indicate that the cytotoxic action of antineoplastic ether-linked lipids does not involve the PAF receptor. The protective role of SRI 63,441 in blocking the proaggregatory activity of the ether lipids in rabbit platelets involves PAF receptor, but cytotoxic activity against WEHI-3B and HL-60 cells does not result from its ability to act as a PAF antagonist.  相似文献   

15.
The alkyllysophospholipid analog 1-0-octadecyl-2-0-methyl-3-phosphorylcholine (ET-18-OCH3) was examined for possible anti attachment effects on B16-F10 murine melanoma cells in vitro. At sub-lethal lipid concentrations B16-F10 cells were inhibited from attaching to reconstituted basement membrane (Matrigel) during a 45 min assay. This type of inhibition was also imparted by the isoprenoid farnesol but not by egg lysophosphatidylcholine (LPC) at concentrations up to 10 micrograms/ml. Both lipids were toxic to B16-F10 cells in the absence of bovine serum albumin (BSA), BSA (0.1%) completely protected the cells from lysis except when both lipids were combined as a mixture. Light and electron microscopy, as well as electronic sizing of cells, gave evidence of alkyllysophospholipid induced reduction in cell size which correlated well with attachment inhibition. The results suggest that alkyllysophospholipid induced reduction of cell surface area leads to inhibition of cell attachment to basement membrane which 8 with our experimental conditions, was not permanent since cells eventually attach within 24 h after treatment. The enhanced lytic effect the lysophospholipid imparts on the alkyl compound, in conjunction with the anti-attachment properties should be important areas for future research.  相似文献   

16.
Lysophosphatidic acid is a multifunctional phospholipid mediator and elicits a variety of biological responses in vitro and in vivo. Evidence is accumulating that lysophosphatidic acid plays important physiological roles in diverse mammalian tissues and cells. In the present study, we first examined whether lysophosphatidic acid is present in human saliva. We found that a significant amount of lysophosphatidic acid is present in the saliva (0.785 nmol/ml). The predominant fatty acyl moiety of lysophosphatidic acid was 18:1n-9 + n-7 followed by 18:0 and 16:0. A small amount of lysoplasmanic acid, an alkyl ether-linked analog of lysophosphatidic acid, was also detected in the saliva (0.104 nmol/ml). We found that physiologically relevant concentrations of lysophosphatidic acid induced accelerated growth of cells of mouth, pharynx, and esophagus origin in vitro. Lysophosphatidic acid also induced rapid increases in the intracellular free Ca2+ concentrations in these cells. We obtained evidence that lysophosphatidic acid receptor mRNAs are actually present in these cells. These results strongly suggest that lysophosphatidic acid is involved in wound healing in the upper digestive organs such as the mouth, pharynx, and esophagus.  相似文献   

17.
Surface areas of lipid membranes   总被引:4,自引:0,他引:4  
Upon photolysis, alkyl pentacyanocobaltate complexes generate alkyl radicals which react rapidly and specifically with nitroxide radicals, and which do not penetrate phospholipid bilayers. By measuring the loss of paramagnetic resonance signal intensity when multilamellar liposomes containing a small amount of spin-labeled lipid are exposed to these radicals, we have measured the proportion of lipid on the external surface of liposomes. We have shown that liposomes prepared under specified conditions from dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine, and binary mixtures of dipalmitoylphosphatidylcholine and cholesterol all have the same proportion of external lipid.  相似文献   

18.
19.
We examined the regulatory role of cytosolic phospholipase A(2) (cPLA(2)) and phosphatidylinositol (PI)-specific phospholipase C (PLC) in the degranulation of human eosinophils and leukotriene (LT) C(4) synthesis. Activation with formyl-Met-Leu-Phe + cytochalasin B (fMLP/B) caused a time-dependent release of eosinophil peroxidase (EPO) and LTC(4), which was inhibited by pertussis toxin. By immunoblotting, eosinophil PLC-beta2 and -gamma2 isoforms were identified, and PLC activation was measured as a function of inositol 1,4,5-trisphosphate concentration. Stimulated release of EPO and intracellular Ca(2+) concentration was inhibited by ET-18-OCH(3), a PI-PLC inhibitor, whereas trifluoromethylketone (TFMK), a cPLA(2) blocker, had no inhibitory effect. Both TFMK and ET-18-OCH(3) attenuated stimulated arachidonate release and LTC(4) secretion, suggesting that activation of both PLC and cPLA(2) is essential for LTC(4) synthesis caused by fMLP/B. The structurally unrelated protein kinase C inhibitors bisindolylmaleimide, Ro-31-8220, and Go-6976 all blocked fMLP/B-induced EPO release but not LTC(4) secretion. 1,2-bis(2-Aminophenoxy)ethane-N,N,N',N'- tetraacetic acid acetoxymethyl ester, an intracellular Ca(2+) chelator, suppressed both EPO release and LTC(4) secretion. We found that fMLP/B-induced LTC(4) secretion from human eosinophils is regulated by PI-PLC through calcium-mediated activation of cPLA(2). However, cPLA(2) does not regulate eosinophil degranulation.  相似文献   

20.
H T Truong  E A Pratt  C Ho 《Biochemistry》1991,30(16):3893-3898
The interaction with phospholipid vesicles of the membrane-bound respiratory enzyme D-lactate dehydrogenase of Escherichia coli has been studied. Proteolytic digestion studies show that D-lactate dehydrogenase is protected from trypsin digestion to a larger extent when it interacts with phosphatidylglycerol than with phosphatidylcholine vesicles. Wild-type D-lactate dehydrogenase and mutants in which an additional tryptophan is substituted in selected areas by site-specific oligonucleotide-directed mutagenesis have been labeled with 5-fluorotryptophan. 19F nuclear magnetic resonance studies of the interaction of these labeled enzymes with small unilamellar phospholipid vesicles show that Trp 243, 340, and 361 are exposed to the lipid phase, while Trp 384, 407, and 567 are accessible to the external aqueous phase. Reconstitution of enzymatic activity in phospholipid vesicles has been studied by adding enzyme and substrate to phospholipid vesicles containing a spin-labeled fatty acid as an electron acceptor. The reduction of the doxyl group of the spin-labeled fatty acid has been monitored indirectly by nuclear magnetic resonance and directly by electron paramagnetic resonance. These results indicate that an artificial electron-transfer system can be created by mixing D-lactate dehydrogenase and D-lactate together with phospholipid vesicles containing spin-labeled fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号