首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Recent studies have indicated that the insulin-signaling pathway controls body and organ size in Drosophila, and most metazoans, by signaling nutritional conditions to the growing organs. The temporal requirements for insulin signaling during development are, however, unknown. Using a temperature-sensitive insulin receptor (Inr) mutation in Drosophila, we show that the developmental requirements for Inr activity are organ specific and vary in time. Early in development, before larvae reach the “critical size” (the size at which they commit to metamorphosis and can complete development without further feeding), Inr activity influences total development time but not final body and organ size. After critical size, Inr activity no longer affects total development time but does influence final body and organ size. Final body size is affected by Inr activity from critical size until pupariation, whereas final organ size is sensitive to Inr activity from critical size until early pupal development. In addition, different organs show different sensitivities to changes in Inr activity for different periods of development, implicating the insulin pathway in the control of organ allometry. The reduction in Inr activity is accompanied by a two-fold increase in free-sugar levels, similar to the effect of reduced insulin signaling in mammals. Finally, we find that varying the magnitude of Inr activity has different effects on cell size and cell number in the fly wing, providing a potential linkage between the mode of action of insulin signaling and the distinct downstream controls of cell size and number. We present a model that incorporates the effects of the insulin-signaling pathway into the Drosophila life cycle. We hypothesize that the insulin-signaling pathway controls such diverse effects as total developmental time, total body size and organ size through its effects on the rate of cell growth, and proliferation in different organs.  相似文献   

2.
Recent studies have indicated that the insulin-signaling pathway controls body and organ size in Drosophila, and most metazoans, by signaling nutritional conditions to the growing organs. The temporal requirements for insulin signaling during development are, however, unknown. Using a temperature-sensitive insulin receptor (Inr) mutation in Drosophila, we show that the developmental requirements for Inr activity are organ specific and vary in time. Early in development, before larvae reach the “critical size” (the size at which they commit to metamorphosis and can complete development without further feeding), Inr activity influences total development time but not final body and organ size. After critical size, Inr activity no longer affects total development time but does influence final body and organ size. Final body size is affected by Inr activity from critical size until pupariation, whereas final organ size is sensitive to Inr activity from critical size until early pupal development. In addition, different organs show different sensitivities to changes in Inr activity for different periods of development, implicating the insulin pathway in the control of organ allometry. The reduction in Inr activity is accompanied by a two-fold increase in free-sugar levels, similar to the effect of reduced insulin signaling in mammals. Finally, we find that varying the magnitude of Inr activity has different effects on cell size and cell number in the fly wing, providing a potential linkage between the mode of action of insulin signaling and the distinct downstream controls of cell size and number. We present a model that incorporates the effects of the insulin-signaling pathway into the Drosophila life cycle. We hypothesize that the insulin-signaling pathway controls such diverse effects as total developmental time, total body size and organ size through its effects on the rate of cell growth, and proliferation in different organs.  相似文献   

3.
The developmental basis for allometry in insects   总被引:9,自引:0,他引:9  
Within all species of animals, the size of each organ bears a specific relationship to overall body size. These patterns of organ size relative to total body size are called static allometry and have enchanted biologists for centuries, yet the mechanisms generating these patterns have attracted little experimental study. We review recent and older work on holometabolous insect development that sheds light on these mechanisms. In insects, static allometry can be divided into at least two processes: (1) the autonomous specification of organ identity, perhaps including the approximate size of the organ, and (2) the determination of the final size of organs based on total body size. We present three models to explain the second process: (1) all organs autonomously absorb nutrients and grow at organ-specific rates, (2) a centralized system measures a close correlate of total body size and distributes this information to all organs, and (3) autonomous organ growth is combined with feedback between growing organs to modulate final sizes. We provide evidence supporting models 2 and 3 and also suggest that hormones are the messengers of size information. Advances in our understanding of the mechanisms of allometry will come through the integrated study of whole tissues using techniques from development, genetics, endocrinology and population biology.  相似文献   

4.
5.
Akt/protein kinase B promotes organ growth in transgenic mice   总被引:24,自引:0,他引:24       下载免费PDF全文
One of the least-understood areas in biology is the determination of the size of animals and their organs. In Drosophila, components of the insulin receptor phosphoinositide 3-kinase (PI3K) pathway determine body, organ, and cell size. Several biochemical studies have suggested that Akt/protein kinase B is one of the important downstream targets of PI3K. To examine the role of Akt in the regulation of organ size in mammals, we have generated and characterized transgenic mice expressing constitutively active Akt (caAkt) or kinase-deficient Akt (kdAkt) specifically in the heart. The heart weight of caAkt transgenic mice was increased 2.0-fold compared with that of nontransgenic mice. The increase in heart size was associated with a comparable increase in myocyte cell size in caAkt mice. The kdAkt mutant protein attenuated the constitutively active PI3K-induced overgrowth of the heart, and the caAkt mutant protein circumvented cardiac growth retardation induced by a kinase-deficient PI3K mutant protein. Rapamycin attenuated caAkt-induced overgrowth of the heart, suggesting that the mammalian target of rapamycin (mTOR) or effectors of mTOR mediated caAkt-induced heart growth. In conclusion, Akt is sufficient to induce a marked increase in heart size and is likely to be one of the effectors of the PI3K pathway in mediating heart growth.  相似文献   

6.
BACKGROUND: Size regulation is fundamental in developing multicellular organisms and occurs through the control of cell number and cell size. Studies in Drosophila have identified an evolutionarily conserved signaling pathway that regulates organismal size and that includes the Drosophila insulin receptor substrate homolog Chico, the lipid kinase PI(3)K (Dp110), DAkt1/dPKB, and dS6K. RESULTS: We demonstrate that varying the activity of the Drosophila insulin receptor homolog (DInr) during development regulates organ size by changing cell size and cell number in a cell-autonomous manner. An amino acid substitution at the corresponding position in the kinase domain of the human and Drosophila insulin receptors causes severe growth retardation. Furthermore, we show that the Drosophila genome contains seven insulin-like genes that are expressed in a highly tissue- and stage-specific pattern. Overexpression of one of these insulin-like genes alters growth control in a DInr-dependent manner. CONCLUSIONS: This study shows that the Drosophila insulin receptor autonomously controls cell and organ size, and that overexpression of a gene encoding an insulin-like peptide is sufficient to increase body size.  相似文献   

7.
The control of growth is fundamental to the developing metazoan. Here, we show that CHICO, a Drosophila homolog of vertebrate IRS1-4, plays an essential role in the control of cell size and growth. Animals mutant for chico are less than half the size of wild-type flies, owing to fewer and smaller cells. In mosaic animals, chico homozygous cells grow slower than their heterozygous siblings, show an autonomous reduction in cell size, and form organs of reduced size. Although chico flies are smaller, they show an almost 2-fold increase in lipid levels. The similarities of the growth defects caused by mutations in chico and the insulin receptor gene in Drosophila and by perturbations of the insulin/IGF1 signaling pathway in vertebrates suggest that this pathway plays a conserved role in the regulation of overall growth by controling cell size, cell number, and metabolism.  相似文献   

8.
9.
Studies in Drosophila have characterized insulin receptor/phosphoinositide 3-kinase (Inr/PI3K) signaling as a potent regulator of cell growth, but its function during development has remained uncertain. Here we show that inhibiting Inr/PI3K signaling phenocopies the cellular and organismal effects of starvation, whereas activating this pathway bypasses the nutritional requirement for cell growth, causing starvation sensitivity at the organismal level. Consistent with these findings, studies using a pleckstrin homology domain-green fluorescent protein (PH-GFP) fusion as an indicator for PI3K activity show that PI3K is regulated by the availability of dietary protein in vivo. Hence we surmise that an essential function of insulin/PI3K signaling in Drosophila is to coordinate cellular metabolism with nutritional conditions.  相似文献   

10.
11.
The genetic control of growth ensures that animals grow to reproducible sizes and that tumourous growth is rare. This year, the regulation of organ growth has been studied extensively in Drosophila imaginal discs, and a signalling pathway that regulates organ growth and size has been identified. Furthermore, the role of Drosophila homologues to human tumour suppressor genes and oncogenes in imaginal disc growth has been investigated.  相似文献   

12.
Body size in Drosophila larvae, like in other animals, is controlled by nutrition. Nutrient restriction leads to catabolic responses in the majority of tissues, but the Drosophila mitotic imaginal discs continue growing. The nature of these differential control mechanisms that spare distinct tissues from starvation are poorly understood. Here, we reveal that the Ret-like receptor tyrosine kinase (RTK), Stitcher (Stit), is required for cell growth and proliferation through the PI3K-I/TORC1 pathway in the Drosophila wing disc. Both Stit and insulin receptor (InR) signaling activate PI3K-I and drive cellular proliferation and tissue growth. However, whereas optimal growth requires signaling from both InR and Stit, catabolic changes manifested by autophagy only occur when both signaling pathways are compromised. The combined activities of Stit and InR in ectodermal epithelial tissues provide an RTK-mediated, two-tiered reaction threshold to varying nutritional conditions that promote epithelial organ growth even at low levels of InR signaling.  相似文献   

13.
The regulation of organ size is a long-standing problem in animal development. Studies in this area have shown that organ-intrinsic patterning morphogens influence organ size, guiding growth in accordance with positional information. However, organ-extrinsic humoral factors such as insulin also affect organ size, synchronizing growth with nutrient levels. Proliferating cells must integrate instructions from morphogens with those from nutrition so that growth proceeds as a function of both inputs. Coordinating cell proliferation with morphogens and nutrients ensures organs scale appropriately with body size, but the basis of this coordination is unclear. Here, the problem is illustrated using the Drosophila wing--a paradigm for organ growth and size control--and a potential solution suggested.  相似文献   

14.
Oleoylethanolamide (OEA) is a lipid mediator belonging to the fatty acid ethanolamides family. It is produced by intestine and adipose tissue. It inhibits food intake and body weight gain, and has hypolipemiant action in vivo, as well as a lipolytic effect in vitro. OEA is a PPAR-alpha agonist, and recently it has been found that OEA is an endogenous ligand of an orphan receptor. Previously, we have shown that OEA inhibits insulin-stimulated glucose uptake in isolated adipocytes, and produces glucose intolerance in rats. In the present work, we have studied another insulin target cell, the hepatocyte using a rat hepatoma cell line (HTC), and we have studied the cross-talk of OEA signalling with metabolic and mitotic signal transduction of insulin receptor. OEA dose-dependently activates JNK and p38 MAPK, and inhibits insulin receptor phosphorylation. OEA inhibits insulin receptor activation, blunting insulin signalling in the downstream PI3K pathway, decreasing phosphorylation of PKB and its target GSK-3. OEA also inhibits insulin-dependent MAPK pathway, as assessed by immunoblot of phosphorylated MEK and MAPK. These effects were reversed by blocking JNK or p38 MAPK using pharmacological inhibitors (SP 600125, and SB 203580). Since OEA is an endogenous PPAR-alpha agonist, we investigated whether a pharmacologic agonist (WY 14643) may mimic the OEA effect on insulin receptor signalling. Activation of PPAR-alpha by the pharmacological agonist WY14643 in HTC hepatoma cells is sufficient to inhibit insulin signalling and this effect is also dependent on p38 MAPK but not JNK kinase. In summary, OEA inhibits insulin metabolic and mitogenic signalling by activation of JNK and p38 MAPK via PPAR-alpha.  相似文献   

15.
Coordination between growth and patterning/differentiation is critical if appropriate final organ structure and size is to be achieved. Understanding how these two processes are regulated is therefore a fundamental and as yet incompletely answered question. Here we show through genetic analysis that the phospholipase C-γ (PLC-γ) encoded by small wing (sl) acts as such a link between growth and patterning/differentiation by modulating some MAPK outputs once activated by the insulin pathway; particularly, sl promotes growth and suppresses ectopic differentiation in the developing eye and wing, allowing cells to attain a normal size and differentiate properly. sl mutants have previously been shown to have a combination of both growth and patterning/differentiation phenotypes: small wings, ectopic wing veins, and extra R7 photoreceptor cells. We show here that PLC-γ activated by the insulin pathway participates broadly and positively during cell growth modulating EGF pathway activity, whereas in cell differentiation PLC-γ activated by the insulin receptor negatively regulates the EGF pathway. These roles require different SH2 domains of PLC-γ, and act via classic PLC-γ signaling and EGF ligand processing. By means of PLC-γ, the insulin receptor therefore modulates differentiation as well as growth. Overall, our results provide evidence that PLC-γ acts during development at a time when growth ends and differentiation begins, and is important for proper coordination of these two processes.  相似文献   

16.
The insulin/insulin-like growth factor-1 (IGF-1) signalling pathways are present in most mammalian cells and play important roles in the growth and metabolism of tissues. Most proteins in these pathways have also been identified in the beta-cells of the pancreatic islets. Tissue-specific knockout of the insulin receptor (betaIRKO) or IGF-1 receptor (betaIGFRKO) in pancreatic beta-cells leads to altered glucose-sensing and glucose intolerance in adult mice, and betaIRKO mice show an age-dependent decrease in islet size and beta-cell mass. These data indicate that these receptors are important for differentiated function and are unlikely to play a major role in the early growth and/or development of the pancreatic islets. Conventional insulin receptor substrate-1 (IRS-1) knockouts manifest growth retardation and mild insulin resistance. The IRS-1 knockouts also display islet hyperplasia, defects in insulin secretory responses to multiple stimuli both in vivo and in vitro, reduced islet insulin content and an increased number of autophagic vacuoles in the beta-cells. Re-expression of IRS-1 in cultured beta-cells is able to partially restore the insulin content indicating that IRS-1 is involved in the regulation of insulin synthesis. Taken together, these data provide evidence that insulin and IGF-1 receptors and IRS-1, and potentially other proteins in the insulin/IGF-1 signalling pathway, contribute to the regulation of islet hormone secretion and synthesis and therefore in the maintenance of glucose homeostasis.  相似文献   

17.
18.
19.
Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway.  相似文献   

20.

Background

Despite being a fundamental biological problem the control of body size and proportions during development remains poorly understood, although it is accepted that the insulin-like growth factor (IGF) pathway has a central role in growth regulation, probably in all animals. The involvement of imprinted genes has also attracted much attention, not least because two of the earliest discovered were shown to be oppositely imprinted and antagonistic in their regulation of growth. The Igf2 gene encodes a paternally expressed ligand that promotes growth, while maternally expressed Igf2r encodes a cell surface receptor that restricts growth by sequestering Igf2 and targeting it for lysosomal degradation. There are now over 150 imprinted genes known in mammals, but no other clear examples of antagonistic gene pairs have been identified. The delta-like 1 gene (Dlk1) encodes a putative ligand that promotes fetal growth and in adults restricts adipose deposition. Conversely, Grb10 encodes an intracellular signalling adaptor protein that, when expressed from the maternal allele, acts to restrict fetal growth and is permissive for adipose deposition in adulthood.

Results

Here, using knockout mice, we present genetic and physiological evidence that these two factors exert their opposite effects on growth and physiology through a common signalling pathway. The major effects are on body size (particularly growth during early life), lean:adipose proportions, glucose regulated metabolism and lipid storage in the liver. A biochemical pathway linking the two cell signalling factors remains to be defined.

Conclusions

We propose that Dlk1 and Grb10 define a mammalian growth axis that is separate from the IGF pathway, yet also features an antagonistic imprinted gene pair.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号