首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Substituted 1-nitro-9-aminoacridine derivatives were shown to inhibit RNA and to a lesser extent protein synthesis in cultured human cells. Complex formation between the compounds studied and DNA were considered to be responsible for their cytostatic action. Two types of complexes differing in their binding forces were found. The biological activity of the studied compounds seems not to be dependent on the existence of a positive charge on the acridine ring.  相似文献   

3.
The photoreactions of 9-[6-(4-azidobenzamido)hexylamino]acridine (AHA) and 9-[6-(2-diazocyclopentadienylcarbonyloxy)hexylamino]acridine (DHA) with double stranded DNA result in formation of single strand nicks and alkali labile sites (adducts) with an efficiency of 6 x 10(-3) nicks per AHA and 3 x 10(-2) nicks per DHA molecule. The alkali dependent DNA cleavage by AHA shows a pronounced A+G preference whereas that by DHA is practically sequence independent. In the presence of diacridines, however, DHA exhibits a preference for cleavage at guanosines. These DNA photocleaving reagents could be useful for DNA photofootprinting and photosequencing.  相似文献   

4.
The induction of chromosomal aberrations by 5 derivatives of nitro-9-aminoacridine in V79 Chinese hamster cells was observed. The clastogenic activity of the compounds tested depended on the position of the NO2 group in the acridine ring. The strongest clastogens were derivatives with NO2 in position 1. The remaining derivatives placed in decreasing order of clastogenic activity were: 3-nitro, 4-nitro and 2-nitro. In addition, 2-nitro and 3-nitro derivatives produced hyperdiploid/polyploid metaphases.  相似文献   

5.
Photofootprinting of DNA triplexes.   总被引:1,自引:10,他引:1       下载免费PDF全文
We have used a photofootprinting assay to study intermolecular and intramolecular DNA triplexes. The assay is based on the fact that the DNA duplex is protected against photodamage (specifically, against the formation of the (6-4) pyrimidine photoproducts) within a triplex structure. We have shown that this is the case for PyPuPu (YRR) as well as PyPuPy (YRY) triplexes. Using the photofootprinting assay, we have studied the triplex formation under a variety of experimentally defined conditions. At acid pH, d(C)n.d(G)n.d(C)n and d(CT)n.d(GA)n.d(CT)n triplexes are detected by this method. The d(CT)n.d(GA)n.d(CT)n triplexes are additionally stabilized by divalent cations and spermidine. PyPuPu triplexes are pH-independent and are stabilized by divalent cations, such as Mg++ and Zn++. The effect depends on the type of cation and on the DNA sequence. The d(CT)n.d(GA)n.d(GA)n triplex is stabilized by Zn++, but not by Mg++, whereas the d(C)n.d(G)n.d(G)n triplex is stabilized by Mg++. In H-DNA, virtually the entire pyrimidine chain is protected against photodimerization, whereas only half of the pyrimidine chain participating in a triplex is protected in the CGG intramolecular triplex.  相似文献   

6.
Complex formation between spin-labeled 9-aminoacridine and DNA or polynucleotides has been studied by differential spectrophotometry and ESR. The differential spectra of the strong type 9-aminoacridine-DNA complex showed characteristic absorption bands at 270 and 290 nm, and the intensity ratio of these bands varied according to the degree of DNA denaturation. The ESR spectra of this complex were characterized by slow rotation of the radical; as the macromolecule became increasingly denatured and in the polynucleotide complex, a rapid signal appeared in the ESR spectrum. The temperature at which DNA undergoes a structural transition in the premelting region could be determined from the temperature dependence of the ESR spectral form of the dye-DNA complex. The spectral characteristics of the complexes give additional information about structural disturbances in DNA.  相似文献   

7.
The use of micrococcal nuclease as a probe for drug-binding sites on DNA   总被引:8,自引:0,他引:8  
The cutting pattern produced by micrococcal nuclease on three DNA fragments has been determined in the absence and presence of various DNA-binding drugs. The enzyme itself cuts almost exclusively at pA and pT bonds, showing a greater activity at (A-T)n than in homopolymeric runs of A and T. Each drug produces distinct changes in the cleavage pattern. The protected regions can not be pinpointed with sufficient precision to assess the exact drug-binding sites on account of the sequence selectivity of the enzyme, although where a direct comparison is possible these include most of those seen as DNAase I footprints. The enzyme is most useful for assessing the selectivity of drugs which bind to AT-rich regions. Several drugs protect the DNA from micrococcal nuclease attack in regions which do not contain their acknowledged best binding sites. It appears that micrococcal nuclease is sensitive to the existence of secondary drug-binding sites which are not evident with other footprinting techniques.  相似文献   

8.
Interaction of acridine- and 9-aminoacridinecarboxamide platinum complexes with DNA was investigated with respect to their DNA sequence specificity and kinetics of binding. The DNA sequence specificity of the compounds was quantitatively analyzed using a polymerase stop assay with the plasmid pUC19. The 9-aminoacridinecarboxamide platinum complexes exhibited a different sequence specificity to that of cisplatin, shifted away from runs of consecutive guanines (the main binding site for cisplatin). This alteration was dependent on chain length. Shorter chain length compounds (n = 2, 3) showed a greater difference in sequence specificity, while longer chain length compounds (n = 4, 5) more closely resembled cisplatin. An acridinecarboxamide platinum complex showed a similar sequence specificity to cisplatin, revealing that the major change of sequence specificity was due to the presence of the 9-amino substituent. A linear amplification system was used to investigate the time course of the reaction. The presence of an intercalating group (acridinecarboxamide or 9-aminoacridinecarboxamide) greatly increased the rate of reaction with DNA; this is proposed to be due to a different reaction mechanism with DNA (direct displacement by the N-7 of guanine).  相似文献   

9.
Photochemical cleavage of DNA by nitrobenzamides linked to 9-aminoacridine   总被引:1,自引:0,他引:1  
Nitrobenzamido ligands linked to the DNA intercalator 9-aminoacridine via poly(methylene) chains induce single-strand nicks in DNA upon irradiation with long-wavelength ultraviolet light (lambda greater than or equal to 300 nm). Optimal photocleavage activity was found for the reagent 9-[[6-(4-nitrobenzamido)hexyl]amino]-acridine. Removal of the acridinyl ligand or changing the position of the nitro group from the 4- to the 2-position caused a 10-fold decrease in photocleavage efficiency, whereas a change to the 3-position caused a 30-fold reduction. The DNA cleavage was 5-fold enhanced by subsequent piperidine treatment and showed some sequence dependency with predominant cleavage at G and T residues. Furthermore, significant differences in cleavage preference were observed when the poly(methylene) linker length was changed.  相似文献   

10.
The mechanism of the biological activity of the 1-nitro and 2-nitro aminoacridine derivatives containing the dimethylaminopropyl side chain was studied. RNA synthesis in the isolated rat liver nuclei was only slightly influenced by both compounds. They do not differ in their ability to form an intercalative complex with DNA. Only the 1-nitro derivative exhibited strong inhibitory effect on RNA biosynthesis and caused distinct ultrastructural changes (nucleolar segregation, chromatine margination etc.) in a living cell. The 1-nitro derivative binds covalently to DNA in vivo resulting in crosslink formation. It is concluded that the biological activity of 1-nitro acridine derivatives depends more on their crosslinking activity than on their ability to intercalate into DNA.  相似文献   

11.
A series of 4-substituted aniline mustards ArNH(CH2)nOpC6H4N(CH2CH2Cl)2, where Ar is an acridine and n varies from 2 to 5, interact with DNA. Scatchard analysis shows the compounds bind tightly, with a binding site size similar to that of 9-aminoacridine. The rate of hydrolysis of the mustards, measured by HPLC, is essentially constant across the series. With increasing length of the polymethylene linker, non-covalent binding becomes less strong, but the rate of DNA alkylation increases. Viscometric helix extension measurements and electrophoretic analyses using closed circular supercoiled DNA show that all the compounds are DNA intercalating ligands. Despite these similarities, the compounds are known to have quite different patterns of DNA alkylation, switching from guanine to adenine alkylation as the chain length is extended.  相似文献   

12.
13.
Calmodulin contains several binding sites for hydrophobic compounds. The apparent specificity of various 'calmodulin antagonists' for these sites was investigated. The Ki values for the inhibition of calmodulin-activated cyclic-nucleotide phosphodiesterase and myosin light-chain kinase was determined. In addition, the Kd values of the same compounds for binding to calmodulin were measured. The compounds could be separated into four groups. Group I and II compounds inhibited competitively the activation of the phosphodiesterase and myosin light-chain kinase by calmodulin. Group I compounds inhibited the activation of the phosphodiesterase and myosin light-chain kinase at identical concentrations. In contrast, group II compounds inhibited the activation of the phosphodiesterase at 5-10-fold lower concentrations than that of myosin light-chain kinase. Group III compounds inhibited the activation of these enzymes by an uncompetitive mechanism. Group IV compounds inhibited the activation of the phosphodiesterase with Ki values above 10 microM and did not affect the activation of myosin light-chain kinase. Binding of [3H]bepridil to calmodulin under equilibrium conditions yielded one high-affinity site (apparent Kd 0.4 microM) and four low affinity sites (apparent Kd 44 microM). Group I compounds interfered with the binding of bepridil to the high and low-affinity sites in a competitive manner. Group II compounds interfered in a non-competitive manner with the high-affinity site and apparently competed only with one of the low-affinity sites. Group III compounds did not compete with any of the bepridil-binding sites. Nimodipine, a group III compound, bound to one site on calmodulin with a Kd value of 1.1 microM. Other dihydropyridines competed with [3H]nimodipine for this site. The group I and II compounds, trifluoperazine and prenylamine, did not affect the binding of [3H]nimodipine. These data show that 'calmodulin antagonists' can be differentiated into at least three distinct groups. Kinetic and binding data suggest that the three groups bind to at least three different sites on calmodulin. Selective occupation of these sites may inhibit specifically the activation of distinct enzymes.  相似文献   

14.
This study investigated the effect of CpG methylation on the DNA binding of cisplatin analogues with an attached aminoacridine intercalator. DNA-targeted 9-aminoacridine carboxamide Pt complexes are known to bind at 5′-CpG sequences. Their binding to methylated and non-methylated 5′-CpG sequences was determined and compared with cisplatin. The damage profiles of each platinum compound were quantified via a polymerase stop assay with fluorescently labelled primers and capillary electrophoresis. Methylation at 5′-CpG was shown to significantly increase the binding intensity for the 9-aminoacridine carboxamide compounds, whereas no significant increase was found for cisplatin. 5′-CpG methylation had the largest effect on the 9-ethanolamine-acridine carboxamide Pt complex, followed by the 9-aminoacridine carboxamide Pt complex and the 7-fluoro complex. The methylation state of a cell’s genome is important in maintaining normal gene expression, and is often aberrantly altered in cancer cells. An analogue of cisplatin which differentially targets methylated DNA may be able to improve its therapeutic activity, or alter its range of targets and evade the chemoresistance which hampers cisplatin efficacy in clinical use.  相似文献   

15.
New peptides-9-aminoacridine conjugates with an ethylene diamine linker-have been synthesized (both solution and solid phase methods were used) and their interactions with DNA have been studied. The affinity of H-Phe-Gln-Gly-Ile(2)-NHCH(2)CH(2)NH-Acr conjugate and of its extended analogue containing 6-aminohexanoic acid to DNA were lower than that of a standard H-Gly-NHCH(2)CH(2)NH-Acr conjugate. The results fit well into our concept of peptide conjugates with lowered binding activity to DNA, which could be capable of unlimited extravascular distribution. Moreover, new structures could be potentially useful as the mild tuners of DNA interaction with strong bis-acridine binders.  相似文献   

16.
The long-wavelength ultraviolet (lambda approximately 420 nm) radiation induced reaction between 6-azido-2-methoxy-9-acridinylamines and supercoiled plasmid DNA results in single strand scissions and formation of covalent adducts (ratio approximately 1:10). By treating azidoacridine-photomodified DNA with piperidine at 90 degrees C, additional strand scissions are observed in a complex sequence dependent manner with an overall preference for T greater than or equal to G greater than C much greater than A. The resulting DNA fragments migrate as 5'-phosphates in polyacrylamide gels. Photofootprinting of the binding site of RNA-polymerase on promoter DNA is demonstrated with an azido-9-acridinylamino-octamethylene-9-aminoacridine. Similar experiments using 9-amino-6-azido-2-methoxyacridine indicate that this reagent recognizes changes in the DNA conformation induced by RNA polymerase binding, in relation to open complex formation.  相似文献   

17.
18.
S A Woodson  D M Crothers 《Biochemistry》1988,27(25):8904-8914
Complexes of 9-aminoacridine and two derivatives with oligomers based on the sequence of a hot spot for frame-shift mutations, 5'dGATGGGGCAG, are investigated by proton NMR and equilibrium dialysis. Competition dialysis experiments show that the drug binds bulge-containing oligomers more strongly than regular duplexes of similar sequence and length, with one apparent strong site. A duplex containing an extra cytidine in a run of C's has the highest affinity for 9-aminoacridine among the sequences tested. An oligomer containing five consecutive G.C pairs shows cooperative drug binding, indicating that G tracts of this length may have an altered helical structure. Complexes of a regular 8-mer and a 9-mer containing a bulged guanosine are examined in detail by two-dimensional NMR techniques. 9-Aminoacridine preferentially binds at TpG sites in the 8-mer but binds primarily at the bulged guanosine in the G-bulge 9-mer. Drug-DNA NOE's in the 8-mer complex are compared with the crystal structure of 9-aminoacridine and 5-iodo-CpG [Sakore et al. (1979) J. Mol. Biol. 135, 763-785]. The NMR data suggest that the drug intercalates across the base pairs of both strands with the amino group projecting into the minor groove.  相似文献   

19.
D O Jordan  L N Sansom 《Biopolymers》1971,10(2):399-410
The influence of temperature on the binding of 9-aminoacridine and of proflavine to E. coli DNA in 10?3M NaCl solution has been determined by a spectrophotometric technique. The inadequacy of the expression normally used for the determination of the extent of binding is discussed with reference to measurements at temperatures above which dissociation of the double helix occurs. A method of determining the relative extents of binding to native and denatured DNA at elevated temperatures is described.  相似文献   

20.
Theoretical computations are performed of the comparative binding affinities of five polymethylene carboxamide derivatives of 9-aminoacridine to a series of double-stranded hexanucleotides. The purpose of this investigation is to ascertain whether minor groove recognition of a guanine base adjacent to the intercalation site can occur, and be preferentially stabilized, for a given length of the polymethylene side chain, encompassing from n = 2 up to n = 6 methylene groups. For that purpose, several representative sequences were investigated, in which intercalation of the 9-aminoacridine chromophore occurred at a central d(CpG) or d(TpA) step. Investigated were the self-complementary sequences d(CGCGCG)2, d(GCCGGC)2, d(TATATA)2 and d(ATTAAT)2, as well as the 'mixed' sequences d(ACTAAT) .d(ATTAGT) and d(TGTATA). d(TATACA). For n = 3 up to n = 6, such a recognition was enabled only when the guanine base was located downstream of the intercalation site, i.e. with steps d(CGG) and d(TAG). It occurred by means of a bidentate interaction involving, on the one hand, H(N2) and N3 of the base, and, on the other hand, the carbonyl oxygen and the cis amino hydrogen of the terminal formamide moiety of the ligand. Because of the flexibility of the side chain, however, alternative binding modes were also found to occur competitively, involving backbone-only interactions of the side chain. On the basis of the present computations, upon binding to the sequence d(GCCGGC)2, an optimal value of n = 5 could be derived, with the corresponding acridine derivative eliciting both a significant prevalence of the bidentate over backbone only binding mode, and the most favourable energy balance within the investigated series. This privileged value of n = 5 is fully consistent with the experimental results of Markovits et al. and Gaugain et al. The very flexibility of the side chain, however, hampered any preferential recognition of a triplet sequence with a downstream guanine, such as d(CGG) or d(TAG), to be elicited over sequences such as d(TAA), d(TAT) or d(TAC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号