首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nowak KF  Tabidze V  McCarty RE 《Biochemistry》2002,41(51):15130-15134
The epsilon subunit of the ATP synthases from chloroplasts and Escherichia coli regulates the activity of the enzyme and is required for ATP synthesis. The epsilon subunit is not required for the binding of the catalytic portion of the chloroplast ATP synthase (CF1) to the membrane-embedded part (CFo). Thylakoid membranes reconstituted with CF1 lacking its epsilon subunit (CF1-epsilon) have high ATPase activity and no ATP synthesis activity, at least in part because the membranes are very leaky to protons. Either native or recombinant epsilon subunit inhibits ATPase activity and restores low proton permeability and ATP synthesis. In this paper we show that recombinant epsilon subunit from which 45 amino acids were deleted from the C-terminus is as active as full-length epsilon subunit in restoring ATP synthesis to membranes containing CF1-epsilon. However, the truncated form of the epsilon subunit was significantly less effective as an inhibitor of the ATPase activity of CF1-epsilon, both in solution and bound to thylakoid membranes. Thus, the C-terminus of the epsilon subunit is more involved in regulation of activity, by inhibiting ATP hydrolysis, than in ATP synthesis.  相似文献   

2.
Shi XB  Wei JM  Shen YK 《Biochemistry》2001,40(36):10825-10831
Ten truncated mutants of chloroplast ATP synthase epsilon subunit from spinach (Spinacia oleracea), which had sequentially lost 1-5 amino acid residues from the N-terminus and 6-10 residues from the C-terminus, were generated by PCR. These mutants were overexpressed in Escherichia coli, reconstituted with soluble and membrane-bound CF(1), and the ATPase activity and proton conductance of thylakoid membrane were examined. Deletions of as few as 3 amino acid residues from the N-terminus or 6 residues from the C-terminus of epsilon subunit significantly affected their ATPase-inhibitory activity in solution. Deletion of 5 residues from the N-terminus abolished its abilities to inhibit ATPase activity and to restore proton impermeability. Considering the consequence of interaction of epsilon and gamma subunit in the enzyme functions, the special interactions between the epsilon variants and the gamma subunit were detected in the yeast two-hybrid system and in vitro binding assay. In addition, the structures of these mutants were modeled through the SWISS-MODEL Protein Modeling Server. These results suggested that in chloroplast ATP synthase, both the N-terminus and C-terminus of the epsilon subunit show importance in regulation of the ATPase activity. Furthermore, the N-terminus of the epsilon subunit is more important for its interaction with gamma and some CF(o) subunits, and crucial for the blocking of proton leakage. Compared with the epsilon subunit from E. coli [Jounouchi, M., Takeyama, M., Noumi, T., Moriyama, Y., Maeda, M., and Futai, M. (1992) Arch. Biochem. Biophys. 292, 87-94; Kuki, M., Noumi, T., Maeda, M., Amemura, A., and Futai, M. (1988) J. Biol. Chem. 263, 4335-4340], the chloroplast epsilon subunit is more sensitive to N-terminal or C-terminal truncations.  相似文献   

3.
We have partially purified active delta and epsilon subunits of the E. coli membranebound Mg2+ -ATPase (ECF1). Treating purified ECF1 with 50% pyridine precipitates the major subunits (α, β, and γ) of the enzyme, but the two minor subunits (δ and ϵ), which are present in relatively small amounts, remain in solution. The delta and epsilon subunits were then resolved from one another by anion exchange chromatography. The partially purified epsilon strongly inhibits the hydrolytic activity of ECF1. The epsilon fraction inhibits both the highly purified five-subunit ATPase and the enzyme deficient in the δ subunit. The latter result indicates that the delta subunit is not required for inhibition by epsilon. By contrast, two-subunit enzyme, consisting chiefly of the α and β subunits, was insensitive to the ATPase inhibitor, suggesting that the γ subunit may be required for inhibition by epsilon. The partially purified delta subunit restored the capacity of ATPase deficient in delta to recombine with ATPase-depleted membranes and to reconstitute ATP-dependent transhydrogenase. Previously we reported (Biochem. Biophys. Res. Commun. 62:764 [1975]) that a fraction containing both the delta and epsilon subunits of ECF1 restored the capacity of ATPase missing delta to recombine with depleted membranes and to function as a coupling factor in oxidative phosphorylation and for the energized transhydrogenase. These reconstitution experiments using isolated subunits provide rather substantial evidence that the delta subunit is essential for attaching the ATPase to the membrane and that the epsilon subunit has a regulatory function as an inhibitor of the ATPase activity of ECF1.  相似文献   

4.
The [epsilon] subunit of the chloroplast ATP synthase functions in part to prevent wasteful ATP hydrolysis by the enzyme. In addition, [epsilon] together with the remainder of the catalytic portion of the synthase (CF1) is required to block the nonproductive leak of protons through the membrane-embedded component of the synthase (CFO). Mutant [epsilon] subunits of the spinach (Spinacia oleracea) chloroplast ATP synthase that lack 5, 11, or 20 amino acids from their N termini ([epsilon]-[delta]5N, [epsilon]-[delta]11N, and [epsilon]-[delta]20N, respectively), were overexpressed as inclusion bodies. Using a procedure that resulted in the folding of full-length, recombinant [epsilon] in a biologically active form, none of these truncated forms resulted in [epsilon] that inhibited the ATPase activity of CF1 deficient in [epsilon], CF1(-[epsilon]). Yet, the [epsilon]-[delta]5N and [epsilon]-[delta]11N peptides significantly inhibited the ATPase activity of CF1(-[epsilon]) bound to CFO in NaBr-treated thylakoids. Although full-length [epsilon] rapidly inhibited the ATPase activity of CF1(-[epsilon]) in solution or bound to CFO, an extended period was required for the truncated forms to inhibit membrane-bound CF1(-[epsilon]). Despite the fact that [epsilon]-[delta]5N significantly inhibited the ATPase activity of CF1(-[epsilon]) bound to CFO, it did not block the proton conductance through CFO in NaBr-treated thylakoids reconstituted with CF1(-[epsilon]). Based on selective proteolysis and the binding of 8-anilino-1-naphthalene sulfonic acid, each of the truncated peptides gained significant secondary structure after folding. These results strongly suggest (a) that the N terminus of [epsilon] is important in its binding to CF1, (b) that CF0 stabilizes [epsilon] binding to the entire ATP synthase, and (c) that the N terminus may play some role in the regulation of proton flux through CFO.  相似文献   

5.
Nowak KF  McCarty RE 《Biochemistry》2004,43(11):3273-3279
The ATP synthases from chloroplasts and Escherichia coli are regulated by several factors, one of which is the epsilon subunit. This small subunit is also required for ATP synthesis. Thylakoid membranes reconstituted with CF1 lacking the epsilon subunit (CF1-epsilon) exhibit no ATP synthesis and very high ATP hydrolysis. Either native or recombinant epsilon restores ATP synthesis and inhibits ATP hydrolysis. Previously, we showed that truncated epsilon, lacking the last 45 C-terminal amino acids, restored ATP synthesis to membranes reconstituted with CF1-epsilon but was not an efficient inhibitor of ATP hydrolysis. In this paper, we show that this truncated epsilon is unable to inhibit ATP hydrolysis when Mg(2+) is the divalent cation present, both for the enzyme in solution and on the thylakoid membrane. In addition, the rate of reduction of the disulfide bond of the gamma subunit by dithiothreitol is not decreased by truncated epsilon, although full-length epsilon greatly impedes reduction. Thylakoid membranes can synthesize ATP at the expense of proton gradients generated by pH transitions in the dark. Our reconstituted membranes are able to produce a limited amount of ATP under these "acid-bath" conditions, with approximately equal amounts produced by the membranes containing wild-type epsilon and those containing truncated epsilon. However, the membranes containing truncated epsilon exhibit much higher background ATP hydrolysis under the same acid-bath conditions, leading to the conclusion that, without the C-terminus of epsilon, the CF1CFo is unable to check unwanted ATP hydrolysis.  相似文献   

6.
The treatment of chloroplast coupling factor 1 (CF1) with dithiothreitol or with trypsin modifies the gamma subunit. Reduction of the gamma subunit disulfide bond in CF1 in solution with dithiothreitol enhances the dissociation of epsilon (Duhe, R. J., and Selman, B. R. (1990) Biochim. Biophys. Acta 1017, 70-78). The Ca(2+)-ATPase activity of either oxidized or reduced CF1 increases as the enzyme is diluted. Added epsilon subunit inhibits the Ca(2+)-ATPase activity of both forms of the diluted CF1, suggesting that epsilon dissociation is the cause of activation by dilution. Half-maximal activation occurred at much higher concentrations of the reduced CF1, indicating that reduction decreases the affinity for epsilon about 20-fold. Immunoblotting techniques show that there is only one epsilon subunit/CF1 in intact chloroplasts, in thylakoid membranes, and in solution. No epsilon is released from CF1 in thylakoids under conditions of ATP synthesis. The gamma subunit of CF1 in illuminated thylakoids is specifically cleaved by trypsin. CF1 purified from thylakoids treated with trypsin in the light is deficient in epsilon subunit, and has a high rate of ATP hydrolysis. Added epsilon neither inhibits the ATPase activity of, nor binds tightly to the cleaved enzyme.  相似文献   

7.
Johnson EA  McCarty RE 《Biochemistry》2002,41(7):2446-2451
The epsilon subunit of the chloroplast ATP synthase is an inhibitor of activity of the enzyme. Recombinant forms of the epsilon subunit from spinach chloroplasts lacking the last 10, 32, or 45 amino acids were immobilized onto activated Sepharose. A polyclonal antiserum raised against the epsilon subunit was passed over these immobilized protein columns, and the purified antibodies which were not bound recognized the portions of the epsilon subunit missing from the recombinant form present on the column. The full polyclonal antiserum can strip the epsilon subunit from the ATP synthase in illuminated thylakoid membranes [Richter, M. L., and McCarty, R. E. (1987) J. Biol. Chem. 262, 15037-15040]. Exposure of illuminated thylakoid membranes to antibodies recognizing the last 32 amino acids of the epsilon subunit collapses the proton gradient and hinders ATP synthesis with similar efficiency as the full polyclonal preparation. These results indicate that antibodies against the last 32 amino acids of the epsilon subunit are capable of stripping the subunit from the ATP synthase in illuminated membranes. Neither of these effects was seen when the membranes were exposed to the antibodies in the dark. This is direct evidence that the chloroplast ATP synthase undergoes a conformational shift during its activation by the electrochemical proton gradient which specifically alters the conformation of the carboxyl-terminal domain of the epsilon subunit from protected to solvent-exposed. The relation between this shift and activation of the enzyme by the electrochemical proton gradient is discussed.  相似文献   

8.
The F(1)F(o)-ATP synthases of alkaliphilic bacteria exhibit latent ATPase activity, and for the thermoalkaliphile Bacillus sp. strain TA2.A1, this activity is intrinsic to the F(1) moiety. To study the mechanism of ATPase inhibition, we developed a heterologous expression system in Escherichia coli to produce TA2F(1) complexes from this thermoalkaliphile. Like the native F(1)F(o)-ATP synthase, the recombinant TA2F(1) was blocked in ATP hydrolysis activity, and this activity was stimulated by the detergent lauryldimethylamine oxide. To determine if the C-terminal domain of the epsilon subunit acts as an inhibitor of ATPase activity and if an electrostatic interaction plays a role, a TA2F(1) mutant with either a truncated epsilon subunit [i.e., TA2F(1)(epsilon(DeltaC))] or substitution of basic residues in the second alpha-helix of epsilon with nonpolar alanines [i.e., TA2F(1)(epsilon(6A))] was constructed. Both mutants showed ATP hydrolysis activity at low and high concentrations of ATP. Treatment of the purified F(1)F(o)-ATP synthase and TA2F(1)(epsilon(WT)) complex with proteases revealed that the epsilon subunit was resistant to proteolytic digestion. In contrast, the epsilon subunit of TA2F(1)(epsilon(6A)) was completely degraded by trypsin, indicating that the C-terminal arm was in a conformation where it was no longer protected from proteolytic digestion. In addition, ATPase activity was not further activated by protease treatment when compared to the untreated control, supporting the observation that epsilon was responsible for inhibition of ATPase activity. To study the effect of the alanine substitutions in the epsilon subunit in the entire holoenzyme, we reconstituted recombinant TA2F(1) complexes with F(1)-stripped native membranes of strain TA2.A1. The reconstituted TA2F(o)F(1)(epsilon(WT)) was blocked in ATP hydrolysis and exhibited low levels of ATP-driven proton pumping consistent with the F(1)F(o)-ATP synthase in native membranes. Reconstituted TA2F(o)F(1)(epsilon(6A)) exhibited ATPase activity that correlated with increased ATP-driven proton pumping, confirming that the epsilon subunit also inhibits ATPase activity of TA2F(o)F(1).  相似文献   

9.
The inhibitory subunit (epsilon) of the F1 adenosine triphosphatase (ATPase) was purified to homogeneity from the ML 308-225 and K12 (lambda) strains of Escherichia coli. No tryptophan or cysteine was detected in the subunit from either strain. The highly active epsilon from both strains was found to be a globular protein with a Stokes' radius of 18--19 A. Circular dichroism spectra suggested an alpha-helix content of approximately 40%. The molecular weight of epsilon was approximately 15000--16000 by sedimentation equilibrium centrifugation in the presence and absence of guanidinium hydrochloride, molecular sieve chromatography, and gel electrophoresis in the presence of sodium dodecyl sulfate and 8 M urea. The s20,w of epsilon was approximately 1.6 s-1. Inhibition of the purified F1 ATPase by epsilon displayed noncompetitive kinetics with a Ki of approximately 10 nM. The inhibition of the ATPase was rapidly reversed by diluting the enzyme--epsilon mixture. [125I]epsilon which was incorporated into ECF1 was readily displaced by unlabeled epsilon. epsilon had no significant effect on the ATPase activity of "native" or reconstituted everted membrane vesicles under a variety of assay conditions. Combining the epsilon-inhibited F1 ATPase with its hydrophobic portion in everted membrane vesicles reconstituted the reversible proton-translocating ATPase and restored nearly full ATPase activity. These results suggest that epsilon inhibits the enzyme only when the F1 ATPase becomes detached from its hydrophobic subunits.  相似文献   

10.
ATPase activity of the coupling factor 1, CF1, isolated from spinach chloroplasts, was enhanced by reduction with dithiothreitol. Reduced thioredoxins from spinach chloroplasts, Escherichia coli and human lymphocytes replaced dithiothreitol as reductant and activator of the ATPase. CF1 must be in an oxidized activated state to be further activated by reduced thioredoxin. This state was obtained either by heating CF1 or removing the inhibitory intrinsic epsilon subunit from CF1. Efficiency and primary structure of the different thioredoxins were compared. The progressive addition of KCl during ATPase activation by reduced thioredoxin increases then decreases this process. We proposed that three basic amino acids corresponding to arginine 73 and lysines 82 and 96 in Escherichia coli thioredoxin play an important role in the anchorage of the thioredoxin to the negatively charged surface of the CF1 and are involved in the dual effect of KCl. The variations in the screening effect of the negative charges of the CF1 surface by K+ ions can indeed explain the changes in the anchorage of these 3 basic amino acids with concomitant variation in ATPase activity. Human thioredoxin must be 10 times more concentrated than Escherichia coli or spinach chloroplast thioredoxin to exhibit the same activation effect on the ATPase. This fact was related to the properties of a sequence equivalent to the part from amino acid 59 to 72 in Escherichia coli thioredoxin. This part which joins the two lobes of the thioredoxin is more hydrophilic and more negatively charged in human thioredoxin than in Escherichia coli or spinach chloroplast thioredoxin. Although ATPase activation was obtained at a very low concentration of the reduced spinach chloroplast thioredoxin, the thioredoxin formed only a loose complex with CF1.  相似文献   

11.
The properties of two monoclonal antibodies which recognize the epsilon subunit of Escherichia coli F1-ATPase were studied in detail. The epsilon subunit is a tightly bound but dissociable inhibitor of the ATPase activity of soluble F1-ATPase. Antibody epsilon-1 binds free epsilon with a dissociation constant of 2.4 nM but cannot bind epsilon when it is associated with F1-ATPase. Likewise epsilon cannot associate with F1-ATPase in the presence of high concentrations of epsilon-1. Thus epsilon-1 activates F1-ATPase which contains the epsilon subunit, and prevents added epsilon from inhibiting the enzyme. Epsilon-1 cannot bind to membrane-bound F1-ATPase. The epsilon-4 antibody binds free epsilon with a dissociation constant of 26 nM. Epsilon-4 can bind to the F1-ATPase complex, but, like epsilon-1, it reverses the inhibition of F1-ATPase by the epsilon subunit. The epsilon subunit remains crosslinkable to both the beta and gamma subunits in the presence of epsilon-4, indicating that it is not grossly displaced from its normal position by the antibody. Presumably the activation arises from more subtle conformational effects. Antibodies epsilon-4 and delta-2, which recognizes the delta subunit, both bind to F1F0 in E. coli membrane vesicles, indicating that these subunits are substantially exposed in the membrane-bound complex. Epsilon-4 inhibits the ATPase activity of the membrane-bound enzyme by about 50%, and Fab prepared from epsilon-4 inhibits by about 40%. This inhibition is not associated with any substantial change in the major apparent Km for ATP. These results suggest that inhibition of membrane-bound F1-ATPase arises from steric effects of the antibody.  相似文献   

12.
An improved procedure for the preparation of chloroplast coupling factor 1 (CF1) lacking the delta subunit is described. In addition, CF1 deficient in the epsilon subunit was isolated by a new method and CF1 lacking both of the smaller subunits was prepared. The ability of the subunit-deficient forms and of CF1, either heated or incubated with dithiothreitol to activate its ATPase activity, to bind to thylakoids from which CF1 had been removed was studied. All CF1 preparations bound in a cation-dependent manner to similar extents. CF1 lacking the delta subunit required higher cation concentrations for maximal binding. All preparations competed similarly with control CF1 for binding sites on the depleted membranes. The alpha subunit of all forms of CF1 in solution was rapidly cleaved by trypsin. After reconstitution, however, the alpha subunit of CF1, as well as of the subunit-deficient and the activated forms, was resistant to attack by trypsin. Moreover, treatment of the membranes with either trypsin or N,N'-dicyclohexylcarbodiimide inhibited the binding of all CF1 forms. These results suggest that the binding of the subunit-deficient and activated forms of CF1 is specific. CF1 lacking the epsilon subunit restored neither proton uptake nor ATP synthesis to the depleted membranes. In contrast to our previous results, CF1 lacking the delta subunit was partially effective. Previously, we used a suboptimal Mg2+ concentration for binding the delta-deficient enzyme which we show here was partially deficient in the epsilon subunit. These results show that the delta and epsilon subunits are not required for binding CF1 to the membranes and that the delta subunit is not an absolute requirement for ATP synthesis.  相似文献   

13.
ATP synthase couples transmembrane proton transport, driven by the proton motive force (pmf), to the synthesis of ATP from ADP and inorganic phosphate (P(i)). In certain bacteria, the reaction is reversed and the enzyme generates pmf, working as a proton-pumping ATPase. The ATPase activity of bacterial enzymes is prone to inhibition by both ADP and the C-terminal domain of subunit epsilon. We studied the effects of ADP, P(i), pmf, and the C-terminal domain of subunit epsilon on the ATPase activity of thermophilic Bacillus PS3 and Escherichia coli ATP synthases. We found that pmf relieved ADP inhibition during steady-state ATP hydrolysis, but only in the presence of P(i). The C-terminal domain of subunit epsilon in the Bacillus PS3 enzyme enhanced ADP inhibition by counteracting the effects of pmf. It appears that these features allow the enzyme to promptly respond to changes in the ATP:ADP ratio and in pmf levels in order to avoid potentially wasteful ATP hydrolysis in vivo.  相似文献   

14.
The activation of the ATPase activity of coupling factor 1 (CF1) from chloroplasts by several detergents was studied. Further evidence that detergent micelles are important in the activation of Ca2+-ATPase was obtained. Maximal activation of CA2+-ATPase was achieved with short-chain alkyl-beta-D-glucopyranoside (alkylglucosides) detergents. Treatment of CF1 with hexylglucoside or heptylglucoside followed by hydroxylapatite chromatography caused nearly total removal of the epsilon subunit of the enzyme, whereas treatment with decylglucoside caused less ATPase activation and less loss of the epsilon subunit. The ATPase activity of detergent-activated CF1 was inhibited by purified epsilon subunit. Detergents that form small micelles appear to be most effective in removing the epsilon subunit and in activating the Ca2+-ATPase of CF1. When present during assay, the alkylglucosides also induce a Mg2+-ATPase activity in CF1. Octyl- and nonylglucoside are most effective in promoting this reaction. If, however, CF1 deficient in the epsilon subunit was used, even decylglucoside elicited rapid Mg2+-ATPase hydrolysis. It is concluded that removal of the epsilon subunit, although necessary for the expression of Mg2+-ATPase, is not sufficient. The detergents that cause maximal displacement of the epsilon subunit are less effective in inducing Mg2+-ATPase activity. The selective removal of subunits from CF1 by specific detergents points to potential problems with the use of these detergents in the solubilization of oligomeric membrane proteins.  相似文献   

15.
A complex between chloroplast-coupling factor 1 (CF1) and subunit III of the membrane-spanning portion of the chloroplast ATP synthase (CF0), isolated as described in the accompanying paper (C.M. Wetzel and R.E. McCarty [1993] Plant Physiol 102: 241-249), has been further characterized. A comparison of the ATPase activities of CF1, CF1-subunit III, and the chloroplast ATP synthase (CF1-CF0) holoenzyme revealed that the properties of CF1-subunit III more closely resemble those of CF1-CF0 than those of CF1. In particular, the Ca2+-ATPase activity after reduction of the enzyme with dithiothreitol was much lower in CF1-subunit III and CF1-CF0 than in CF1, suggesting that the association of the inhibitory [epsilon] subunit is tightened by the presence of either CF0 or subunit III. Cold stability is a property of CF1-CF0 in thylakoid membranes. The ATPase activity of CF1 incubated in the cold in the presence of asolectin liposomes was lost more rapidly than that of either CF1-subunit III or CF1-CF0 incorporated into liposomes. Removal of the [epsilon] subunit from all three preparations resulted in marked stimulation of their ATPase activity. Although subunit III was also removed during depletion of the [epsilon] subunit, it is not known whether the two subunits interact directly. CF1 deficient in the [epsilon] subunit binds to liposomes containing either subunit III or CF0. Taken together, these results provide evidence that the association of CF1 and subunit III of CFo is specific and may play a role in enzyme regulation.  相似文献   

16.
Theε-subunit is the smallest subunit of chloroplast ATP synthase, and is known to inhibit ATPase activity in isolated CF1-ATPase. As a result ε is sometimes called an inhibitory subunit. In addition, and perhaps more importantly, theε-subunit is essential for the coupling of proton translocation to ATP synthesis (as proton gate). The relation between the structure and function ofε-subunit of ATP synthase in higher plant chloroplast has been studied by molecular biological methods such as site-directed mu-tagenesis and truncations for C- or N-terminus ofε-subunit. The results showed that: (1) Thr42 ofε-subunit is important for its structure and function; (2) compared with theε-subunit in E.. coli, theε-subunit of chloroplast ATP synthase is more sensitive to C- or N-terminus truncations.  相似文献   

17.
Ni ZL  Shi XB  Wei JM 《Biochemistry》2004,43(8):2272-2278
Mutagenesis was used to generate seven truncation mutants of the spinach (Spinacia oleracea) chloroplast ATP synthase delta subunit lacking 5, 11, 17, or 35 amino acid residues from the N-terminus or 3, 9, or 15 residues from the C-terminus. Interactions between these mutants and all other subunits of the chloroplast ATPase were investigated by a yeast two-hybrid system. The results indicate that the N-terminal deletions mainly affected interactions between the delta subunit and the other part of CF(1), but did not significantly affect interactions with the CF(0) sector. In contrast, C-terminal truncations of the delta subunit mainly affected its interaction with the CF(0) sector and caused little impairment in interactions with the other part of CF(1). The conformation of the delta subunit C-terminal domain seems to be more sensitive to the truncations, as shown by minimal expression driven by C-terminal deleted (nine residues) mutants. Further studies showed C-terminal truncations of the delta subunit greatly impaired its ability to restore cyclic photophosphorylation in NaBr vesicles, whereas N-terminal truncations had little effect on the ability of delta to plug the CF(0) channel. None of the mutants impaired ATP hydrolysis by CF(1).  相似文献   

18.
Melittin, a cationic, amphiphilic polypeptide, has been reported to inhibit the ATPase activity of the catalytic portions of the mitochondrial (MF1) and chloroplast (CF1) ATP synthases. Gledhill and Walker [J.R. Gledhill, J.E. Walker. Inhibition sites in F1-ATPase from bovine heart mitochondria, Biochem. J. 386 (2005) 591-598.] suggested that melittin bound to the same site on MF1 as IF1, the endogenous inhibitor polypeptide. We have studied the inhibition of the ATPase activity of CF1 and of F1 from Escherichia coli (ECF1) by melittin and the cationic detergent, cetyltrimethylammonium bromide (CTAB). The Ca2+- and Mg2+-ATPase activities of CF1 deficient in its inhibitory epsilon subunit (CF1-epsilon) are sensitive to inhibition by melittin and by CTAB. The inhibition of Ca2+-ATPase activity by CTAB is irreversible. The Ca2+-ATPase activity of F1 from E. coli (ECF1) is inhibited by melittin and the detergent, but Mg2+-ATPase activity is much less sensitive to both reagents. The addition of CTAB or melittin to a solution of CF1-epsilon or ECF1 caused a large increase in the fluorescence of the hydrophobic probe, N-phenyl-1-naphthylamine, indicating that the detergent and melittin cause at least partial dissociation of the enzymes. ATP partially protects CF1-epsilon from inhibition by CTAB. We also show that ATP can cause the aggregation of melittin. This result complicates the interpretation of experiments in which ATP is shown to protect enzyme activity from inhibition by melittin. It is concluded that melittin and CTAB cause at least partial dissociation of the alpha/beta heterohexamer.  相似文献   

19.
Johnson EA  Evron Y  McCarty RE 《Biochemistry》2001,40(6):1804-1811
The intrinsic fluorescence of the catalytic portion of the chloroplast ATP synthase (CF1) is quenched when cysteine 322, the penultimate amino acid of the gamma subunit, is specifically labeled with pyrene maleimide (PM). The epsilon subunit of CF1 contains the only two residues of tryptophan, which dominate the intrinsic fluorescence of unlabeled CF1. CF1 deficient in the epsilon subunit (CF1-epsilon) was reconstituted with mutant epsilon subunits in which phenylalanine replaced tryptophan at position 15 (epsilonW15F) and position 57 (epsilonW15/57F). CF1(epsilonW15F) containing a single tryptophan, epsilonW57, was labeled with PM at gammaC322. Resonance energy transfer (RET) from epsilonW57 to PM on gammaC322 occurred with an efficiency of energy transfer of 20%. RET was also observed from epsilonW57 to PM attached to the disulfide thiols of the gamma subunit (gammaC199,205) with an efficiency of approximately 45%. The R(o) (the distance at which the efficiency of energy transfer is 50%) for the epsilonW57 and PM donor/acceptor pair is 30 A, indicating that both gammaC322 and gammaC199,205 must be within 40 A of epsilonW57. These RET measurements show that both gammaC322 and gammaC199,205 are located near the base of the alpha/beta hexamer. This places the C-terminus of CF1 gamma much closer to epsilon than hypothesized based on homology to crystal structures of mitochondrial F1. These new RET measurements also allow the alignment of the predicted epsilon subunit structure. The orientation is similar to that predicted from cross-linking and mutational studies for the epsilon subunit of Escherichia coli F1.  相似文献   

20.
Chloroplast ATPase (CF1) was isolated from spinach, pea and maize thylakoids by EDTA extraction followed by anion-exchange chromatography. CF1 was purified and resolved by HPLC into integral CF1, and CF1 lacking the delta & epsilon subunits: CF1(-delta) and CF1(-epsilon). Washing Mono-Q-bound CF1 with alcohol-containing buffers followed by elution without alcohol produced the beta subunit and in separate peaks CF1(-delta) and CF1(-epsilon). Elution from Mono Q in the presence of tenside yielded a beta delta fragment, CF1(-delta) and CF1(-delta epsilon). Chloroplasts were CF1-depleted by EDTA extraction. Reconstitution of photophosphorylation in these 'EDTA vesicles' was obtained by addition of CF1 and its fragments. CF1, CF1(-delta) and CF1(-delta epsilon) were active with cross-reactivity between spinach, pea and maize. delta-containing CF1 always reconstituted higher activities than delta-deficient CF1. The beta delta fragment and dicyclohexylcarbodiimide (DCCD)-inhibited CF1 also were reconstitutively active while beta and DCCD-inhibited CF1(-delta) were not. These results support the notion that subunit delta can function as a stopcock to the CF0 proton channel as proposed by Junge, W., Hong, Y. Q., Qian, L. P. and Viale, A. [(1984) Proc. Natl Acad. Sci. USA 81, 3078-3082].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号