首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a kinetic model of protein synthesis which encompasses initiation, elongation, and termination parameters. We have investigated the dependence of the total rate of protein synthesis and the size of the translating polysomes on each of these parameters and in particular on the level of active 40 S ribosomes and initiation factors. This model qualitatively fits experimental data for the ratio of alpha- to beta-globin synthesis in reticulocytes, both under normal conditions and in the presence of inhibitors of chain initiation. This model has also been used to examine the effect that limiting amounts of certain tRNAs might have on the total rate of protein synthesis. In addition, the role of initiation factor discrimination and mRNA length are examined with respect to the differential translation of mRNAs.  相似文献   

2.
The binding of proteins from rabbit reticulocyte lysate to in-vitro-generated beta-globin mRNA and its defined segments was investigated using ultraviolet-cross-linking experiments as well as gel-retardation assays. Under stringent conditions, only three proteins (72, 60 and 50 kDa) were found associated with full-length beta-globin mRNA at different positions. The 72-kDa protein is most likely the poly(A)-binding protein and binds, as expected, to the poly(A) tail, whereas the 50-kDa protein exhibits affinity for the trailer region of beta-globin mRNA. The binding region of the 60-kDa protein is located at the 5' end of beta-globin mRNA. The interaction of this protein is dependent on the presence of the 5' cap structure, as indicated by competition experiments using an uncapped beta-globin-mRNA leader segment. Further competition experiments with beta-globin mRNA, deleted in part in the leader region, suggest that, besides the cap structure, certain sequence elements are necessary for the interaction of the 60-kDa protein and the beta-globin mRNA leader.  相似文献   

3.
Neonatal (3-day-old) rat oligodendrocytes grown in monolayer culture and exposed to increasingly hypoxic culture conditions showed a dramatic reduction in myelin basic protein synthesis but no significant inhibition of Tran35S-label incorporation into oligodendrocyte proteins in general or into structural proteins such as actin. However, there was a dramatic increase in synthesis of a novel 22-kDa protein. Reoxygenation of cultures reversed the synthesis of the 22-kDa protein, and thiol and calpain protease inhibitors (EP-459 and leupeptin) did not prevent synthesis of the protein, suggesting that it did not result from proteolysis. The 22-kDa protein (which we have called hypoxin) was coimmunoprecipitated by a polyclonal antibody to actin but did not react with the anti-actin antibody on western blots. The synthesis of hypoxin accounted for up to 50% of the Tran35S-label incorporated into immunoprecipitated protein, suggesting that it plays a major role in the cell's response to hypoxia. Subcellular fractionation revealed that the 22-kDa protein was largely associated with the cytosolic/cytoskeletal compartment. However, it is unlikely to be one of the cytoskeleton-associated Rho or Rac low-molecular-mass (20-24 kDa) GTP-binding proteins because it did not bind [alpha-32P]GTP on western blots. Oligodendrocytes did not synthesize a 22-kDa protein in response to heat shock but did synthesize the typical 70- and 90-kDa heat-shock proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
S H Shakin  S A Liebhaber 《Biochemistry》1987,26(22):7188-7193
The translational efficiency of an mRNA may be determined at the step of translational initiation by the efficiency of its interaction with the cap binding protein complex. To further investigate the role of these interactions in translational control, we compare in vitro the relative sensitivities of rabbit and human alpha- and beta-globin mRNAs to translational inhibition by cap analogues. We find that rabbit beta-globin mRNA is more resistant to translational inhibition by cap analogues than rabbit alpha-globin mRNA, while in contrast, human beta-globin mRNA is more sensitive to cap analogue inhibition than human alpha-globin mRNA. This opposite pattern of translational inhibition by cap analogues of the rabbit and human alpha- and beta-globin mRNAs is unexpected as direct in vivo and in vitro comparisons of polysome profiles reveal parallel translational handling of the alpha- and beta-globin mRNAs from these two species. This discordance between the relative translational sensitivities of these mRNAs to cap analogues and their relative ribosome loading activities suggests that cap-dependent events may not be rate limiting in steady-state globin translation.  相似文献   

5.
The ratio of alpha- to beta-globin mRNA was measured by hybridization of a constant amount of highly purified alpha- or beta-globin cDNA (complementary DNA) with increasing amounts of RNA in the range up to 20% cDNA hybridization, where an essentially linear reaction is obtained. Statistical analysis indicates that the ratio of alpha- to beta-globin can be measured within a maximal error of +/- 0.3 and in most cases is better than +/- 0.15. Under these conditions there is no significant deviation from the ratio of 1.3 in the alpha- to beta-globin mRNA ratio of RNA isolated from erythroid cells rich in pronormoblasts through to reticulocytes. If the ratio of alpha- to beta-globin mRNA exceeded 1.7 or was less than 0.9 in pronormoblasts, it would be detected in these experiments. The overall globin mRNA content increases to a maximal value in the fractions rich in basophilic normoblasts of 30,000--50,000 molecules/cell. However, the accuracy of these determinations is not as great as for the ratio determinations, and no significant deviations were seen except in the cells rich in pronormoblasts, which contained less globin mRNA than the later stages.  相似文献   

6.
7.
Low molecular weight GTP-binding proteins and their cellular interactions were examined in cardiac muscle. Heart homogenate was separated into various subcellular fractions by differential and sucrose density gradient centrifugation. Various fractions were separated by sodium dodecyl sulfate-gel electrophoresis, blotted to nitrocellulose, and GTP-binding proteins detected by incubating with [alpha-32]GTP. Three polypeptides of M(r) 23,000, 26,000, and 29,000 were specifically labeled with [alpha-32P]GTP in all the fractions examined and enriched in sarcolemmal membranes. The 23-kDa polypeptide was labeled to a higher extent with [alpha-32P]GTP than the 26- and 29-kDa polypeptides. A polypeptide of M(r) 40,000 was weakly labeled with [alpha-32P]GTP in the sarcolemmal membrane and tentatively identified as Gi alpha by immunostaining with anti-Gi alpha antibodies. Cytosolic GTP-binding proteins were labeled with [alpha-32P]GTP and their potential sites of interaction investigated using the blot overlay approach. A polypeptide of 32 kDa present in sarcolemmal membranes, intercalated discs, and enriched in heart gap junctions was identified as a major site of interaction. The low molecular weight GTP-binding proteins associated with the 32-kDa polypeptide through a complex involving cytosolic components of M(r) 56,000, 36,000, 26,000, 23,000, and 12,000. A monoclonal antibody against connexin 32 from liver strongly recognized the 32-kDa polypeptide in heart gap junctions, whereas polyclonal antibodies only weakly reacted with this polypeptide. The low molecular weight GTP-binding proteins associated with a 32-kDa polypeptide in liver membranes that was also immunologically related to connexin 32. These results indicate the presence of a subset of low molecular weight GTP-binding proteins in a membrane-associated and a cytoplasmic pool in cardiac muscle. Their association with a 32-kDa component that is related to the connexins suggests that these polypeptides may be uniquely situated to modulate communication at the cell membrane.  相似文献   

8.
A 57-kDa protein in royal jelly (RJ) was previously shown to stimulate hepatocyte DNA synthesis and prolongs the proliferation of hepatocytes as well as increasing albumin production [Kamakura, M., Suenobu, N., and Fukushima, M. (2001) Biochem. Biophys. Res. Commun. 282, 865-874]. In this study, I investigated the signal transduction mechanisms involved in the induction of hepatocyte DNA synthesis and the promotion of cell survival by this 57-kDa protein in primary cultures of adult rat hepatocytes. Hepatocyte DNA synthesis induced by the 57-kDa protein was not influenced by several alpha- and beta-adrenoceptor antagonists, but was dose-dependently abolished by an inhibitor of a tyrosine-specific protein kinase, genistein. A phospholipase C inhibitor (U-73122) and a protein kinase C (PKC) inhibitor (sphingosine) inhibited 57-kDa protein-stimulated he-patocyte DNA synthesis, whereas a protein kinase A inhibitor (H-89) did not. The 57-kDa protein also activated PKC in rat hepatocytes. Various inhibitors of intracellular signal transduction elements (PD98059, p21 ras farnesyltransferase inhibitor, wortmannin and rapamycin) also blocked hepatocyte DNA synthesis induced by the 57-kDa protein. Furthermore, the 57-kDa protein activated mitogen-activated protein (MAP) kinase in rat hepatocytes. The activation of MAP kinase by the 57-kDa protein was inhibited by PD98059 and sphingosine. The 57-kDa protein also activated protein kinase B, which is a key regulator of cell survival. These results suggest that, like growth factors, the 57-kDa protein activates several important intracellular signaling factors involved in the stimulation of hepatocyte DNA synthesis and the protection of cells from apoptosis.  相似文献   

9.
The rate of protein synthesis in metaphase-arrested cells is reduced as compared to interphase cells. The reduction occurs at the translation initiation step. Here, we show that, whereas poliovirus RNA translation is not affected by the mitotic translational block, the translation of vesicular stomatitis virus mRNAs is. In an attempt to elucidate the mechanism by which initiation of protein synthesis is reduced in mitotic cells, we found that the interaction of the mRNA 24-kDa cap-binding protein (CBP) with the mRNA 5' cap structure is reduced in mitotic cell extracts, consistent with their lower translational efficiency. Addition of cap-binding protein complex stimulated the translation of endogenous mRNA in extracts from mitotic but not interphase cells. In addition, we found that the 24-kDa CBP from mitotic cells was metabolically labeled with 32P to a lesser extent than the protein purified from interphase cells. These results are consistent with a hypothesis that the 24-kDa CBP is implicated in the inhibition of protein synthesis in metaphase-arrested cells. Possible mechanisms for this inhibition are offered.  相似文献   

10.
11.
Preparations of either crude or purified protein synthesis initiation factors, when tested by crosslinking to the m7G-cap structure of mRNAs, exhibit specific crosslinking to an 80-kDa protein. Polyclonal antibodies specific for eIF-4B precipitate the 80-kDa cap-radiolabeled protein, thereby demonstrating that eIF-4B binds mRNA near its 5'-terminus.  相似文献   

12.
In quiescent Balb/c 3T3 cells, competence factors such as platelet-derived growth factor and 12-O-tetradecanoylphorbol-13-acetate (TPA) activated MAP kinase, whereas progression factors such as insulin did not. Insulin was, however, capable of activating MAP kinase in cells pretreated with TPA. Moreover, TPA plus insulin activated MAP kinase more strongly and for a longer time period than did TPA alone. Treatment of Balb/c 3T3 cells with competence factors stimulated phosphorylation of the 350-kDa protein which was immunoprecipitated with antibodies against brain high-molecular-weight microtubule-associated protein MAP1, whereas insulin treatment did not stimulate the phosphorylation. Insulin could induce, however, further increase in the phosphorylation of the 350-kDa protein, when added simultaneously with TPA or added to the TPA-treated cells. The enhanced phosphorylation of the 350-kDa protein thus correlated with the MAP kinase activation. As insulin acts synergistically with TPA to induce initiation of DNA synthesis in the quiescent Balb/c 3T3 cells, it seems that activation of MAP kinase and enhanced phosphorylation of the 350-kDa protein are accompanied by the initiation of DNA synthesis.  相似文献   

13.
Gene 4 of bacteriophage T7 encodes two proteins, a 63-kDa protein and a colinear 56-kDa protein, that are essential for synthesis of leading and lagging strands during DNA replication. The gene 4 proteins together catalyze the synthesis of oligoribonucleotides, pppACC(C/A) or pppACAC, at the single-stranded DNA sequences 3'-CTGG(G/T)-5' or 3'-CTGTG-5', respectively. Purified 56-kDa protein has helicase activity, but no primase activity. In order to study 63-kDa gene 4 protein free of 56-kDa gene 4 protein, mutations were introduced into the internal ribosome-binding site responsible for the translation of the 56-kDa protein. The 63-kDa gene 4 protein was purified 16,000-fold from Escherichia coli cells harboring an expression vector containing the mutated gene 4. Purified 63-kDa gene 4 protein has primase, helicase, and single-stranded DNA-dependent dTTPase activities. The constraints of primase recognition sequences, nucleotide substrate requirements, and the effects of additional proteins on oligoribonucleotide synthesis by the 63-kDa gene 4 protein have been examined using templates of defined sequence. A three-base sequence, 3'-CTG-5', is necessary and sufficient to support the synthesis of pppAC dimers. dTTP hydrolysis is essential for oligoribonucleotide synthesis. Addition of a 7-fold molar excess of 56-kDa gene 4 protein to 63-kDa protein increases the number of oligoribonucleotides synthesized by 63-kDa protein 100-fold. The increase in oligonucleotides results predominantly from an increase in the synthesis of tetramers, with relatively little change in the synthesis of dimers and trimers. The presence of 56-kDa protein also causes 63-kDa protein to synthesize "pseudo-templated" pppACCCC pentamers at the recognition sequence 3'-CTGGG-5'. T7 gene 2.5 protein, a single-stranded DNA binding protein, increases the total number of oligoribonucleotides synthesized by 63-kDa gene 4 protein on single-stranded M13 DNA, but has no effect on the ratio of dimers to trimers and tetramers.  相似文献   

14.
The heme-sensitive eukaryotic initiation factor (eIF)-2 alpha kinase regulates translational activity in reticulocytes by phosphorylation of the smallest subunit of eukaryotic peptide initiation factor 2, eIF-2. Highly purified preparations of the kinase contain an abundant 90-kDa polypeptide which appears to modulate the activity of the enzyme. The physical properties and structural characteristics of the reticulocyte 90-kDa peptide are similar to those of the 90-kDa heat shock protein (hsp 90) from HeLa and other mammalian cells. The reticulocyte and HeLa cell proteins are shown to be immunologically cross-reactive. A direct comparison of the two proteins by one-dimensional peptide mapping of large peptides generated by limited proteolysis and by reversed-phase high performance liquid chromatography analysis of tryptic peptides indicates that they represent the same protein species. Like the 90-kDa reticulocyte protein, HeLa cell hsp 90 causes increased eIF-2 alpha phosphorylation by the heme-sensitive kinase and is a potent inhibitor of protein synthesis in the reticulocyte lysate system. A potential mechanism for the latter inhibition is inferred. These results implicate hsp 90 in the regulation of protein synthesis via its interaction with and perhaps regulation of the heme-sensitive kinase and phosphorylation of eIF-2 alpha.  相似文献   

15.
IFN-induced 15-kDa protein is released from human lymphocytes and monocytes   总被引:4,自引:0,他引:4  
The enhancement or inhibition of synthesis of specific proteins by IFN is believed to cause subsequent IFN-induced biological responses. The roles of most of these proteins in the biological responses induced by the IFNs, for example, inhibition of virus replication and inhibition of cell growth, remain largely unknown. Our recent research has focused on the induction and synthesis of an IFN-induced 15-kDa protein. In this report we show that human lymphocytes and monocytes, after treatment with IFN-beta, release into the medium an IFN-induced 15-kDa protein. At 24 h after induction of the 15-kDa protein in lymphocytes or monocytes, more than 50% of the total 15-kDa protein is in the medium. The human monocytic cell line THP-1 also releases 15-kDa protein into the medium after its induction by IFN-beta. An intracellular half-life of 12 h has been calculated for the 15-kDa protein in monocytes and THP-1 cells. The exocellular release of the 15-kDa protein by lymphocytes and monocytes suggests that 1) it may have an intercellular signaling role and 2) it may be an in vivo mediator of some of the biological responses induced by IFN.  相似文献   

16.
1. Dimethylsulfoxide-induced differentiated neuroblastoma express high levels of membrane 21 to 23-kDa carboxyl methylated proteins. Relationships among methylation, isoprenylation, and GTP binding in these proteins were investigated. Protein carboxyl methylation, protein isoprenylation, and [alpha-32P]GTP binding were determined in the electrophoretically separated proteins of cells labeled with the methylation precursor [methyl-3H]methionine or with an isoprenoid precursor [3H]mevalonate. 2. A broad band of GTP-binding proteins, which overlaps with the methylated 21 to 23-kDa proteins, was detected in [alpha-32P]GTP blot overlay assays. This band of proteins was separated in two-dimensional gels into nine methylated proteins, of which four bound GTP. 3. The carboxyl-methylated 21 to 23-kDa proteins incorporated [3H]mevalonate metabolites with characteristics of protein isoprenylation. The label was not removed by organic solvents or destroyed by hydroxylamine. Incorporation of radioactivity from [3H]mevalonate was enhanced when endogenous levels of mevalonate were reduced by lovastatin, an inhibitor of mevalonate synthesis. Lovastatin blocked methylation of the 21 to 23-kDa proteins as well (greater than 70%). 4. Methylthioadenosine, a methylation inhibitor, inhibited methylation of these proteins (greater than 80%) but did not affect their labeling by [3H]mevalonate. The results suggest that methylation of the 21 to 23-kDa proteins depends on, and is subsequent to, isoprenylation. The sequence of events may be similar to that known in ras proteins, i.e., carboxyl methylation of a C-terminal cysteine that is isoprenylated. 5. Lovastatin reduced the level of small GTP-binding proteins in the membranes and increased GTP binding in the cytosol. Methylthioadensoine blocked methylation without affecting GTP binding. 6. Thus, isoprenylation appears to precede methylation and to be important for membrane association, while methylation is not required for GTP binding or membrane association. The role of methylation remains to be determined but might be related to specific interactions of the small GTP-binding proteins with other proteins.  相似文献   

17.
A 58-kDa protein is found in microvilli and in actin-containing transmembrane complexes of 13762 ascites tumor cells with immobile surface receptors; it is absent from sublines with mobile receptors. 58-kDa protein has been proposed to stabilize microvilli and restrict receptor mobility by stabilizing membrane-microfilament interactions. Antibodies against 58-kDa protein were blot-purified from antisera of rabbits injected with crude transmembrane complex and were used to monitor purification of the protein. 58-kDa protein was extracted from EDTA/EGTA-stripped microvillar microfilament cores with 1 M NaCl. A single depolymerization-polymerization cycle of the microfilaments, followed by solubilization of 58-kDa protein in 1 M NaCl and chromatography on hydroxyapatite-Sephadex G-150, purified the protein to greater than 95% homogeneity. The native molecular weight and frictional coefficient indicated a monomeric, asymmetric structure. 58-kDa protein bound F-actin in pelleting assays and inhibited polymerization of pyrenyl-actin. It also bound phosphatidylserine, phosphatidylinositol, and phosphatidylcholine vesicles in pelleting studies. Immunoblot analyses of endogenously and exogenously proteolyzed microvilli and their membranes and microfilament cores showed specific membrane and microfilament binding fragments of 28-30 kDa. The microfilament- and phospholipid-binding properties of 58-kDa protein and the localization of its proteolysis products are consistent with its proposed role in stabilizing membrane-microfilament interactions in the ascites cell microvilli.  相似文献   

18.
The results of this investigation show that the 59-kDa protein synthesis initiation factor from wheat germ, designated eukaryotic initiation factor (eIF)-4G by Browning et al. (Browning, K.S., Maia, D.M., Lax, S.R., and Ravel, J.M. (1987) J. Biol. Chem. 262, 539-541), cross-links to the 5'-terminal cap of oxidized mRNA in the presence of eIF-4A, eIF-4F, and ATP, stimulates the RNA-dependent ATPase activities of eIF-4A and a mixture of eIF-4A and eIF-4F, and stimulates the unwinding activities of eIF-4A, eIF-4F, and a mixture of eIF-4A and eIF-4F. These findings strongly suggest that the 59-kDa factor from wheat germ is the functional equivalent of the 80-kDa protein synthesis initiation factor, eIF-4B, from mammalian cells. Recent reports indicate that the wheat germ initiation factor which contains two subunits of 80 and 28 kDa and which was given the designation "eIF-4B" by Lax et al. (Lax, S.R., Lauer, S.J., Browning, K. S., and Ravel, J.M. (1986) Methods Enzymol. 118, 109-128) is an isozyme form of eIF-4F and not the functional equivalent of mammalian eIF-4B. On the basis of functional characteristics we propose that the designation for the wheat germ factor containing the 80- and 28-kDa polypeptides be changed from eIF-4B to eIF-(iso)4F and the designation for the 59-kDa factor be changed from eIF-4G to eIF-4B.  相似文献   

19.
20.
Glycogen synthase from rabbit skeletal muscle has been shown to be a complex of two types of subunit which have apparent molecular masses of 86 kDa and 38 kDa and are present in a 1:1 molar ratio. The 38-kDa component was separated from the 86-kDa catalytic subunit by gel filtration in the presence of 2 M LiBr, and a number of chymotryptic peptides were sequenced. This demonstrated that the 38-kDa subunit was glycogenin, the protein that is bound covalently to glycogen and believed to be the 'primer' involved in the initiation of de novo glycogen synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号