首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Kim H  Yin J 《Biophysical journal》2005,89(4):2210-2221
The persistence of human immunodeficiency virus type-1 (HIV-1) has long been attributed to its high mutation rate and the capacity of its resulting heterogeneous virus populations to evade host immune responses and antiviral drugs. However, this view is incomplete because it does not explain how the virus persists in light of the adverse effects mutations in the viral genome and variations in host functions can potentially have on viral functions and growth. Here we show that the resilience of HIV-1 can be credited, at least in part, to a robust response to perturbations that emerges as an intrinsic property of its intracellular development. Specifically, robustness in HIV-1 arises through the coupling of two feedback loops: a Rev-mediated negative feedback and a Tat-mediated positive feedback. By employing a mechanistic kinetic model for its growth we found that HIV-1 buffers the effects of many potentially detrimental variations in essential viral and cellular functions, including the binding of Rev to mRNA; the level of rev mRNA in the pool of fully spliced mRNA; the splicing of mRNA; the Rev-mediated nuclear export of incompletely-spliced mRNAs; and the nuclear import of Tat and Rev. The virus did not, however, perform robustly to perturbations in all functions. Notably, HIV-1 tended to amplify rather than buffer adverse effects of variations in the interaction of Tat with viral mRNA. This result shows how targeting therapeutics against molecular components of the viral positive-feedback loop open new possibilities and potential in the effective treatment of HIV-1.  相似文献   

3.
J Luban  S P Goff 《Journal of virology》1991,65(6):3203-3212
We have expressed the human immunodeficiency virus type 1 (HIV-1) gag polyprotein (Pr55gag) in bacteria under the control of the T7 phage gene 10 promoter. When the gene encoding the viral protease is included in cis, in the -1 reading frame, the expected proteolytic cleavage products MA and CA are produced. Disruption of the protease-coding sequence prevents proteolytic processing, and full-length polyprotein is produced. Pr55gag, separated from bacterial proteins by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and immobilized on nitrocellulose membranes, binds RNA containing sequences from the 5' end of the HIV-1 genome. This binding is tolerant of a wide range of pH and temperature but has distinct salt preferences. Conditions were identified which prevented nonspecific binding of RNA to bacterial proteins but still allowed binding to Pr55gag. Under these conditions, irrelevant RNA probes lacking HIV-1 sequences bound Pr55gag less efficiently. Quantitation of binding to Pr55gag by HIV-1 RNA probes with deletions mutations demonstrated that there are two regions lying within the HIV-1 gag gene which independently promote binding of RNA to Pr55gag.  相似文献   

4.
Vaccination for human immunodeficiency virus type 1 (HIV-1) remains an elusive goal. Whether an unsuccessful vaccine might not only fail to provoke detectable immune responses but also could actually interfere with subsequent natural immunity upon HIV-1 infection is unknown. We performed detailed assessment of an HIV-1 gag DNA vaccine recipient (subject 00015) who was previously uninfected but sustained HIV-1 infection before completing a vaccination trial and another contemporaneously acutely infected individual (subject 00016) with the same strain of HIV-1. Subject 00015 received the vaccine at weeks 0, 4, and 8 and was found to have been acutely HIV-1 infected around the time of the third vaccination. Subject 00016 was a previously HIV-1-seronegative sexual contact who had symptoms of acute HIV-1 infection approximately 2 weeks earlier than subject 00015 and demonstrated subsequent seroconversion. Both individuals reached an unusually low level of chronic viremia (<1,000 copies/ml) without treatment. Subject 00015 had no detectable HIV-1-specific cytotoxic T-lymphocyte (CTL) responses until a borderline response was noted at the time of the third vaccination. The magnitude and breadth of Gag-specific CTL responses in subject 00015 were similar to those of subject 00016 during early chronic infection. Viral sequences from gag, pol, and nef confirmed the common source of HIV-1 between these individuals. The diversity and divergence of sequences in subjects 00015 and 00016 were similar, indicating similar immune pressure on these proteins (including Gag). As a whole, the data suggested that while the gag DNA vaccine did not prime detectable early CTL responses in subject 00015, vaccination did not appreciably impair his ability to contain viremia at levels similar to those in subject 00016.  相似文献   

5.
A synthetic peptide, RPI 312, that specifically inhibits the protease of the human immunodeficiency virus type 1 (HIV-1) showed a potent inhibition on virus production, maturation, and infectivity. Treatment with this agent prevented the cleavage of Gag protein at the site between p17 and p24 in HIV-1 chronically infected MOLT-4 cells as well as in the released virus. Passage of HIV-1 in the presence of gradually increasing concentrations of this protease inhibitor resulted in emergence of a variant that could evade the drug effects. In the resistant variant the maturation of Gag proteins appeared normal, but its infectivity was reduced compared with that of the parent virus. The nucleotides coding the amino acids at and around the cleavage site between Gag proteins p17 and p24 were not changed. One point mutation (A-->G) at site 2082 of the pol gene that resulted in one amino acid change at site 84 of the protease from isoleucine to valine (I-84-->V) could be detected in the resistant variant. An HIV-1 infectious DNA clone with the I-84-->V mutation also showed reduced sensitivity to this protease inhibitor. The findings that the resistant variant had lower infectivity and was still affected by higher doses of the drug support the speculation that resistance to protease inhibitors may not be as problematic as other drug resistance.  相似文献   

6.
The viral protein Nef and the cellular factor cyclophilin A are both required for full infectivity of human immunodeficiency virus type 1 (HIV-1) virions. In contrast, HIV-2 and simian immunodeficiency virus (SIV) do not incorporate cyclophilin A into virions or need it for full infectivity. Since Nef and cyclophilin A appear to act in similar ways on postentry events, we determined whether chimeric HIV-1 virions that contained either HIV-2 or SIV Nef would have a direct effect on cyclophilin A dependence. Our results show that chimeric HIV-1 virions containing either HIV-2 or SIV Nef are resistant to treatment by cyclosporine and enhance the infectivity of virions with mutations in the cyclophilin A binding loop of Gag. Amino acids at the C terminus of HIV-2 and SIV are necessary for inducing cyclosporine resistance. However, transferring these amino acids to the C terminus of HIV-1 Nef is insufficient to induce cyclosporine resistance in HIV-1. These results suggest that HIV-2 and SIV Nef are able to compensate for the need for cyclophilin A for full infectivity and that amino acids present at the C termini of these proteins are important for this function.  相似文献   

7.
<正>Dear Editor,Here we explored the contribution of atlastin-1(ATL1)to HIV replication for the first time.HIV-1 encodes only15 proteins(Ayinde et al.,2010)and thus must exploit multiple host cell functions for successful infection.For example,HIV-1 envelope(Env)glycoproteins are synthesized as a polyprotein precursor,known as gp160,in the endoplasmic reticulum(ER)(Checkley et al.,2011).  相似文献   

8.
9.
The envelope proteins (Env) of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) form homo-oligomers in the endoplasmic reticulum. The oligomeric structure of Env is maintained, but is less stable, after cleavage in a Golgi compartment and transport to the surface of infected cells. Functional, virion-associated HIV-1 and SIV Env have an almost exclusively trimeric structure. In addition, a soluble form of SIV Env (gp140) forms a nearly homogeneous population of trimers. Here, we describe the oligomeric structure of soluble, uncleaved HIV-1 gp140 and modifications that promote a stable trimeric structure. Biochemical and biophysical analyses, including sedimentation equilibrium and scanning transmission electron microscopy, revealed that unmodified HIV-1 gp140 purified as a heterogeneous range of oligomeric species, including dimers and aggregates. Deletion of the V2 domain alone or, especially, both the V1 and V2 domains reduced dimer formation but promoted aggregation rather than trimerization. Expressing gp140 with mannose-only oligosaccharides did not eliminate heterogeneity. Replacement of the entire gp41 segment of HIV-1 gp140 or just the N-terminal half (85 amino acids) of this segment with the corresponding region of SIV was sufficient to confer efficient trimerization for gp140 derived from clade B and C isolates. Importantly, the relatively small segment of the HIV Env replaced by SIV sequences contains no known targets of neutralizing antibody. The soluble trimeric form of HIV-1 Env should prove useful for assessment of antigenic structure and immunogenicity.  相似文献   

10.
Recent findings suggest that mammalian microRNAs (miRNAs) may influence viral replication in host cells. Studies on HIV-1 infection have contributed in part to the development of this notion. Herein, we review, in brief, some of the evidence supportive of an interplay between human miRNAs and HIV-1 in cells. Several cellular miRNAs potentially act to restrict HIV-1 replication, and the virus has countermeasures to evade such restriction.  相似文献   

11.
12.
To date, only a small number of anti-human immunodeficiency virus type 1 (HIV-1) monoclonal antibodies (MAbs) with relatively broad neutralizing activity have been isolated from infected individuals. Adequate techniques for defining how frequently antibodies of these specificities arise in HIV-infected people have been lacking, although it is generally assumed that such antibodies are rare. In order to create an epitope-specific neutralization assay, we introduced well-characterized HIV-1 epitopes into the heterologous context of simian immunodeficiency virus (SIV). Specifically, epitope recognition sequences for the 2F5, 4E10, and 447-52D anti-HIV-1 neutralizing monoclonal antibodies were introduced into the corresponding regions of SIVmac239 by site-directed mutagenesis. Variants with 2F5 or 4E10 recognition sequences in gp41 retained replication competence and were used for neutralization assays. The parental SIVmac239 and the neutralization-sensitive SIVmac316 were not neutralized by the 2F5 and 4E10 MAbs, nor were they neutralized significantly by any of the 96 HIV-1-positive human plasma samples that were tested. The SIV239-2F5 and SIV239-4E10 variants were specifically neutralized by the 2F5 and 4E10 MAbs, respectively, at concentrations within the range of what has been reported previously for HIV-1 primary isolates (J. M. Binley et al., J. Virol. 78:13232-13252, 2004). The SIV239-2F5 and SIV239-4E10 epitope-engrafted variants were used as biological screens for the presence of neutralizing activity of these specificities. None of the 92 HIV-1-positive human plasma samples that were tested exhibited significant neutralization of SIV239-2F5. One plasma sample exhibited >90% neutralization of SIV239-4E10, but this activity was not competed by a 4E10 target peptide and was not present in concentrated immunoglobulin G (IgG) or IgA fractions. We thus confirm by direct analysis that neutralizing activities of the 2F5 and 4E10 specificities are either rare among HIV-1-positive individuals or, if present, represent only a very small fraction of the total neutralizing activity in any given plasma sample. We further conclude that the structures of gp41 from SIVmac239 and HIV-1 are sufficiently similar such that epitopes engrafted into SIVmac239 can be readily recognized by the cognate anti-HIV-1 monoclonal antibodies.  相似文献   

13.
14.
Virion infectivity factor (vif), a gene found in all lentiviruses, plays an essential role in virus replication in certain target cells. We examined the replication competence of the human immunodeficiency virus type 2 (HIV-2) vif mutant in different T-cell lines and primary cells in comparison with that of the HIV-1 vif mutant. Both mutant viruses were unable to replicate in peripheral blood-derived mononuclear cells but replicated with wild-type efficiency in certain T-cell lines, such as SupT1 and MOLT-4/8. These results confirm the importance of vif in the infection of relevant target cells and imply that some cellular factor(s) could compensate for vif function. However, HIV-1 and HIV-2 vif mutant viruses also show differential replications in other cell lines, suggesting either different threshold requirements for the same cellular factor(s) or the involvement of different factors to compensate for vif-1 and vif-2 functions. By cross complementation experiments, we showed that vif-1 and vif-2 have similar functions. Our studies further indicate the existence of two kinds of nonpermissive cells: H9 is unable to complement HIV-1 delta vif but is susceptible to a one-round infection with HIV-1 delta vif produced from permissive cells. In contrast, U937 is nonpermissive for HIV-2 delta vif produced from permissive cells but, once infected, is able to complement the delta vif function. In both types of nonpermissive cells, a step prior to proviral DNA synthesis is affected.  相似文献   

15.
We constructed an infectious molecular clone of the human immunodeficiency virus type 2 (HIV-2) and generated nine frameshift mutants corresponding to nine open reading frames identified so far. Three structural (gag, pol, env) and two regulative (tat, rev) gene mutants were not infectious, whereas vif, vpx, vpr, and nef genes were dispensable for infectivity. All of the mutants except env and rev were cytopathic in CD4+ human leukemia cells. In transfection assays, the expression of HIV-2 long terminal repeat was activated by infectious clones of HIV-1, HIV-2, and simian immunodeficiency virus from African green monkey but not by the tat mutants. However, an HIV-2 tat mutant could produce small amounts of virus proteins and particles in contrast to a rev mutant, which directed no detectable synthesis of virus proteins and virions.  相似文献   

16.
17.
Motomura K  Chen J  Hu WS 《Journal of virology》2008,82(4):1923-1933
Human immunodeficiency virus type 1 (HIV-1) and HIV-2 are genetically distinct viruses that each can cause AIDS. Approximately 1 million people are infected with both HIV-1 and HIV-2. Additionally, these two viruses use the same receptor and coreceptors and can therefore infect the same target cell populations. To explore potential genetic interactions, we first examined whether RNAs from HIV-1 and HIV-2 can be copackaged into the same virion. We used modified near-full-length viruses that each contained a green fluorescent protein gene (gfp) with a different inactivating mutation. Thus, a functional gfp could be reconstituted via recombination, which was used to detect the copackaging of HIV-1 and HIV-2 RNAs. The GFP-positive (GFP+) phenotype was detected in approximately 0.2% of the infection events, which was 35-fold lower than the intrasubtype HIV-1 rates. We isolated and characterized 54 GFP+ single-cell clones and determined that all of them contained proviruses with reconstituted gfp. We then mapped the general structures of the recombinant viruses and characterized the recombination junctions by DNA sequencing. We observed several different recombination patterns, including those that had crossovers only in gfp. The most common hybrid genomes had heterologous long terminal repeats. Although infrequent, crossovers in the viral sequences were also identified. Taken together, our study demonstrates that HIV-1 and HIV-2 can recombine, albeit at low frequencies. These observations indicate that multiple factors are likely to restrict the generation of viable hybrid HIV-1 and HIV-2 viruses. However, considering the large coinfected human population and the high viral load in patients, these rare events could provide the basis for the generation of novel human immunodeficiency viruses.  相似文献   

18.
19.
While testing sera for Human Immunodeficiency Virus neutralizing antibody titers, three sera were identified which had the ability to enhance infectivity of the virus. The sera were from three different individuals residing in Nashville, TN. The enhancing factor was not removed by either filtration through 0.05 micron filters or by incubation for one hour with a stoichiometric amount of protein A sepharose. Two of the sera were able to enhance infection by two divergent isolates (HTLV-IIIB and HTLV-IIIRF) while one was only capable of enhancing infection of target cells by HTLV-IIIB. None of the sera induced syncytium formation in chronic HIV-infected cells. The findings suggest that the substance is neither a virus nor an IgG class 1 or 2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号