首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
A method for the isolation and purification of plasma membranes of Dictyostelium discoideum by equilibrium centrifugation on sucrose followed by Renografin continuous density gradients has been developed and monitored both with electron microscopy and a number of enzyme assays. On the basis of electron microscopy, the final plasma membrane fractions are judged to be free of nuclei, rough endoplasmic reticulum, lysosomes and peroxisomes. Some profiles of the mitochondrial inner membranes are found within the plasma membrane fractions, but this contamination has been estimated to be only 5%. On the basis on enzyme assays, the plasma membrane fractions contain all the 5′-nucleotidase activity in the final gradients and are free of catalase, acid phosphatase and malate dehydrogenase activity (markers for peroxisomes, lysosomes, soluble enzymes and the matrix of mitochondria). Their content of glucose-6-phosphatase is reduced by more than 70%. The large majority of RNA and DNA have been removed from the preparation.  相似文献   

2.
The intracellular localization of the post-translationally inserted integral membrane protein, NADH-cytochrome b5 reductase, was investigated, using a quantitative radioimmunoblotting method to determine its concentration in rat liver subcellular fractions. Subcellular fractions enriched in rough or smooth microsomes, Golgi, lysosomes, plasma membrane and mitochondrial inner or outer membranes were characterized by marker enzyme analysis and electron microscopy. Reductase levels were determined both with the NADH-cytochrome c reductase activity assay, and by radioimmunoblotting, and the results of the two methods were compared. When measured as antigen, the reductase was relatively less concentrated in microsomal subfractions, and more concentrated in fractions containing outer mitochondrial membranes, lysosomes and plasma membrane than when measured as enzyme activity. Rough and smooth microsomes had 4-5-fold lower concentrations, on a phospholipid basis than did mitochondrial outer membranes. Fractions containing Golgi, lysosomes and plasma membrane had approximately 14-, approximately 16, and approximately 9-fold lower concentrations of antigen than did mitochondrial outer membranes, respectively, and much of the antigen in these fractions could be accounted for by cross-contamination. No enzyme activity or antigen was detected in mitochondrial inner membranes. Our results indicate that the enzyme activity data do not precisely reflect the true enzyme localization, and show an extremely uneven distribution of reductase among different cellular membranes.  相似文献   

3.
We have quantified, in cultured rat fibroblasts, the association to the lysosomal membrane of two classical plasma membrane markers, 5'-nucleotidase and alkaline phosphodiesterase I. To isolate highly purified lysosomal preparations, lysosomes were loaded with horseradish peroxidase (2-h cell uptake, 16-h chase) and isolated by isopycnic centrifugation in linear Percoll gradients, followed by a 3,3'-diaminobenzidine-induced density shift in sucrose gradients. Purified lysosomal preparations contained up to 50% of N-acetyl-beta-glucosaminidase of the homogenate. This lysosomal enzyme was enriched 33-fold in the most purified preparations. In the electron microscope, these preparations appeared to be highly purified and only contained organelles filled with diaminobenzidine reaction products. Analysis of purified preparations indicates that 0.5-0.8% of 5'-nucleotidase, but as much as 10.9-14.3% of alkaline phosphodiesterase I activities of the homogenate, are associated with lysosomes. After freezing-thawing, these activities remained essentially membrane-associated. The larger value obtained for alkaline phosphodiesterase I could not be ascribed to other lysosomal enzymes, as no such activity was detected at acidic pH. These two plasma membrane markers are thus unevenly distributed in the lysosomal compartment.  相似文献   

4.
1. Plasma membranes have been purified 17-fold from mouse parotid gland homogenates prepared in hypertonic sucrose media using differential centrifugation. The method is fast and simple. The membranes were characterised by electron microscopy, enzyme composition and chemical composition. Further purification was achieved by isopycnic centrifugation in discontinuous sucrose gradients. 2. The purified membranes contain an adenylate cyclase activity which is stimulated by isoproterenol and fluoride. Only 50% of the total adenylate cyclase activity sedimented in the plasma membrane fraction. The rest of the activity resided in the crude nuclear and mitochondrial pellets. However, this adenylate cyclase activity was not associated with these organelles but with membrane fragments in the pellets. Purified nuclei did not contain adenylate cyclase activity. 3. Adenylate cyclase activity was also localised by electron microscopic cytochemistry. Besides being found at the plasma membrane, large amounts of adenylate cyclase were found in a small proportion of the vesicles within the acinar cells, which appeared to be secondary lysosomes. 4. Adenylate cyclase activities, under standard assay conditions, are proportional to the time of incubation and the concentration of enzyme. The enzyme requires both Mg-2+ and CA-2+ for activity. Isoproterenol increased activity 2-fold and this increase is abolished by beta-adrenergic blocking agents.  相似文献   

5.
A procedure for the isolation of plasma-membrane-enriched fractions from bovine 'pars intermedia' and neurohypophysis is described. Various fractions are isolated by differential centrifugation and discontinuous sucrose density gradients. The plasma-membrane-enriched fractions have a density in sucrose of 1.14 and 1.16 and the yields are 1.8 mg and 1.5 mg per gram of tissue for the pars intermedia and neural lobe, respectively. The fractions are characterized by electron microscopy and enzymatic assays. The plasma membrane fractions are mainly vesicular in nature and are free of nuclei, mitochondria, and microsomes when examined by electron microscopy. 5'-Nucleotidase (EC 3.1.3.5) and Mg2+-(Na+ + K+)-ATPase (EC 3.6.1.3) activities are concentrated in the plasma-membrane-enriched fraction. Also, adenylate cyclase (EC 4.61.1) shows a 5 to 10-fold purification in the isolated membrane fraction. NaF (10mM) gives a two to three-fold stimulation of enzymatic activity in all fractions studied The yields of adenylate cyclase, 5'-nucleotidase, and Mg2+-(Na+ +K+)-ATPase are about 6% in the membrane fraction.  相似文献   

6.
Purification of plasma membrane from Acanthamoeba castellanii   总被引:6,自引:0,他引:6  
A simple method for isolation of plasma membrane from Acanthamoeba using self-generating gradients of Percoll is described. To obtain a membrane marker, intact amoebae were radioiodinated and the distribution of the radiolabel was followed through the plasma membrane isolation procedure. The purity of isolated plasma membrane was assessed by enrichment of radiolabel, by electron microscopy, and by enzymatic assays for contaminating membranes. As judged from enrichment of radiolabel, a 37-fold purification of plasma membrane was obtained. We estimate that 80% of the total protein was from plasma membrane and 10% from membrane-associated actin.  相似文献   

7.
To quantify the kinetics of the plasma membrane flow into lysosomes, we covalently labelled at 4 degrees C the pericellular membrane of rat fibroblasts and followed label redistribution to the lysosomal membrane using purified lysosomal preparations. The polypeptides were, either labelled with 125I by the lactoperoxidase procedure, or conjugated to [3H]peroxidase using bisdiazobenzidine as a bifunctional reagent. Both labels were initially bound to plasma membrane, as indicated by their equilibrium density in sucrose or Percoll gradients and their displacement by digitonin, as well as by electron microscopy. Upon cell incubation at 37 degrees C, both covalent labels were lost from cells with diphasic kinetics: a minor component (35% of cell-associated labels) was rapidly released (half-life less than 1 h), and most label (65%) was released slowly (half-life was 20 h for incorporated 125I and 27 h for 3H). Immediately after labelling up to 30 h after incubation at 37 degrees C, the patterns of 125I-polypeptides quantified by autoradiography after SDS-PAGE were indistinguishable, indicating no preferential turnover for the major plasma membrane polypeptides. The redistribution of both labels to lysosomes was next quantified by cell fractionation. At equilibrium (between 6 and 25 h of cell incubation) 2-4% of cell-associated 125I label was recovered with the purified lysosomal membranes. By contrast, when 3H-labelled cells were incubated for 16 h, most of the label codistributed with lysosomes. However, only 6% of cell-associated 3H was bound to lysosomal membrane. These results indicate that in cultured rat fibroblasts, a minor fraction of plasma membrane polypeptides becomes associated with the lysosomal membrane and is constantly equilibrated by membrane traffic.  相似文献   

8.
Two methods are described enabling the plasma membrane from Chinese hamster ovary (CHO) cells to be obtained rapidly, relatively pure and with a good yield. In both cases, cells were disrupted by nitrogen cavitation in an isoosmotic buffer either at pH 5.4 or at pH 7.4. In the first approach, cells were lysed at pH 7.4 and the plasma membrane and cell organelles were isolated on a self-generated gradient of Percoll, at neutral pH. Mitochondria and endoplasmic reticulum were recovered in the denser fractions, plasma membrane fragments were found in the lighter fractions, but always contaminated by lysosomes. Because lysosomes were found to sediment in acidic conditions, cells were lysed at pH 5.4 and presedimentation (1500 x g) of the cell homogenate at the same pH enabled more than 80% of the lysosomes to be removed. Then, ultracentrifugation of the supernatant over a Percoll gradient at neutral pH yielded plasma membrane fractions practically free of lysosomes with an enrichment ratio of 3 and fractions of mitochondria and endoplasmic reticulum with enrichment ratios of 17 and 6, respectively. A major problem was encountered in the final step of elimination of Percoll from the purified plasma membrane fractions. Whatever the technique used for eliminating Percoll, plasma membranes were observed to be contaminated by a Percoll constituent which prevented further purification and biochemical identification of the lipids extracted from these membrane fractions to be carried out. A second method of plasma membrane preparation was tested consisting first in the coating of the cell surface with positive colloidal silica which was stabilized by an anionic polymer. Then, and through differential centrifugations, plasma membrane fractions were easily obtained within less than 1 h, with a yield of 65% and an enrichment ratio of 7. The coating pellicle was quantitatively removed thus enabling any biochemical manipulation of the plasma membrane to be carried out. The lipids present in the plasma membrane of CHO cells were analyzed and are described, both in terms of headgroup and acyl chain composition.  相似文献   

9.
Detailed investigations by quantitative centrifugal fractionation were conducted to determine the subcellular distribution of protein-bound sialic acid in rat liver. Homogenates obtained from perfused livers were fractionated by differential centrifugation into nuclear fraction, large granules, microsomes, and final supernate fraction, or were used to isolate membrane preparations enriched in either plasma membranes or Golgi complex elements. Large granule fractions, microsome fractions, and plasma membrane preparations were subfractionated by density equilibration in linear gradients of sucrose. In some experiments, microsomes or plasma membrane preparations were treated with digitonin before isopycnic centrifugation to better distinguish subcellular elements related to the plasma membrane or the Golgi complex from the other cell components; in other experiments, large granule fractions were obtained from Triton WR-1339-loaded livers, which effectively resolve lysosomes from mitochondria and peroxisomes in density gradient analysis. Protein-bound sialic acid and marker enzymes were assayed in the various subcellular fractions. The distributions obtained show that sialoglycoprotein is restricted to some particular domains of the cell, which include the plasma membrane, phagolysosomes, and possibly the Golgi complex. Although sialoglycoprotein is largely recovered in the microsome fraction, it has not been detected in the endoplasmic reticulum-derived elements of this subcellular fraction. In addition, it has not been detected either in mitochondria or in peroxisomes. Because the sialyltransferase activities are associated with the Golgi complex, the cytoplasm appears compartmentalized into components which biogenetically involve the Golgi apparatus and components which do not.  相似文献   

10.
Neutrophil chemotaxis, phagocytosis, and oxygen-dependent microbicidal activity are initiated by interactions of stimuli with the plasma membrane. However, difficulties in neutrophil plasma membrane isolation have precluded studies on the precise structure or function of this cellular component. In this paper, a method is described for the isolation of representative human neutrophil plasma membrane vesicles, using nitrogen cavitation for cell disruption and a combination of differential centrifugation and equilibrium ultracentrifugation in Dextran gradients for membrane fractionation. Multiple biochemical markers and galactose oxidase-tritiated sodium borohydride surface labeling were employed to follow the yield, purity, and distribution of plasma membranes, nuclei, lysosomes, endoplasmic reticulum, mitochondria, and cytosol. According to these markers, neutrophil plasma membranes were exposed to minimal lysosomal hydrolytic enzymes and could be isolated free of other subcellular organelles. In contrast, disruption of neutrophils by mechanical homogenization resulted in > 20% lysosomal rupture and significant plasma membrane proteolysis. Electron microscopy demonstrated that plasma membranes isolated after nitrogen cavitation appeared to be sealed vesicles with striking homogeneity.  相似文献   

11.
Egg plasma membrane (EPM) was isolated in comparatively large amounts from porcine slaughterhouse ovaries. Ovaries were minced, and the oocyte containing fluid was filtered to retrieve zona pellucidae–intact oocytes. The oocytes were homogenized and filtered again to remove zona pellucidae. The egg filtrate was subjected to differential centrifugation to remove membrane bound organelles and the remaining plasma membrane containing material was pelleted by ultracentrifugation. Plasma membranes were further separated from cellular material by sucrose density gradient centrifugation and were collected from portions of the gradient that correspond to the densities of plasma membrane. The purity of isolated plasma membranes was assessed by membrane marker enzyme analysis and transmission electron microscopy. Activities of the plasma membrane marker enzymes 5' nucleotidase and alkaline phosphatase increased from nondetectable levels in the egg filtrate to relatively high levels in the plasma membrane preparation. Marker enzymes for mitochondrial and lysosomal membranes fell from detectable levels in the egg filtrate to levels that were at the lower limits of the assays to detect in the final preparation. Evidence provided by binding of biotin-labeled EPM to capacitated sperm suggests that the isolated EPM retains its biological activity. The procedure presented here represents a novel method of isolating procine egg plasma membranes for further study involving sperm–egg interaction. © 1994 Wiley-Liss, Inc.  相似文献   

12.
Plasma membranes from normal, full-term human placental trophoblast have been isolated by a new procedure. The method depends upon isopycnic zonal centrifugation using linear sucrose/Ficoll density gradients. Enrichment of plasma membrane marker enzymes with respect to trophoblast homogenate is found in two distinct peaks (designated B and D) of the fractionated effluent recovered from the rotor. Fraction B is enriched with membrane-bound alkaline phosphatase and 5'-nucleotidase, but not with (Na+, K+)-ATPase of F(-)-stimulated adenylate cyclase. It is suggested that this material is derived from the maternal-facing microvillous plasma membrane. Fraction D, enriched with (Na+, K+)-ATPase, F(-)-stimulated adenylate cyclase and, to a smaller extent, with 5'-nucleotidase and alkaline phosphatase is, by exclusion, proposed to be derived from the fetal-facing basal plasma membrane. Both plasma membrane fractions are shown to be free of appreciable contamination, using specific markers for endoplasmic reticulum, mitochondria, nuclei and lysosomes. The separation of the two membrane fractions is shown to depend both upon these membranes forming closed vesicles during homogenization and upon the buoyant densities of such vesicles differing in such a way that microvillous plasma membranes band at a lower density than basal plasma membranes. No separation of the membranes is achieved in gradients in which the vesicles are collapsed.  相似文献   

13.
The subcellular localization of guanylate cyclase was examined in rat liver. About 80% of the enzyme activity of homogenates was found in the soluble fraction. Particulate guanylate cyclase was localized in plasma membranes and microsomes. Crude nuclear and microsomal fractions were applied to discontinuous sucrose gradients, and the resulting fractions were examined for guanylate cyclase, various enzyme markers of cell components, and electron microscopy. Purified plasma membrane fractions obtained from either preparation had the highest specific activity of guanylate cyclase, 30 to 80 pmol/min/mg of protein, and the recovery and relative specific activity of guanylate cyclase paralleled that of 5'-nucleotidase and adenylate cyclase in these fractions. Significant amounts of guanylate cyclase, adenylate cyclase, 5'-nucleotidase, and glucose-6-phosphatase were recovered in purified preparation of microsomes. We cannot exclude the presence of guanylate cyclase in other cell components such as Golgi. The electron microscopic studies of fractions supported the biochemical studies with enzyme markers. Soluble guanylate cyclase had typical Michaelis-Menten kinetics with respect to GTP and had an apparent Km for GTP of 35 muM. Ca-2+ stimulated the soluble activity in the presence of low concentrations of Mn-2+. The properties of guanylate cyclase in plasma membranes and microsomes were similar except that Ca-2+ inhibited the activity associated with plasma membranes and had no effect on that of microsomes. Both particulate enzymes were allosteric in nature; double reciprocal plots of velocity versus GTP were not linear, and Hill coefficients for preparations of plasma membranes and microsomes were calculated to be 1.60 and 1.58, respectively. The soluble and particulate enzymes were inhibited by ATP, and inhibition of the soluble enzyme was slightly greater. While Mg-2+ was less effective than Mn-2+ as a sole cation, all enzyme fractions were markedly stimulated with Mg-2+ in the presence of a low concentration of Mn-2+. Triton X-100 increased the activity of particulate fractions about 3- to 10-fold and increased the soluble activity 50 to 100%.  相似文献   

14.
A procedure is described for subcellular fractionation of bull sperm which allows the isolation of outer acrosomal membrane without the use of detergent. After washing to remove seminal plasma contaminants, the acrosomal membrane is removed by homogenization and separated on a two-step sucrose gradient. The isolated membranes have been characterized by light and electron microscopy and enzyme analysis. While the acrosomal enzymes hyaluronidase and acrosin are bound to the isolated membranes, they represent only a small percentage of the total activity and therefore do not provide reliable marker enzymes for this fraction. Subcellular fractionation of sperm also yields information on the solubility of acrosomal enzymes. Two types of acrosomal enzymes have been identified on the basis of their distribution in gradient fractions. Both alpha-fucosidase and beta-N-acetyl glucosaminidase are concentrated in the soluble fraction of the gradient. In contrast, over 70% of the acrosin and hyaluronidase activity remains associated with the sperm pellet. These differences in solubility of these enzymes may reflect differences in their function in fertilization.  相似文献   

15.
To investigate the vital function(s) of the phosphoinositol-containing sphingolipids of Saccharomyces cerevisiae, we measured their intracellular distribution and found these lipids to be highly localized in the plasma membrane. Sphingolipids were assayed in organelles which had been uniformly labeled with [3H]inositol or 32P and by chemical measurements of alkali-stable lipid P, of long chain bases, and of very long chain fatty acids. We have developed an improved method for the preparation of plasma membranes which is based on the procedure of Duran et al. (Proc. Natl. Acad. Sci. USA 72:3952-3955, 1975). On the basis of marker enzyme and DNA assays carried out with a number of preparations, the plasma membranes contained less than 10% vacuolar membranes (alpha-mannosidase) and nuclei (DNA); the contamination by the endoplasmic reticulum (NADPH-cytochrome c reductase) varied from 0 to 20%. The plasma membrane preparations showed a 13-fold increase in the specific activity of vanadate-sensitive ATPase, compared with that in the homogenate, with a yield ranging from 50 to 80%. A comparison of the distribution of the ATPase with that of sphingolipids assayed by a variety of methods showed that 80 to 100% of the sphingolipids are localized in the plasma membrane; the sphingolipids constitute about 30% of the total phospholipid content of the plasma membrane. Minor amounts of sphingolipids that were found in isolated mitochondria and nuclei can be attributed to the presence of small amounts of plasma membrane in these fractions. These results suggest that one or more essential functions of these lipids is in the plasma membrane. Furthermore, sphingolipids may be useful chemical markers of the plasma membrane of S. cerevisiae.  相似文献   

16.
Plasma membranes were isolated from rat liver homogenates either by differential centrifugation or by fractionation in discontinuous sucrose density gradients. Both membrane preparations contained about 17% of the total uridine phosphorylase (EC 2.4.2.3) activity and 44% of the total 5'-nucleotidase (EC 3.1.3.5). The enrichment factor for uridine phosphorylase in the fractions prepared by differential centrifugation was about 2.8 and by the gradient method, as much as 11.0; the respective enrichment factors for 5'-nucleotidase were 1.8 and 9.5. Uridine phosphorylase activity of isolated plasma membrane fractions was stimulated 2.5-fold by 0.1% Triton X-100. Unlike the cytosol enzyme, uridine phosphorylase of plasma membranes showed little or no deoxyuridine-cleaving activity. Contamination of the membrane fractions by thymidine phosphorylase (EC 2.4.2.4) of the cytosol was negligible. The other subcellular organelles obtained by either procedure and characterized by marker enzyme activities were found not to contain significant uridine phosphorylase activity; the cytosol fractions contained just over 70% of the total uridine phosphorylase activity with an enrichment of only about 2.8-fold. The activity of the cytosol enzyme was not stimulated by Triton X-100.  相似文献   

17.
It would be advantageous to prepare models of the neutrophil plasma membrane in order to examine the role of the plasma membrane in transmembrane signal transduction in the human neutrophil and to dissect ligand-receptor interactions and structural changes in the cell surface upon stimulation. A number of investigators have prepared neutrophil membrane vesicles by homogenization, sonication, or centrifugation--techniques that can result in the loss of substantial amounts of surface membrane material, disruption of lysosomes causing proteolysis of membrane proteins, and contamination of the plasma membrane fraction by internal membranes. These limitations have been overcome in the present studies by employing a modification of the method previously developed in this laboratory. Human neutrophils were suspended in a buffer simulating cytoplasmic ionic and osmotic conditions and disrupted by nitrogen cavitation. The resultant cavitate was freed of undisrupted cells and nuclei and then centrifuged through discontinuous isotonic/isoosmotic Percoll gradients, which resolved four fractions: alpha (intact azurophilic granules), beta (intact specific granules), gamma (membrane vesicles), and delta (cytosol). The gamma fraction was highly enriched in alkaline phosphatase, a marker of the plasma membrane. In addition, this fraction contained less than 5% of the amounts of lysosomes (indicated by lysozyme activity) and nuclei (indicated by DNA content) found in intact cells or in unfractionated cavitate. Furthermore, the gamma fraction contained less than 10% of the levels of endoplasmic reticulum, Golgi, mitochondrial, and lysosomal membranes in cells or cavitates, as determined by assays for glucose 6-phosphatase, galactosyl transferase, monoamine oxidase, and Mo1 (CD11b/CD18; Mac-1), respectively. Finally, 75% of the membrane vesicles were sealed, as indicated by assay of ouabain-sensitive (Na+,K+) ATPase activity, and 55% were oriented right-side-out, as determined by exposure of concanavalin A (ConA) receptors and sialic acid residues on the surfaces of the vesicles. These heterogeneous preparations could be enriched for right-side-out vesicles by their selective adherence to ConA-coated plates and subsequent detachment by rinsing the surfaces of the plates with alpha-methylmannoside. This enrichment protocol did not affect the integrity of the vesicles and resulted in populations in which greater than 85% of the vesicles were oriented right-side-out. This procedure thus permits the preparation of sealed, right-side-out membrane vesicles that may be used as valid experimental models of the neutrophil plasma membrane in a variety of functional studies.  相似文献   

18.
A fraction containing plasma membrane fragments has been purified from epimastigote forms of Trypanosoma cruzi. Cells were broken by sonic vibration under well defined conditions and membranes were isolated by differential centrifugation and equilibrium centrifugation in sucrose gradients. The co-purification (approximately 10-fold) of adenylyl cyclase and plasma membrane-bound radioactive iodine is highly suggestive of the localization of this enzyme in the plasma membrane of T. cruzi. Determination of succinate cytochrome c reductase and glucose-6-phosphatase activities, as well as of total amounts of DNA and RNA in the purified fraction, indicates a negligible contamination from other cellular organelles. The co-purification of acid phosphatase activity with bound labeled iodine and adenylyl cyclase was taken as circumstantial evidence that part of this enzyme also belongs to the plasma membrane of T. cruzi. Conventional electron miscroscopy and freeze-fracture images of this fraction are consistent with a highly enriched plasma membrane preparation.  相似文献   

19.
Membrane vesicles can be prepared from murine lymphoid cells by nitrogen cavitation and fractionated by sedimentation through nonlinear sucrose density gradients. Two subpopulations of membrane vesicles, PMI and PMII, can be distinguished on the basis of sedimentation rate. The subcellular distribution of adenylate and guanylate cyclases in these membrane subpopulations have been compared with the distribution of a number of marker enzymes. Approximately 20-30% of the total adenylate and guanylate cyclase activity is located at the top of the sucrose gradient (soluble enzyme), the remainder of the activity being distributed in the PMI and PMII fractions (membrane-bound enzyme). More than 90% of the 5'-nucleotidase and NADH oxidase activities detected in lymphoid cell homogenates are located in PMI and PMII fractions, whereas succinate cytochrome c reductase activity is detected only in the PMII fractions. In addition, beta-galactosidase activity is distributed in the soluble and PMII fractions of the sucrose density gradients. On the basis of the fractionation patterns of these various enzyme activities, it appears that PMI fractions contain vesicles of plasma membrane and endoplasmic reticulum, whereas PMII fractions contain mitochondria, lysomes, and plasma membrane vesicles. Approximately 30-40% of the adenylate and guanylate cyclase activities in PMII can be converted to a PMI-like form following dialysis and resedimentation through a second nonlinear sucrose gradient. Adenylate and guanulate cyclases can be distinguished on the basis of sensitivity to nonionic detergents.  相似文献   

20.
Despite widespread use of various tetrazolium assays, the mechanisms of bioreduction of these compounds have not been fully elucidated. We investigated the capacity of tetrazolium salts to penetrate through intact cell plasma membranes. 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) and 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) tetrazolium salts appear to represent examples of species that are reduced by different mechanisms. We provide evidence suggesting that MTT readily crosses intact plasma membranes and is reduced intracellularly. MTT appears to be reduced by both plasma membrane and intracellular reductases; reducing cells are not damaged and remain metabolically active for at least 45 min. In contrast, CTC remains extracellular with respect to viable cells and thus requires plasma membrane permeable electron carrier to be reduced efficiently. However, reduction of CTC in the presence of an electron carrier inflicts damage on plasma membranes. The intracellular vs extracellular sites of reduction of tetrazolium salts were established on the basis of deposition of formazans. Crystals of formazan were detected using fluorescence or backscattered light confocal laser microscopy. We postulate that the capacity of a tetrazolium salt to cross intact plasma membranes constitutes an important experimental variable which needs to be controlled in order to correctly interpret the outcome of tetrazolium assays designed to measure cellular production of oxygen radicals, activity of mitochondrial, cytosolic, or outer membrane reductases, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号