首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid acceptor in UDPglucuronic acid metabolism in rat liver microsomes   总被引:1,自引:0,他引:1  
  相似文献   

2.
1. In this communication, metabolism of the semisynthetic antimalarial drugs of the artemisinin class (beta-arteether, beta-artelinic acid and dihydroartemisinin) in rat liver microsomes, is reported. 2. Dihydroartemisinin was the major early metabolite of arteether (57%) and artelinic acid (80%); in addition, arteether was hydroxylated in the positions 9 alpha- and 2 alpha- of the molecule. 3. Dihydroartemisinin was further metabolized by extensive hydroxylation of its molecule; we were able to identify four hydroxylated derivatives of DQHS, but not the exact positions of the hydroxyl groups. 4. The rates of NADPH-supported metabolism of arteether, artelinic acid and dihydroartemisinin in rat liver microsomes were: 4.0, 2.5 and 1.3 nmol/min/mg of microsomal protein, respectively. 5. The apparent affinity constants of arteether and artelinic acid for the microsomal metabolizing system, calculated from the rates of product formation, were 0.54 mM and 0.33 mM (for arteether) and 0.11 mM (for artelinic acid), respectively. The appearance of two affinity constants indicated that arteether was metabolized by two different isoenzymes of cytochrome P-450 in rat liver microsomes.  相似文献   

3.
In rat liver microsomes, all-trans-[11,12-3H]retinoic acid was found to be metabolized to polar products in the presence of NADPH. One of the metabolites was coeluted with 4-hydroxyretinoic acid on reverse-phase high-pressure liquid chromatography (HPLC). This reaction required oxygen and was inhibited by carbon monoxide as well as aminopyrine, aniline, and ethanol, suggesting the involvement of cytochrome P-450. Isolated rat hepatocytes also metabolized all-trans[3H]retinoic acid to polar compounds, with an elution pattern on HPLC similar to that in microsomal preparations. Microsomal activity was compared in rats pair-fed with diets containing either ethanol or isocaloric carbohydrate for 4–6 weeks. Ethanol-fed rats showed enhanced microsomal retinoic acid metabolism (50%, P < 0.01) accompanied by increased microsomal cytochrome P-450 content (34%, P < 0.005). On the other hand, microsomal β-glucuronidation of retinoic acid in the presence of uridine diphosphoglucuronic acid (UDPGA) was not affected by chronic ethanol feeding. The increased hepatic microsomal cytochrome P-450-dependent metabolism of retinoic acid after chronic ethanol consumption may contribute to the accelerated catabolism of retinoic acid in vivo.  相似文献   

4.
Rat liver microsomal suspension (1 mg protein per ml) was incubated at 37 degrees C with 5 mM salicylic acid and 0.2 mM NADPH. The amounts of thiobarbituric acid reactive substances (TBARS) and 2,5-dihydroxybenzoic acid (2,5-DHB), an oxidative metabolite of salicylic acid increased with the incubation time. Simultaneously spontaneous chemiluminescence (CL) was found to be generated there. The addition of SKF-525A, an inhibitor of cytochrome P450 (P450), to the reaction mixture inhibited the CL generation together with the inhibition of the oxidative metabolism. The anti-oxidants and singlet oxygen scavengers like N,N-diphenylphenylenediamine (DPPD) and histidine suppressed the CL generation. The addition of 1,4-diazabicyclo [2.2.2] octane (DABCO), a singlet oxygen quencher, to the reaction mixture generating CL enhanced CL transiently and then CL decreased markedly. Thus CL observed here may possibly originate from the singlet oxygen. The CL generation was suggested to be closely related with salicylic acid-induced lipid peroxidation, and to be coupled with the oxidative metabolism mediated by P450 in rat liver microsomes.  相似文献   

5.
Increased catalase activity was observed in the liver microsomal fraction of ethanol-treated rats (10% v/v aqueous ethanol solution per os for 5 weeks). In contrast, cytochrome P-450 concentration and specific activity of NADPH-cytochrome c reductase remained at the same level as in the liver of control rats (drinking water). The ratio of microsomal H2O2-generation to catalase activity was lower in the "ethanol" group than in the control one. This phenomenon seems to be related to the increased contribution of the "peroxidatic" reaction (increased rate of ethanol oxidation). Administration of mesitylene (1,3,5-trimethylbenzene) by gastric tube for 3 days (5 mmoles per kg daily) increased cytochrome P-450 concentration, specific activity of NADPH-cytochrome c reductase and ethanol metabolism.  相似文献   

6.
The hydroxylation of lithocholic acid (3 alpha-hydroxy-5 beta-cholanoic acid) by adult male Sprague-Dawley rat liver microsomes supplemented with NADPH was studied. Metabolites were separated by a combination of thin-layer chromatography and high pressure liquid chromatography, both with and without prior methylation and acetylation of the samples. The resulting products were characterized by thin-layer, gas-liquid, and high pressure liquid chromatography by comparison with authentic bile acid standards; final structure determination was by proton nuclear magnetic resonance spectroscopy and by mass spectrometry. The following reaction products were found: 3 alpha, 6 beta-dihydroxy-5 beta-cholanoic acid (80% of total metabolites) and 3 alpha, 6 alpha-dihydroxy-5 beta-cholanoic, 3 alpha, 7 alpha-dihydroxy-5 beta-cholanoic, 3 alpha, 6 beta,7 beta-trihydroxy-5 beta-cholanoic, and 3 alpha-hydroxy-6-oxo-5 beta-cholanoic acids (less than or equal to 5% each). In addition, one unidentified trihydroxylic bile acid and several minor compounds were present. It is concluded that four different hydroxylation reactions of lithocholic acid, namely the predominant 6 beta as well as the minor 6 alpha, 7 alpha, and 7 beta hydroxylations, are catalyzed by rat hepatic microsomes; 7 beta-hydroxylation may occur only with dihydroxylated bile acids but not with lithocholate itself. The presence of the 6-oxo bile acid can be explained either by direct oxidation of a hydroxyl group by cytochrome P-450, or by the action of microsomal dehydrogenase(s) which could also catalyze the epimerization of hydroxyl groups via their oxidation. The results form the basis of a proposed scheme of the oxidative metabolism of lithocholic acid in rat liver microsomes.  相似文献   

7.
Dihydroxyfumaric acid induced lipid peroxidation in rat liver microsomes. This reaction was heat-insensitive contrary to the mitochondrial peroxidation reported in the previous paper, and was enhanced by p-chloromercuribenzoate. Additions of Fe2+ and Fe3+ stimulated both the lipid peroxidation and the disappearance of dihydroxyfumaric acid. On the other hand, addition of Mn2+ or Cu2+, which stimulated the disappearance of dihydroxyfumaric acid, inhibited the lipid peroxidation. Hydroxyl radical scavengers, superoxide dismutase and catalase had no effect on this lipid peroxidation and dihydroxyfumaric acid disappearance. The cytochrome p-450 content decreased about 70 % in parallel with the lipid peroxidation.  相似文献   

8.
Zhao M  Li LP  Sun DL  Sun SY  Huang SD  Zeng S  Jiang HD 《Chirality》2012,24(5):368-373
Tetrahydropalmatine (THP), with one chiral center, is an active alkaloid ingredient in Rhizoma Corydalis. The aim of the present paper is to study whether THP enantiomers are metabolized stereoselectively in rat, mouse, dog, and monkey liver microsomes, and then, to elucidate which Cytochrome P450 (CYP) isoforms are predominately responsible for the stereoselective metabolism of THP enantiomers in rat liver microsomes (RLM). The results demonstrated that (+)-THP was preferentially metabolized by liver microsomes from rats, mice, dogs, and monkeys, and the intrinsic clearance (Cl(int)) ratios of (+)-THP to (-)-THP were 2.66, 2.85, 4.24, and 1.67, respectively. Compared with the metabolism in untreated RLM, the metabolism of (-)-THP and (+)-THP was significantly increased in dexamethasone (Dex)-induced and β-naphthoflavone (β-NF)-induced RLM; meanwhile, the Cl(int) ratios of (+)-THP to (-)-THP in Dex-induced and β-NF-induced RLM were 5.74 and 0.81, respectively. Ketoconazole had stronger inhibitory effect on (+)-THP than (-)-THP, whereas fluvoxamine had stronger effect on (-)-THP in untreated and Dex-induced or β-NF-induced RLM. The results suggested that THP enantiomers were predominately metabolized by CYP3A1/2 and CYP1A2 in RLM, and CYP3A1/2 preferred to metabolize (+)-THP, whereas CYP1A2 preferred (-)-THP.  相似文献   

9.
The metabolism of glycoproteins of rat liver microsomes   总被引:1,自引:0,他引:1  
  相似文献   

10.
The positional and fatty acid specificity of phosphatidic acid biosynthesis in rat liver mitochondria and microsomal fractions was studied by using acylcarnitines, CoA and an excess of carnitine palmitoyltransferase (EC 2.3.1.21) as the source of acyl-CoA. In the mitochondria, the preference for palmitic acid at the 1-position is increased at high acyl-CoA concentrations, whereas it is decreased in the microsomal fraction. There was no change in the fatty acid specificity at the 2-position with different acyl-CoA concentrations in any of the factions. The preference in mitochondria for linoleic acid at the 2-position is strongly increased at high concentrations of lysophosphatidic acid.  相似文献   

11.
A binding protein which exhibits high affinity to [3H]glycyrrhetinic-acid in the rat liver microsomal fraction was solubilized with 0.2% Triton DF-18 and then purified to homogeneity. The equilibrium dissociation constant of the [3H]glycyrrhetinic-acid binding reaction and the maximal concentration for the binding of the purified protein, as determined by Scatchard plot analysis, were 27.6 nM and 7.79 nmol/mg protein, respectively. The molecular mass of the subunit (34 kDa) and 30 amino acids of N-terminal sequence of the purified protein were entirely the same as those of the reported 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD). In each purification step, the recovery and purification (fold) of the glycyrrhetinic-acid binding activity corresponded to the values of 11 beta-HSD activity. These results show that the purified [3H]glycyrrhetinic-acid binding protein is 11 beta-HSD. From the molecular mass of 11 beta-HSD (135 kDa) and the maximal concentration of the binding site, it was calculated that one glycyrrhetinic acid molecule binds to one 11 beta-HSD molecule. The inhibitory effects of various glycyrrhetinic-acid derivatives on [3H]glycyrrhetinic acid binding and 11 beta-HSD activity indicate that the C30-carboxyl and C11-carbonyl groups of glycyrrhetinic acid are the principal structures for the 11 beta-HSD inhibition.  相似文献   

12.
Chromate metabolism in liver microsomes   总被引:3,自引:0,他引:3  
The carcinogenicity and mutagenicity of various chromium compounds have been found to be markedly dependent on the oxidation state of the metal. The carcinogen chromate was reduced to chromium(III) by rat liver microsomes in vitro. Metabolism of chromate by microsomal enzymes occurred only in the presence of either NADPH or NADH as cofactor. The chromium(III) generated upon metabolism formed a complex with the NADP+ cofactor. Significant binding of chromium to DNA occurred only when chromate was incubated in the presence of microsomes and NADPH. Specific inhibitors of the mixed function oxidase enzymes, 2′-AMP, metyrapone, and carbon monoxide, inhibited the rate of reduction of chromate by microsomes and NADPH. The possible relationship of metabolism of chromate and its interaction with nucleic acids to its carcinogenicity and mutagenicity is discussed.  相似文献   

13.
Summary Shin et al. (Biochim Biophys Acta 444: 794–801, 1976) described the subcellular location of [3H]folic acid after injection into rats. The microsomal fraction of the liver contained relatively large amounts of tracer initially but lower amounts at later times. Because of the heterogeneous nature of the microsomal fraction of the liver we re-examined the nature of the folate binding fraction. The location of injected [3H]folic acid resembled that of the microsomes derived from the plasma membrane, where ultracentrifugal analysis was conducted in the presence and absence of cesium ions. The location of the folate did not resemble that of microsomes derived from the endoplasmic reticulum (ER). One of the marker enzymes of the ER was the vitamin K-dependent carboxylase. A simple method for reducing vitamin K is described.  相似文献   

14.
Zonation of fatty acid metabolism in rat liver.   总被引:3,自引:2,他引:1  
Fatty acid metabolism was studied in periportal and perivenous hepatocytes isolated by the method of Chen & Katz [Biochem. J. (1988) 255, 99-104]. The rate of fatty acid synthesis and the activity of acetyl-CoA carboxylase were markedly enhanced in perivenous hepatocytes as compared with periportal cells. However, the response of these two parameters to short-term modulation by cellular effectors such as the hormones insulin and glucagon, the phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate and the xenobiotics ethanol and acetaldehyde was similar in the two zones of the liver. In addition, perivenous hepatocytes showed a higher capacity of esterification of exogenous fatty acids into both cellular and very-low-density-lipoprotein lipids. Nevertheless, no difference between the two cell sub-populations seemed to exist in relation to the secretion of very-low-density lipoproteins. On the other hand, the rate of fatty acid oxidation was increased in periportal cells. This could be accounted for by a higher activity of carnitine palmitoyltransferase I and a lower sensitivity of this enzyme to inhibition by malonyl-CoA in the periportal zone. No differences were observed between periportal and perivenous hepatocytes in relation to the short-term response of fatty acid oxidation and carnitine palmitoyltransferase I activity to the cellular modulators mentioned above. In conclusion, our results show that: (i) lipogenesis is achieved at higher rates in the perivenous zone of the liver, whereas the fatty-acid-oxidative process occurs with a certain preference in the periportal area of this organ; (ii) the short-term response of the different fatty-acid-metabolizing pathways to cellular effectors is quantitatively similar in the two zones of the liver.  相似文献   

15.
1. The structural-protein component of microsomal membranes was isolated by three separate methods. Analysis by polyacrylamide-gel electrophoresis indicated that the microsomal structural component is made up of a heterogeneous group of proteins. These proteins were further characterized by their phospholipid-binding capacity. The electrophoretic patterns of microsomal structural proteins were found to differ significantly from those of mitochondrial structural proteins. 2. The reticulosomal fraction was also characterized by electrophoresis with reference to total microsomal proteins, microsomal structural proteins and ribosomal proteins. The reticulosomes gave an electrophoretic pattern significantly different from those of the other three preparations examined. It is suggested that reticulosomes consist largely of enzymic proteins of the endoplasmic reticulum.  相似文献   

16.
17.
The phospholipid composition of Schizosaccharomyces pombe was not markedly affected by changes in the phosphate concentration of the medium or phase of growth. The major fatty acids in the total lipid extract and purified phosphatidylinositol were palmitic acid and oleic acid. Phosphatidic acid was synthesized by acylation of l-3-glycerophosphate in Schiz. pombe and phosphatidate phosphohydrolase was present. Phosphatidylinositol synthesis from inositol occurred in the absence of CDP-diglyceride. Even with dialysed cell-free preparations, the inositol lipid was synthesized by an apparently energy-independent route, at rates greater than would be required during cell growth. Phosphatidylinositol appeared to be broken down by a phospholipase D. All the enzymes examined were particulate; similar activities were found in Saccharomyces cerevisiae.  相似文献   

18.
19.
Benalaxyl (BX), methyl‐N‐phenylacetyl‐N‐2,6‐xylyl alaninate, is a potent acylanilide fungicide and consist of a pair of enantiomers. The stereoselective metabolism of BX was investigated in rat and rabbit microsomes in vitro. The degradation kinetics and the enantiomer fraction (EF) were determined using normal high‐performance liquid chromatography with diode array detection and a cellulose‐tris‐(3,5‐dimethylphenylcarbamate)‐based chiral stationary phase (CDMPC‐CSP). The t1/2 of (?)‐R‐BX and (+)‐S‐BX in rat liver microsomes were 22.35 and 10.66 min of rac‐BX and 5.42 and 4.03 of BX enantiomers. However, the t1/2 of (?)‐R‐BX and (+)‐S‐BX in rabbit liver microsomes were 11.75 and 15.26 min of rac‐BX and 5.66 and 9.63 of BX enantiomers. The consequence was consistent with the stereoselective toxicokinetics of BX in vitro. There was no chiral inversion from the (?)‐R‐BX to (+)‐S‐BX or inversion from (+)‐S‐BX to (?)‐R‐BX in both rabbit and rat microsomes. These results suggested metabolism of BX enantiomers was stereoselective in rat and rabbit liver microsomes. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号