首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well understood that landscape processes can affect habitat selection patterns, movements, and species persistence. These selection patterns may be altered or even eliminated as a result of changes in disturbance regimes and a concomitant management focus on uniform, moderate disturbance across landscapes. To assess how restored landscape heterogeneity influences habitat selection patterns, we examined 21 years (1991, 1993–2012) of Greater Prairie-Chicken (Tympanuchus cupido) lek location data in tallgrass prairie with restored fire and grazing processes. Our study took place at The Nature Conservancy’s Tallgrass Prairie Preserve located at the southern extent of Flint Hills in northeastern Oklahoma. We specifically addressed stability of lek locations in the context of the fire-grazing interaction, and the environmental factors influencing lek locations. We found that lek locations were dynamic in a landscape with interacting fire and grazing. While previous conservation efforts have treated leks as stable with high site fidelity in static landscapes, a majority of lek locations in our study (i.e., 65%) moved by nearly one kilometer on an annual basis in this dynamic setting. Lek sites were in elevated areas with low tree cover and low road density. Additionally, lek site selection was influenced by an interaction of fire and patch edge, indicating that in recently burned patches, leks were located near patch edges. These results suggest that dynamic and interactive processes such as fire and grazing that restore heterogeneity to grasslands do influence habitat selection patterns in prairie grouse, a phenomenon that is likely to apply throughout the Greater Prairie-Chicken’s distribution when dynamic processes are restored. As conservation moves toward restoring dynamic historic disturbance patterns, it will be important that siting and planning of anthropogenic structures (e.g., wind energy, oil and gas) and management plans not view lek locations as static points, but rather as sites that shift around the landscape in response to shifting vegetation structure. Acknowledging shifting lek locations in these landscapes will help ensure conservation efforts are successful by targeting the appropriate areas for protection and management.  相似文献   

2.
Across portions of the western Great Plains in North America, natural fire has been removed from grassland ecosystems, decreasing vegetation heterogeneity and allowing woody encroachment. The loss of fire has implications for grassland species requiring diverse vegetation patches and structure or patches that have limited occurrence in the absence of fire. The lesser prairie-chicken (Tympanuchus pallidicinctus) is a declining species of prairie-grouse that requires heterogeneous grasslands throughout its life history and fire has been removed from much of its occupied range. Patch-burn grazing is a management strategy that re-establishes the fire-grazing interaction to a grassland system, increasing heterogeneity in vegetation structure and composition. We evaluated the effects of patch-burn grazing on lesser prairie-chicken space use, habitat features, and vegetation selection during a 4-year field study from 2014–2017. Female lesser prairie-chickens selected 1- and 2-year post-fire patches during the lekking season, ≥4-year post-fire patches during the nesting season, and year-of-fire and 1-year post-fire patches during post-nesting and nonbreeding seasons. Vegetation selection during the lekking season was not similar to available vegetation in selected patches, suggesting that lesser prairie-chickens cue in on other factors during the lekking season. During the nesting season, females selected nest sites with greater visual obstruction, which was available in ≥4-year post-fire patches; during the post-nesting season, females selected sites with 15–25% bare ground, which was available in the year-of-fire, 1-year post-fire, and 2-year post-fire patches; and during the nonbreeding season they selected sites with lower visual obstruction, available in the year-of-fire and 1-year post-fire patches. Because lesser prairie-chickens selected all available time-since-fire patches during their life history, patch-burn grazing may be a viable management tool to restore and maintain lesser prairie-chicken habitat on the landscape. © 2021 The Wildlife Society.  相似文献   

3.
In Serengeti fire is used as a management tool to improve the forage quality for large herbivores. However, little is known of the effects of fire on grazing resources particularly sward structure, its influence on herbivore forage patch selection and utilization to the relative amount of phytomass consumed in burnt and nonburnt patches. From September 2003 to July 2004, consumption of phytomass by large herbivores was assessed with eight samplings in six grassland sites in the Western Corridor in Serengeti National Park. Each site had burnt and nonburnt plots. Movable cages were used to exclude grazing between samplings and plant material harvests were used to assess phytomass and sward structure changes in time. Nonburnt grasslands had consistently larger phytomass at all sampling events whereas the ratio for live leaf/total phytomass was higher in burnt grassland at early postfire stages, but declined later in the season. Moreover, periodic consumption of both total phytomass and different phytomass components shifted between burnt and nonburnt grasslands, but there were also large site-specific responses. The shift appears to be related to the balance between the amount of phytomass available and the quality of the forage in terms of the ratio between live and total phytomass. The study highlights the significance of maintaining mosaics of burnt and nonburnt areas with an adequate provision of forage amount and quality all year round.  相似文献   

4.
We studied responses of aboveground production, grazing by elk and the availability of eight elements (Ca, Fe, K, Mg, N, Na, P, Zn) in a Yellowstone National Park sagebrush grassland following a fire in 1992. We compared four areas of differing fire history: (1) an area burned in 1992, (2) an area burned in 1992 and 1988, (3) an area burned in 1988 and (4) an area with no recent fire history. The year after burning, graminoids produced more aboveground biomass on burned areas compared with unburned areas. Forages growing on burned soils were highly concentrated with all nutrients, except Ca, when elk grazed the site. Despite nutrient-rich forage on burned areas, elk consumed little forage in these areas. We hypothesized that elk ate less than expected in burned areas because of a large bloom of lupine (Lupinus sericeus), which may be unpalatable to elk.  相似文献   

5.
African savanna termite mounds function as nutrient‐rich foraging hotspots for different herbivore species, but little is known about their effects on the interaction between domestic and wild herbivores. Understanding such effects is important for better management of these herbivore guilds in landscapes where they share habitats. Working in a central Kenyan savanna ecosystem, we compared selection of termite mound patches by cattle between areas cattle accessed exclusively and areas they shared with wild herbivores. Termite mound selection index was significantly lower in the shared areas than in areas cattle accessed exclusively. Furthermore, cattle used termite mounds in proportion to their availability when they were the only herbivores present, but used them less than their availability when they shared foraging areas with wild herbivores. These patterns were associated with reduced herbage cover on termite mounds in the shared foraging areas, partly indicating that cattle and wild herbivores compete for termite mound forage. However, reduced selection of termite mound patches was also reinforced by higher leafiness of Brachiaria lachnantha (the principal cattle diet forage species) off termite mounds in shared than in unshared areas. Taken together, these findings suggest that during wet periods, cattle can overcome competition for termite mounds by taking advantage of wildlife‐mediated increased forage leafiness in the matrix surrounding termite mounds. However, this advantage is likely to dissipate during dry periods when forage conditions deteriorate across the landscape and the importance of termite mounds as nutrient hotspots increases for both cattle and wild herbivores. Therefore, we suggest that those managing for both livestock production and wildlife conservation in such savanna landscapes should adopt grazing strategies that could lessen competition for forage on termite mounds, such as strategically decreasing stock numbers during dry periods.  相似文献   

6.
Heterogeneous disturbance patterns are fundamental to rangeland conservation and management because heterogeneity creates patchy vegetation, broadens niche availability, increases compositional dissimilarity, and enhances temporal stability of aboveground biomass production. Pyrodiversity is a popular concept for how variability in fire as an ecological disturbance can enhance heterogeneity, but mechanistic understanding of factors that drive heterogeneity is lacking. Mesic grasslands are examples of ecosystems in which pyrodiversity is linked strongly to broad ecological processes such as trophic interactions because grazers are attracted to recently burned areas, creating a unique ecological disturbance referred to as the fire–grazing interaction, or pyric herbivory. But several questions about the application of pyric herbivory remain: What proportion of a grazed landscape must burn, or how many patches are required, to create sufficient spatial heterogeneity and reduce temporal variability? How frequently should patches burn? Does season of fire matter? To bring theory into applied practice, we studied a gradient of grazed tallgrass prairie landscapes created by different sizes, seasons, and frequencies of fire, and used analyses sensitive to nonlinear trends. The greatest spatial heterogeneity and lowest temporal variability in aboveground plant biomass, and greatest plant functional group beta diversity, occurred in landscapes with three to four patches (25%–33% of area burned) and three‐ to four‐year fire return intervals. Beta diversity had a positive association with spatial heterogeneity and negative relationship with temporal variability. Rather than prescribing that these results constitute best management practices, we emphasize the flexibility offered by interactions between patch number and fire frequency for matching rangeland productivity and offtake to specific management goals. As we observed no differences across season of fire, we recommend future research focus on fire frequency within a moderate proportion of the landscape burned, and consider a wider seasonal burn window.  相似文献   

7.
Understanding behavioral strategies employed by animals to maximize fitness in the face of environmental heterogeneity, variability, and uncertainty is a central aim of animal ecology. Flexibility in behavior may be key to how animals respond to climate and environmental change. Using a mechanistic modeling framework for simultaneously quantifying the effects of habitat preference and intrinsic movement on space use at the landscape scale, we investigate how movement and habitat selection vary among individuals and years in response to forage quality–quantity tradeoffs, environmental conditions, and variable annual climate. We evaluated the association of dynamic, biotic forage resources and static, abiotic landscape features with large grazer movement decisions in an experimental landscape, where forage resources vary in response to prescribed burning, grazing by a native herbivore, the plains bison (Bison bison bison), and a continental climate. Our goal was to determine how biotic and abiotic factors mediate bison movement decisions in a nutritionally heterogeneous grassland. We integrated spatially explicit relocations of GPS‐collared bison and extensive vegetation surveys to relate movement paths to grassland attributes over a time period spanning a regionwide drought and average weather conditions. Movement decisions were affected by foliar crude content and low stature forage biomass across years with substantial interannual variation in the magnitude of selection for forage quality and quantity. These differences were associated with interannual differences in climate and growing conditions from the previous year. Our results provide experimental evidence for understanding how the forage quality–quantity tradeoff and fine‐scale topography drives fine‐scale movement decisions under varying environmental conditions.  相似文献   

8.
Understanding how different herbivores make forage patch use choices explains how they maintain an adequate nutritional status, which is important for effective conservation management of grazing ecosystems. Using telemetry data, we investigated nonruminant zebra (Equus burchelli) and ruminant red hartebeest (Alcelaphus buselaphus subspecies camaa), use of burnt patches in a landscape mosaic of nutrient-poor, old grassland interspersed with young, recently burnt, nutrient-rich grass patches. The Mkambati Nature Reserve landscape on the east coast of South Africa provided large grazers with a challenge in finding and using appropriate patches in which to forage to meet their nutritional requirements. In Mkambati, grassland fires, mostly ignited by poachers, induce regrowth of young nutrient-rich grass, which subsequently attract grazers. We tested if the study animals foraged more in burnt patches than in the unburned grassland and whether burnt patch use was related to the distance to the previously visited burnt patch, burnt patch size, burnt patch age, and distance to areas with high poaching risk using MANOVA. In general, zebra moved faster than red hartebeest, and both species moved faster in unburnt grassland than in burnt patches. Red hartebeest and zebra patch selection were influenced by interpatch distance, patch age, patch size, and poaching risk. A limited set of intrinsic traits, i.e., body mass, digestion strategy, and muzzle width, yielded different patch use rules for the two species. Large ungulates patch use behaviour varied among species and across conditions and was influenced by anthropogenic impacts such as poaching and changed fire regimes. This could potentially affect biodiversity negatively and needs to be factored into management of conservation areas.  相似文献   

9.
Joanne L.Denyer  S. E.Hartley  E. A.John 《Oikos》2007,116(7):1186-1192
Nutrient inputs to plant communities are often spatially heterogeneous, for example those deriving from the dung and urine of large grazing animals. The effect of such localised elevation of nutrients on plant growth and composition has been shown to be modified by the grazing of large herbivores. However, there has been little work on interactions between small mammalian herbivores and such patchy nutrient inputs, even though these interactions are potentially of major significance for plant performance and community structure.
We examined the effect of simulated cattle urine deposition on the vegetation structure, above-ground biomass and species composition of chalk grassland within enriched patches. Short-term exclosures were used to determine whether a small herbivore (rabbit) would preferentially graze the vegetation in enriched patches and what impact this interaction would have on the performance of plants in such patches. Rabbit grazing pressure determined whether nutrient inputs had a negative or positive effect on plant biomass. Nutrients increased plant biomass in the absence of grazing, but when exposed to grazing, plants in nutrient-rich patches had more biomass consumed by herbivores than neighbouring plants. Further, nutrients increased the relative palatability of a less preferred forage species ( Brachypodium pinnatum ), contributing to changes in plant community composition. We conclude that a small herbivore can drive plant responses to patchily distributed nutrients.  相似文献   

10.
The outcomes of grasshopper responses to both vertebrate grazing and fire vary across grassland ecosystems, and are strongly influenced by local climactic factors. Thus, the possible application of grazing and fire as components of an ecologically based grasshopper management strategy must be investigated in regional studies. In this study, we examined the effects of grazing and fire on grasshopper population density and community composition in a northern Great Plains mixed-grass prairie. We employed a large-scale, replicated, and fully-factorial manipulative experimental design across 4 yr to examine the separate and interactive effects of three grazing systems in burned and unburned habitats. Grasshopper densities were low throughout the 4-yr study and 1 yr of pretreatment sampling. There was a significant fire by grazing interaction effect on cumulative density and community composition, resulting from burned season long grazing pastures having higher densities than unburned pastures. Shannon diversity and grasshopper species richness were significantly higher with twice-over rotational livestock grazing. The ability to draw strong conclusions regarding the nature of species composition shifts and population changes in the presence of fire and grazing is complicated by the large site differences and low grasshopper densities. The results reinforce the importance of long-term research to examine the effects of habitat manipulation on grasshopper population dynamics.  相似文献   

11.

Earth’s tropical savannas typically support high biomass of diverse grazing herbivores that depend on a highly fluctuating resource: high-quality forage. An annual wet–dry cycle, fire and herbivory combine to influence forage quality and availability throughout the year. In the savannas of northern Australia, a depauperate suite of large native (marsupial) herbivores (wallaroos [Osphranter spp.] and the agile wallaby [Notamacropus agilis]) compete for resources with non-native large herbivores introduced in the late nineteenth century, particularly bovines (feral and managed cattle [Bos spp.] and feral water buffalo [Bubalus bubalis]) that now dominate the landscape. Anecdotal reports of recent population declines of large macropods and negative impacts of bovines highlight the need to better understand the complex relationship between forage, fire and abundance of native and introduced large herbivores. The pyric herbivory conceptual model, which posits complex feedbacks between fire and herbivory and was developed outside Australia, predicts that native and introduced large herbivores will both respond positively to post-fire forage production in Australian savannas where they co-occur. We used grazing exclosures, forage biomass and nutrient analyses and motion-sensor camera-trapping to evaluate the overall robustness of the pyric herbivory model in the Australian context, specifically whether forage quantity and quality are impacted by herbivory, season and fire activity, and which forage attributes most influence large grazing herbivore abundance. Forage quantity, as measured by live, dead and total herbaceous biomass and proportion of biomass alive, was higher inside herbivore exclosures, even at relatively low densities of herbivores. Forage quality, as measured by fibre content, was not affected by herbivory, however, crude protein content of live herbaceous biomass was greater outside herbivore exclosures. Recent fire was an important predictor of all measures of forage quantity and quality. Recent fire occurrence decreased overall quantity (biomass) but increased quality (decreased fibre content and increased crude protein content); late dry season fires resulted in forage with the highest crude protein content. The predictions of the pyric herbivory conceptual model are consistent with observations of the feeding behaviour of introduced bovines and some large macropods in northern Australian savannas, lending support to the global generality of pyric herbivory in fire-prone grassy biomes.

  相似文献   

12.
Burning shrub and grassland communities often leads to increases in plant production and nutritional quality that benefit herbivores, resulting in increased herbivore use of burned areas. Increased use has been ascribed more specifically to changes in plant community structure, community composition and diversity, nutritional quality, and seasonal availability. These hypotheses can be evaluated more precisely if changes in plant communities following burning are monitored concurrently with changes in herbivore use, especially in longer-term studies. From 1988 to 1999, we examined responses of elk (Cervus elaphus) following prescribed burning of areas burned in 1984 and 1988 that had been formerly dominated by mountain big sagebrush (Artemisia tridentata ssp. vaseyana) in south-central Montana (USA), with concurrent monitoring of changes in plant production, nutritional quality, and community composition. Elk made increased use of burned sites up to 15 years after burning. Burning transformed big sagebrush-dominated communities into native herbaceous communities that persisted for 15 years without sagebrush reinvasion. Forage biomass and protein content remained higher on burned sites for 15 years, although differences were not significant in every year and declined as time elapsed after burning. Forage production, forage protein, and elk use were temporally correlated, suggesting the possibility that grazing by elk might have contributed to persistence of elevated plant production and protein levels on burned sites.  相似文献   

13.
Agro-pastoral decline in European mountain areas has recently caused changes to traditional landscapes with negative consequences on semi-natural grassland conservation and the associated biodiversity and ecosystem services. In the Italian Alps, grassland patches enclosed in a forest matrix are progressively disappearing. Two alpine valleys (Pesio and Pejo), having similar land-use history, were chosen as representative of management conditions of western and eastern Italian Alps, respectively. This study aims at interpreting the effect of abandonment on grassland patch plant diversity, considering land cover changes of the last 60 years, and assessing the role of ecological, topographic, management and landscape configuration on current grassland species richness. The total area of grassland patches has declined by 54 and 91 % at Pesio and at Pejo, respectively. Actual grassland patch species richness was mostly influenced by ecological factors, such as quantity of light, soil moisture and reaction, then by topographic features, especially slope, and finally by management intensity. Landscape factors exerted a slightly significant effect on plant diversity. In the two valleys, differences on management practices were detected. Even though in the western valley the conservation of several grazing activities contributed to slow down the process of patch reduction, many species-rich grasslands were generally under-grazed. Conversely, in the eastern valley, despite a denser road network, the stronger decline of grassland patch extension was linked to the hay making decline. At the same time, overuse of grassland patches near farms reduced plant species richness. As a conclusion, plant species richness was weakly related to the area of grassland patches and current and historical landscape configuration were of relatively lower importance than ecological, topographic and management factors, when evaluated at patch-level.  相似文献   

14.
Areas within regional landscapes that make a disproportionate contribution to supporting large herbivore populations have been interpreted as key resource areas, hotspots, buffers, stepping stones or serving other functional roles. We investigated the role that the restricted extent of habitat types exploited at different stages of the seasonal cycle might play in limiting the abundance of a blue wildebeest subpopulation in the Kruger National Park, South Africa. GPS collars enabled the space use patterns of the animals to be related to available habitat types, and faecal nutrient concentrations to be related to the habitats exploited at that time. Wildebeest herds occupied primarily grazing lawn grasslands associated with gabbro uplands or sodic lowlands through the wet season into the early dry season. During the late dry season, they switched to seep‐zone grasslands in mid slope regions of granitic landscapes. Use of recently burned areas enhanced forage quality at the beginning of the wet season. The seasonal habitat shifts enabled wildebeest to obtain adequate nitrogen, phosphorus and sodium throughout the year. Lawn and seep‐zone grasslands combined constituted 10% of the available area. Grazing lawns, which encompassed only ? 3% of the study area, appeared to be the primary limitation on the abundance of wildebeest. However, the greater security from predation provided by the open vegetation cover in the grazing lawns is not easily disentangled from the resource benefits that they yield. Nevertheless, findings indicate how local abundance can be restricted by the extent of portions of the landscape providing crucial benefits during particular phases of the seasonal cycle. Hence the key resources concept needs to be expanded to accommodate the functionally distinct contributions made by different habitats towards supporting local herbivore populations.  相似文献   

15.
The aim of this study is to describe the environments where the cercopithecid Mesopithecus was found during latest Miocene in Europe. For this purpose, we investigate the paleoecology of the herbivorous ungulate mesofauna of three very rich late Miocene fossil localities from southwestern Bulgaria: Hadjidimovo, Kalimantsi and Strumyani. While Mesopithecus has been found in the two first localities, no primate remains have yet been identified in Strumyani. Comparison between localities with and without primates using the herbivore mesofauna allows the cross-corroboration of paleoenvironmental conditions where this primate did and did not live. A multi-parameter statistical approach involving 117 equid and 345 bovid fossil dental and postcranial (phalanges, metapodia, astragali) remains from these three localities provides species to generic-level diet and locomotor habit information in order to characterize the environment in which Mesopithecus evolved. The analysis of dental mesowear indicates that the bovids were mainly mixed feeders, while coeval equids were more engaged in grazing. Meanwhile, postcranial remains show that the ungulate species from Hadjidimovo and Kalimantsi evolved in dry environments with a continuum of habitats ranging from slightly wooded areas to relatively open landscapes, whereas the Mesopithecus-free Strumyani locality was in comparison reflecting a rather contrasted mosaic of environments with predominant open and some more closed and wet areas. Environments in which Mesopithecus is known during the late Miocene were not contrasted landscapes combining open grassy areas and dense forested patches, but instead rather restricted to slightly wooded and homogeneous landscapes including a developed grassy herbaceous layer.  相似文献   

16.
Recent models suggest that herbivores optimize nutrient intake by selecting patches of low to intermediate vegetation biomass. We assessed the application of this hypothesis to plains bison (Bison bison) in an experimental grassland managed with fire by estimating daily rates of nutrient intake in relation to grass biomass and by measuring patch selection in experimental watersheds in which grass biomass was manipulated by prescribed burning. Digestible crude protein content of grass declined linearly with increasing biomass, and the mean digestible protein content relative to grass biomass was greater in burned watersheds than watersheds not burned that spring (intercept; F1,251 = 50.57, P < 0.0001). Linking these values to published functional response parameters, ad libitum protein intake, and protein expenditure parameters, Fryxell's (Am. Nat., 1991, 138 , 478) model predicted that the daily rate of protein intake should be highest when bison feed in grasslands with 400–600 kg/ha. In burned grassland sites, where bison spend most of their time, availability of grass biomass ranged between 40 and 3650 kg/ha, bison selected foraging areas of roughly 690 kg/ha, close to the value for protein intake maximization predicted by the model. The seasonal net protein intake predicted for large grazers in this study suggest feeding in burned grassland can be more beneficial for nutrient uptake relative to unburned grassland as long as grass regrowth is possible. Foraging site selection for grass patches of low to intermediate biomass help explain patterns of uniform space use reported previously for large grazers in fire‐prone systems.  相似文献   

17.
Intensification of fires and grazing by large herbivores has caused population declines in small vertebrates in many ecosystems worldwide. Impacts are rarely direct, and usually appear driven via indirect pathways, such as changes to predator-prey dynamics. Fire events and grazing may improve habitat and/or hunting success for the predators of small mammals, however, such impacts have not been documented. To test for such an interaction, we investigated fine-scale habitat selection by feral cats in relation to fire, grazing and small-mammal abundance. Our study was conducted in north-western Australia, where small mammal populations are sensitive to changes in fire and grazing management. We deployed GPS collars on 32 cats in landscapes with contrasting fire and grazing treatments. Fine-scale habitat selection was determined using discrete choice modelling of cat movements. We found that cats selected areas with open grass cover, including heavily-grazed areas. They strongly selected for areas recently burnt by intense fires, but only in habitats that typically support high abundance of small mammals. Intense fires and grazing by introduced herbivores created conditions that are favoured by cats, probably because their hunting success is improved. This mechanism could explain why, in northern Australia, impacts of feral cats on small mammals might have increased. Our results suggest the impact of feral cats could be reduced in most ecosystems by maximising grass cover, minimising the incidence of intense fires, and reducing grazing by large herbivores.  相似文献   

18.
In grassland systems across the globe, ecologists have been attempting to understand the complex role of fire, grazing and rainfall in creating habitat heterogeneity and the consequences of anthropogenic control of these factors on ecosystem integrity and functioning. Using a South African grassland ecosystem as a model, we investigated the impact of fire and grazing pressure on small mammal communities during three differing periods of a rainfall cycle. Over 2 years, 15,203 trap nights revealed 1598 captures of 11 species (nine rodents, one macroscelid and one insectivore). Results highlighted the importance of the interplay between factors and showed that the role of fire, grazing and rainfall in determining small mammal abundance was species-dependant. While no two species were affected by the same environmental variables, grass cover or height was important to 56% of species. Considered independently, high rainfall had a positive influence on small mammal abundance and diversity, although the lag period in population response was species-specific. High grazing negatively affected overall abundance, but specifically in Mastomys coucha; fire alone had little immediate impact on small mammal diversity. Six months after the fire, vegetation cover had recovered to similar levels as unburned areas, although small mammal diversity and richness were higher in burned areas than unburned areas. Grazing levels influenced the rate of vegetation recovery. In conclusion, low-level grazing and burning can help to maintain small mammal biodiversity, if conducted under appropriate rainfall levels. A too high grazing pressure, combined with fire, and/or fire conducted under drought conditions can have a negative impact on small mammal biodiversity. To maintain small mammal diversity in grassland ecosystems, the combined effects of the previous year’s rainfall and existing population level as well as the inhibition of vegetation recovery via grazing pressure need to be taken into consideration before fire management is applied. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
How herbivore behaviour is influenced by changes in resource levels is central for understanding trophic interactions. We examined whether foraging tradeoffs change with food levels by comparing habitat selection and space use within and between two neighbouring, predator‐free Svalbard reindeer populations. The populations faced different food levels due to contrasting grazing history. Summer resource selection in radiocollared females was assessed by a multi‐dimensional niche approach based on habitat variables obtained from a satellite image (e.g. the normalised difference vegetation index, NDVI) and a digital terrain model. The population at the overgrazed Brøggerhalvøya faced overall lower plant cover, biomass and primary productivity (i.e. lower NDVI) than the population at Sarsøyra. At Brøggerhalvøya, most reindeer selected for productive habitat when choosing home range and patches within the home range. In contrast, habitat selection at Sarsøyra was more affected by abiotic conditions such as moisture, which may influence plant quality. Here, reindeer used patches with even less biomass than the average reindeer at the poorer Brøggerhalvøya. Such a difference in habitat preference with different habitat availability (a functional response in habitat selection) probably reflected increased selection for high‐quality forage at the expense of high forage quantity at Sarsøyra. Accordingly, a negative relationship between habitat productivity and home range size was only present across individuals within Brøggerhalvøya, where forage quantity was the important foraging niche component. Individuals having poor (and large) home ranges apparently could not compensate for this by higher patch selectivity compared to individuals with richer home ranges. The results indicate changes in foraging tradeoffs at contrasting resource levels and that strong interactions occur between habitat selection, space use and the foraging niche structure in the absence of predation.  相似文献   

20.
With rapid global change, the frequency and severity of extreme disturbance events are increasing worldwide. The ability of animal populations to survive these stochastic events depends on how individual animals respond to their altered environments, yet our understanding of the immediate and short‐term behavioral responses of animals to acute disturbances remains poor. We focused on animal behavioral responses to the environmental disturbance created by megafire. Specifically, we explored the effects of the 2018 Mendocino Complex Fire in northern California, USA, on the behavior and body condition of black‐tailed deer (Odocoileus hemionus columbianus). We predicted that deer would be displaced by the disturbance or experience high mortality post‐fire if they stayed in the burn area. We used data from GPS collars on 18 individual deer to quantify patterns of home range use, movement, and habitat selection before and after the fire. We assessed changes in body condition using images from a camera trap grid. The fire burned through half of the study area, facilitating a comparison between deer in burned and unburned areas. Despite a dramatic reduction in vegetation in burned areas, deer showed high site fidelity to pre‐fire home ranges, returning within hours of the fire. However, mean home range size doubled after the fire and corresponded to increased daily activity in a severely resource‐depleted environment. Within their home ranges, deer also selected strongly for patches of surviving vegetation and woodland habitat, as these areas provided forage and cover in an otherwise desolate landscape. Deer body condition significantly decreased after the fire, likely as a result of a reduction in forage within their home ranges, but all collared deer survived for the duration of the study. Understanding the ways in which large mammals respond to disturbances such as wildfire is increasingly important as the extent and severity of such events increases across the world. While many animals are adapted to disturbance regimes, species that exhibit high site fidelity or otherwise fixed behavioral strategies may struggle to cope with increased climate instability and associated extreme disturbance events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号