首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Cre/LoxP‐mediated recombination allows for conditional gene activation or inactivation. When combined with an independent lineage‐tracing reporter allele, this technique traces the lineage of presumptive genetically modified Cre‐expressing cells. Several studies have suggested that floxed alleles have differential sensitivities to Cre‐mediated recombination, which raises concerns regarding utilization of Cre‐reporters to monitor recombination of other floxed loci of interest. Here, we directly investigate the recombination correlation, at cellular resolution, between several floxed alleles induced by Cre‐expressing mouse lines. The recombination correlation between different reporter alleles varied greatly in otherwise genetically identical cell types. The chromosomal location of floxed alleles, distance between LoxP sites, sequences flanking the LoxP sites, and the level of Cre activity per cell all likely contribute to observed variations in recombination correlation. These findings directly demonstrate that, due to non‐parallel recombination events, commonly available Cre reporter mice cannot be reliably utilized, in all cases, to trace cells that have DNA recombination in independent‐target floxed alleles, and that careful validation of recombination correlations are required for proper interpretation of studies designed to trace the lineage of genetically modified populations, especially in mosaic situations. genesis 51:436–442. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
8.
Mouse Msx 1 gene, orthologous of the Drosophila msh, is involved in several developmental processes. BMP family members are major proteins in the regulation of Msx 1 expression. BMP signaling activates Smad 1/5/8 proteins, which associate to Smad 4 before translocating to the nucleus. Analysis of Msx 1 promoter revealed the presence of three elements similar to the consensus established for Mad, the Smad 1 Drosophila counterpart. Notably, such an element was identified in an enhancer important for Msx 1 regulation. Gel shift analysis demonstrated that proteins from 13.5 dpc embryo associate to this enhancer. Remarkably, supershift assays showed that Smad proteins are present in the complex. Purified Smad 1 and 4 also bind to this fragment. We demonstrate that functional binding sites in this enhancer are confined to the Mad motif and flanking region. Our data suggest that this Mad motif may be functional in response to BMP signaling.  相似文献   

9.
10.
Craniofacial development involves cranial neural crest (CNC) and mesoderm-derived cells. TGF-beta signaling plays a critical role in instructing CNC cells to form the craniofacial skeleton. However, it is not known how TGF-beta signaling regulates the fate of mesoderm-derived cells during craniofacial development. In this study, we show that occipital somites contribute to the caudal region of mammalian skull development. Conditional inactivation of Tgfbr2 in mesoderm-derived cells results in defects of the supraoccipital bone with meningoencephalocele and discontinuity of the neural arch of the C1 vertebra. At the cellular level, loss of TGF-beta signaling causes decreased chondrocyte proliferation and premature differentiation of cartilage to bone. Expression of Msx2, a critical factor in the formation of the dorsoventral axis, is diminished in the Tgfbr2 mutant. Significantly, overexpression of Msx2 in Myf5-Cre;Tgfbr2flox/flox mice partially rescues supraoccipital bone development. These results suggest that the TGF-beta/Msx2 signaling cascade is critical for development of the caudal region of the skull.  相似文献   

11.
Central aspects of cellular iron metabolism are controlled by IRP1 and IRP2, which are ubiquitously expressed in mouse organs and cells. Total and constitutive deficiency of both IRPs causes embryonic lethality in the mouse. To bypass the early lethality and to study organ-specific and/or temporal functions of IRP1 and/or IRP2 we generated Irp1 and Irp2 conditional alleles. We used mouse lines where a betaGeo gene trap construct was inserted into the second intron of the Irp1 and the Irp2 gene, generating hypomorphic alleles by interrupting the corresponding open reading frame near the amino-termini. The gene trap cassettes are flanked by Frt sites and were co-inserted with LoxP sites flanking exon 3. Flp-mediated removal of the gene trap construct generates floxed alleles with wildtype functions. For both Irp genes, Cre-assisted deletion of exon 3 generates complete null alleles that, in the case of IRP2, are associated with altered body iron distribution and compromised hematopoiesis. If not removed, the gene trap construct causes partially penetrant embryonic lethality unrelated to IRP deficiency when inserted within the Irp1 but not the Irp2 locus. We discuss the implications for functional genomics in the mouse.  相似文献   

12.
13.
14.
Cleft palate, the most frequent congenital craniofacial birth defects in humans, arises from genetic or environmental perturbations in the multi-step process of palate development. Mutations in the MSX1 homeobox gene are associated with non-syndromic cleft palate and tooth agenesis in humans. We have used Msx1-deficient mice as a model system that exhibits severe craniofacial abnormalities, including cleft secondary palate and lack of teeth, to study the genetic regulation of mammalian palatogenesis. We found that Msx1 expression was restricted to the anterior of the first upper molar site in the palatal mesenchyme and that Msx1 was required for the expression of Bmp4 and Bmp2 in the mesenchyme and Shh in the medial edge epithelium (MEE) in the same region of developing palate. In vivo and in vitro analyses indicated that the cleft palate seen in Msx1 mutants resulted from a defect in cell proliferation in the anterior palatal mesenchyme rather than a failure in palatal fusion. Transgenic expression of human Bmp4 driven by the mouse Msx1 promoter in the Msx1(-/-) palatal mesenchyme rescued the cleft palate phenotype and neonatal lethality. Associated with the rescue of the cleft palate was a restoration of Shh and Bmp2 expression, as well as a return of cell proliferation to the normal levels. Ectopic Bmp4 appears to bypass the requirement for Msx1 and functions upstream of Shh and Bmp2 to support palatal development. Further in vitro assays indicated that Shh (normally expressed in the MEE) activates Bmp2 expression in the palatal mesenchyme which in turn acts as a mitogen to stimulate cell division. Msx1 thus controls a genetic hierarchy involving BMP and Shh signals that regulates the growth of the anterior region of palate during mammalian palatogenesis. Our findings provide insights into the cellular and molecular etiology of the non-syndromic clefting associated with Msx1 mutations.  相似文献   

15.
16.
Msx homeobox gene family and craniofacial development   总被引:9,自引:0,他引:9  
Alappat S  Zhang ZY  Chen YP 《Cell research》2003,13(6):429-442
Vertebrate Msx genes are unlinked, homeobox-containing genes that bear homology to the Drosophila muscle segment homeobox gene. These genes are expressed at multiple sites of tissue-tissue interactions during vertebrate embryonic development. Inductive interactions mediated by the Msx genes are essential for normal craniofacial, limb and ectodermal organ morphogenesis, and are also essential to survival in mice, as manifested by the phenotypic abnormalities shown in knockout mice and in humans. This review summarizes studies on the expression, regulation, and functional analysis of Msx genes that bear relevance to craniofacial development in humans and mice.  相似文献   

17.
The binary Cre-lox conditional knockout system requires an essential part of the target gene to be flanked by loxP sites, enabling excision in vivo upon Cre expression. LoxP sites are introduced by homologous recombination, together with a selectable marker. However, this marker can disturb gene expression and should be removed. The marker is therefore often prepared with a third, flanking loxP site (tri-lox construct), facilitating its selective removal by partial Cre-lox recombination. We have shown that this excision can be achieved in vivo in the germline using EIIaCre transgenic mice, and have described the advantages of in vivo over in vitro removal. We show here that MeuCre40, a new transgenic mouse, more reliably and reproducibly generates an optimal partial mosaic Cre-lox recombination pattern in the early embryo. This mosaicism was transmitted to the germline and to many other tissues. Alleles with partial deletions, in particular floxed alleles from which the selectable marker was removed, were readily recovered in the next generation, after segregation from the transgene. Segregation via paternal or maternal transmission led to successful recovery of the alleles of interest. We also obtained total deletion of the floxed regions in the same experiment, making this transgene a polyvalent Cre-lox tool. We rigorously tested the ability of MeuCre40 to solve tri-lox problems, by using it for the in vivo removal of neoR- and hprt-expression cassettes from three different tri-lox mutants.  相似文献   

18.
Oocyte-specific deletion of ovarian genes using Cre/loxP technology provides an excellent tool to understand their physiological roles during folliculogenesis, oogenesis, and preimplantation embryonic development. We have generated a transgenic mouse line expressing improved Cre recombinase (iCre) driven by the mouse growth differentiation factor-9 (GDF-9) promoter. The resulting transgenic mouse line was named GDF-9-iCre mice. Using the floxed ROSA reporter mice, we found that Cre recombinase was expressed in postnatal ovaries, but not in heart, liver, spleen, kidney, and brain. Within the ovary, the Cre recombinase was exclusively expressed in the oocytes of primordial follicles and follicles at later developmental stages. The expression of iCre of GDF-9-iCre mice was shown to be earlier than the Cre expression of Zp3Cre and Msx2Cre mice, in which the Cre gene is driven by zona pellucida protein 3 (Zp3) promoter and a homeobox gene Msx2 promoter, respectively, in the postnatal ovary. Breeding wild-type males with heterozygous floxed germ cell nuclear factor (GCNF) females carrying the GDF-9-iCre transgene did not produce any progeny having the floxed GCNF allele, indicating that complete deletion of the floxed GCNF allele can be achieved in the female germline by GDF-9-iCre mice. These results suggest that GDF-9-iCre mouse line provides an excellent genetic tool for understanding functions of oocyte-expressing genes involved in folliculogenesis, oogenesis, and early embryonic development. Comparison of the ontogeny of the Cre activities of GDF-9-iCre, Zp3Cre, and Msx2Cre transgenic mice shows there is sequential Cre activity of the three transgenes that will allow inactivation of a target gene at different points in folliculogenesis.  相似文献   

19.
Vessels are primarily formed from an inner endothelial layer that is secondarily covered by mural cells, namely vascular smooth muscle cells (VSMCs) in arteries and veins and pericytes in capillaries and veinules. We previously showed that, in the mouse embryo, Msx1(lacZ) and Msx2(lacZ) are expressed in mural cells and in a few endothelial cells. To unravel the role of Msx genes in vascular development, we have inactivated the two Msx genes specifically in mural cells by combining the Msx1(lacZ), Msx2(lox) and Sm22α-Cre alleles. Optical projection tomography demonstrated abnormal branching of the cephalic vessels in E11.5 mutant embryos. The carotid and vertebral arteries showed an increase in caliber that was related to reduced vascular smooth muscle coverage. Taking advantage of a newly constructed Msx1(CreERT2) allele, we demonstrated by lineage tracing that the primary defect lies in a population of VSMC precursors. The abnormal phenotype that ensues is a consequence of impaired BMP signaling in the VSMC precursors that leads to downregulation of the metalloprotease 2 (Mmp2) and Mmp9 genes, which are essential for cell migration and integration into the mural layer. Improper coverage by VSMCs secondarily leads to incomplete maturation of the endothelial layer. Our results demonstrate that both Msx1 and Msx2 are required for the recruitment of a population of neural crest-derived VSMCs.  相似文献   

20.
The apical ectodermal ridge (AER) is a specialized ectodermal region essential for limb outgrowth. Msx2 expression patterns in limb development strongly suggest an important role for Msx2 in the AER. Our previous studies identified a 348-bp fragment of the chicken Msx2 gene with AER enhancer activity. In this study, the functions of four potential homeodomain binding TAAT sites in this enhancer were studied using transgenic mice and in vitro protein-DNA interactions. Transgenic studies indicate that the four TAAT sites are not redundant and that only the B-TAAT site is critical for AER enhancer activity. The expression patterns of Msx2 and Dlx5 genes in the AER suggest that they might be involved in the regulation of Msx2. In support of this hypothesis, we found that Msx2 and Dlx5 can bind to the B-TAAT site as well as to a fragment containing the D- and E-TAAT sites in the Msx2 AER enhancer sequences. (c)2002 Elsevier Science (USA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号