首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used phylogeographic analysis of mitochondrial DNA (COI and COII genes) and ecological niche modelling (ENM) to reconstruct the population history of Argosarchus horridus (White), a widespread species of New Zealand stick insect. These data were used to address outstanding questions on the role of glacial refugia in determining the distribution and genetic structure of New Zealand species. Phylogeographic analysis shows a general pattern of high diversity in upper North Island and reduced diversity in lower North Island and South Island. The ENM indicates that during the last glacial maximum, A. horridus was largely restricted to refugia around coastal areas of North Island. The ENM also suggests refugia on the northeast coast of South Island and southeast coast of North Island and this prediction is verified by phylogeographic analysis, which shows a clade restricted to this region. Argosarchus horridus is also most likely a geographic parthenogen where males are much rarer at higher latitudes. The higher levels of genetic variation in northern, bisexual populations suggest southern and largely unisexual populations originated from southwardly expanding parthenogenetic lineages. Bayesian skyline analysis also provides support for a recent population size increase consistent with a large increase in geographic distribution in the late Pleistocene. These results exemplify the utility of integrating ENM and phylogeographic analysis in testing hypotheses on the origin of geographic parthenogenesis and effects of Pleistocene environmental change on biodiversity.  相似文献   

2.
Aim To investigate the degree of phylogeographical divergence within pygmy whitefish (Prosopium coulterii) and to test hypotheses concerning the origin of disjunct populations within North America. Location North America from western Alaska to Lake Superior. Methods Mitochondrial (ATPase subunit VI) and nuclear (ITS‐1, ITS‐2) DNA sequence variation was assessed across the species’ North American range to test for the existence of distinct phylogeographical groupings of pygmy whitefish associated with known glacial refugia. Coalescent simulations of the mitochondrial DNA (mtDNA) data were used to test hypotheses of population structure. Results This species is composed of two monophyletic mitochondrial clades across its North American range. The two mtDNA clades differed by an average 3.3% nucleotide sequence divergence. These clades were also distinguished by ITS‐2, but the relationships among lineages were not resolved by the ITS‐1 analysis. Coalescent analyses rejected the null hypothesis of the current disjunct distributions being a result of fragmentation of a single widespread ancestral lineage across a variety of effective population sizes and divergence times. Main conclusions The current range disjunctions of pygmy whitefish in North America probably resulted from isolation, genetic divergence, and selective dispersal from at least two major Pleistocene glacial refugia: Beringia and Cascadia. More recent isolation and dispersal from an upper Mississippi refugium is suggested by relationships within one of the clades and by distributional evidence from co‐distributed species. The Beringian and Cascadian refugia have played major roles in the zoogeography of Nearctic temperate aquatics, but the roles of smaller refugia appear more variable among other species.  相似文献   

3.
The alterations in the phylogeographical structures of insects in response to the uplift of the Qinghai–Tibet Plateau and the Quaternary glaciations in eastern Asia, particularly in northern China, remain largely unknown. In this study, we selected Apocheima cinerarius, a moth with flightless females, using molecular data (complete mitochondrial genomes and nuclear data) and ecological niche modelling (ENM) to investigate the effects of paleoclimatic changes on the evolutionary history of insects in the area of northern China. The phylogenetic tree of complete mitochondrial genomes indicated that there were two lineages, the western and eastern lineages. The nuclear gene analyses also detected unique haplotypes in each lineage. Time of the most recent common ancestor (TMRCA) of the two lineages was approximately in Early–Middle Pleistocene. Bayesian skyline plots revealed that the western lineage underwent a population expansion event after the Last Glacial Maximum, whereas the eastern lineage underwent expansion between the Last Interglacial and the Last Glacial Maximum. Our results suggest that A. cinerarius expanded eastward from western sites until the moth was distributed across the entire region of northern China. Then, A. cinerarius underwent contraction into isolated glacial refugia followed by subsequent expansion driven by Pleistocene climate changes, which established a narrow sympatric area. Our results indicate that the Quaternary environmental fluctuations had profound influences on the diversification and demography of an insect in northern China, and the same species in north‐western China and north‐eastern China have different demographic histories.  相似文献   

4.
We employed DNA sequence variation at two mitochondrial (control region, COI) regions from 212 individuals of Galaxias platei (Pisces, Galaxiidae) collected throughout Patagonia (25 lakes/rivers) to examine how Andean orogeny and the climatic cycles throughout the Quaternary affected the genetic diversity and phylogeography of this species. Phylogenetic analyses revealed four deep genealogical lineages which likely represent the initial division of G. platei into eastern and western lineages by Andean uplift, followed by further subdivision of each lineage into separate glacial refugia by repeated Pleistocene glacial cycles. West of the Andes, refugia were likely restricted to the northern region of Patagonia with small relicts in the south, whereas eastern refugia appear to have been much larger and widespread, consisting of separate northern and southern regions that collectively spanned most of Argentinean Patagonia. The retreat of glacial ice following the last glacial maximum allowed re‐colonization of central Chile from nonlocal refugia from the north and east, representing a region of secondary contact between all four glacial lineages. Northwestern glacial relicts likely followed pro‐glacial lakes into central Chilean Patagonia, whereas catastrophic changes in drainage direction (Atlantic → Pacific) for several eastern palaeolakes were the likely avenues for invasions from the east. These mechanisms, combined with evidence for recent, rapid and widespread population growth could explain the extensive contemporary distribution of G. platei throughout Patagonia.  相似文献   

5.
We used mitochondrial DNA and microsatellite loci to examine the phylogeographic patterns of the most broadly distributed lizard in eastern North America, the five-lined skink (Eumeces fasciatus). We infer that longitudinal phylogeographic patterns in E. fasciatus are consistent with fragmentation due to refugial and post-glacial dynamics, but that deep divergences within the species imply historical fragmentation that predates the Pleistocene. The effect of multiple refugia is implied from our nested clade analyses, including a northern refugium in Wisconsin. Analysis of population structure using nuclear microsatellite data within the species suggests the importance of glacial dynamics in shaping more recent genetic structuring within one widely distributed lineage that ranges from the Mississippi River to the Atlantic Ocean in longitude and from southern Ontario to the Gulf of Mexico in latitude. Results shed light on the historical processes that have influenced current population structure of a temperate lizard, support the striking similarity of longitudinal phylogeographic structure across many herpetofaunal species in eastern North America, and illustrate the utility of employing multiple markers in phylogeographic studies.  相似文献   

6.
During the Late Pleistocene, glaciers sundered many species into multiple glacial refugia where populations diverged in allopatry. Although deeply divergent mitochondrial DNA (mtDNA) lineages often reflect the number of refugia occupied, it is unlikely that populations that split during the recent Wisconsin glaciations will have reached reciprocal monophyly. We examined mtDNA control region sequences from eastern and western populations of wood ducks (Aix sponsa) to determine whether their current, disjunct distribution is consistent with the occupancy of two glacial refugia. We used the 'isolation with migration' coalescent method (im) to simultaneously estimate effective population sizes, maternal gene flow, and time since divergence. We found 24 unique haplotypes, none of which were shared between the eastern and western populations, but we did not find diagnostic monophyletic lineages suggestive of long-term isolation in multiple glacial refugia. However, a high Phi ST (0.31) indicates that eastern and western populations are well differentiated in mtDNA, and results from im suggest that these populations have been diverging, without extensive gene flow, for 10,000 to 124,000 years. Results from im further suggest that these populations most likely split about 34,000 years ago, and this time of divergence is consistent with the occupancy of multiple glacial refugia during the Late Wisconsin glaciation. Eastern wood ducks are characterized by high genetic diversity, a large effective population size, and a recent population expansion, while western wood ducks have much less genetic diversity, a smaller population size, and have not undergone a recent population expansion.  相似文献   

7.
Phylogeographic structures of two weakly dispersing Mysis sibling species, one with a circumarctic coastal, the other with a boreal lacustrine-Baltic distribution, were studied from mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. Mysis segerstralei showed high overall diversity and little phylogeographic structure across the Arctic, indicating late-glacial dispersal among coastal and lake populations from Alaska, Siberia and the north of Europe. A strongly divergent refugial lineage was however identified in Beringia. The boreal 'glacial relict'Mysis salemaai in turn displayed clear structuring among postglacially isolated Scandinavian lake populations. The inferred pattern of intralake mitochondrial DNA (mtDNA) monophyly in Scandinavia suggested relatively small population sizes and a remarkably fast postglacial mtDNA divergence rate (0.27% per 10 000 years). Nevertheless, the broader phylogeographic pattern did not support distinct eastern and western glacial refugia in Northern Europe, unlike in some other aquatic taxa. In all, the two species comprised three equidistant mitochondrial lineages (approximately 2% divergence), corresponding to M. salemaai, to the bulk of M. segerstralei, and to the Beringian M. segerstralei lineage. The lack of reciprocal monophyly of the two species in respect to their mitochondrial genealogy could indicate postspeciation mitochondrial introgression, also exemplified by an evidently more recent capture of M. segerstralei mitochondria in a Karelian population of M. salemaai. Overall, the data suggest that the continental boreal M. salemaai has a relatively recent ancestry in arctic coastal waters, whereas two other boreal 'glacial relict'Mysis sibling species in Europe (Mysis relicta) and North America (Mysis diluviana) have colonized inland waters much earlier (approximately 8% COI divergence).  相似文献   

8.
Genetic analyses for many widespread North American species have revealed significant east-west differentiation, indicating that many survived through the Pleistocene in 2 glacial refugia-1 in the eastern and 1 in the western part of the continent. It remains unclear, however, whether other areas may have served as important glacial refugia. Moreover, many such species exhibit widespread genetic similarity within eastern and western regions because of recent expansion from small refugial populations, making it difficult to evaluate current-day levels of gene flow. In this study, we used mitochondrial DNA (mtDNA) control region sequence and amplified fragment length polymorphism markers to survey genetic variation in a widespread migratory bird, the American redstart (Setophaga ruticilla). mtDNA analyses revealed a pattern that contrasts with that found for most other widespread species studied to date: most redstart populations across North America appear to have spread out from a single glacial refugium, possibly located in the southeastern United States, whereas populations in far-eastern Canada may have survived in a second glacial refugium located on the now-submerged Atlantic coastal shelf off the coast of Newfoundland. A pattern of isolation by distance in mtDNA suggested some constraints on current-day gene flow among extant redstart populations. This study thus reveals a recent evolutionary history for this species that differs from that of most other widespread North American passerines and provides evidence for limited gene flow in a species with potentially large dispersal distances.  相似文献   

9.
Aim Glacial refugia during the Pleistocene had major impacts on the levels and spatial apportionment of genetic diversity of species in northern latitude ecosystems. We characterized patterns of population subdivision, and tested hypotheses associated with locations of potential Pleistocene refugia and the relative contribution of these refugia to the post‐glacial colonization of North America and Scandinavia by common eiders (Somateria mollissima). Specifically, we evaluated localities hypothesized as ice‐free areas or glacial refugia for other Arctic vertebrates, including Beringia, the High Arctic Canadian Archipelago, Newfoundland Bank, Spitsbergen Bank and north‐west Norway. Location Alaska, Canada, Norway and Sweden. Methods Molecular data from 12 microsatellite loci, the mitochondrial DNA (mtDNA) control region, and two nuclear introns were collected and analysed for 15 populations of common eiders (n = 716) breeding throughout North America and Scandinavia. Population genetic structure, historical population fluctuations and gene flow were inferred using F‐statistics, analyses of molecular variance, and multilocus coalescent analyses. Results Significant inter‐population variation in allelic and haplotypic frequencies were observed (nuclear DNA FST = 0.004–0.290; mtDNA ΦST = 0.051–0.927). Whereas spatial differentiation in nuclear genes was concordant with subspecific designations, geographic proximity was more predictive of inter‐population variance in mitochondrial DNA haplotype frequency. Inferences of historical population demography were consistent with restriction of common eiders to four geographic areas during the Last Glacial Maximum: Belcher Islands, Newfoundland Bank, northern Alaska and Svalbard. Three of these areas coincide with previously identified glacial refugia: Newfoundland Bank, Beringia and Spitsbergen Bank. Gene‐flow and clustering analyses indicated that the Beringian refugium contributed little to common eider post‐glacial colonization of North America, whereas Canadian, Scandinavian and southern Alaskan post‐glacial colonization is likely to have occurred in a stepwise fashion from the same glacial refugium. Main conclusions Concordance of proposed glacial refugia used by common eiders and other Arctic species indicates that Arctic and subarctic refugia were important reservoirs of genetic diversity during the Pleistocene. Furthermore, suture zones identified at MacKenzie River, western Alaska/Aleutians and Scandinavia coincide with those identified for other Arctic vertebrates, suggesting that these regions were strong geographic barriers limiting dispersal from Pleistocene refugia.  相似文献   

10.
Although the range dynamics of North American amphibians during the last glacial cycle are increasingly better understood, the recolonization history of the most northern regions and the impact of southern refugia on patterns of intraspecific genetic diversity and phenotypic variation in these regions are not well reconstructed. Here we present the phylogeographic history of a widespread and primarily northern frog, Rana sylvatica . We surveyed 551 individuals from 116 localities across the species' range for a 650-bp region of the NADH dehydrogenase subunit 2 and tRNATRP mitochondrial genes. Our phylogenetic analyses revealed two distinct clades corresponding to eastern and western populations, as well as a Maritime subclade within the eastern lineage. Patterns of genetic diversity support multiple refugia. However, high-latitude refugia in the Appalachian highlands and modern-day Wisconsin appear to have had the biggest impact on northern populations. Clustering analyses based on morphology further support a distinction between eastern and western wood frogs and suggest that postglacial migration has played an important role in generating broad-scale patterns of phenotypic variation in this species.  相似文献   

11.
Abstract.— The high species diversity of aquatic and terrestrial faunas in eastern North America has been attributed to range reductions and allopatric diversification resulting from historical climate change. The role these processes may have played in speciation is still a matter of considerable debate; however, their impacts on intraspecific genetic structure have been well documented. We use mitochondrial DNA sequences to reconstruct an intraspecific phylogeny of the widespread North American spotted salamander, Ambystoma maculatum , and test whether phylogenetic patterns conform to regional biogeographical hypotheses about the origins of diversity in eastern North America. Specifically, we address the number and locations of historical refugia, the extent and patterns of postglacial colonization by divergent lineages, and the origin and affinities of populations in the Interior Highland region. Despite apparent morphological uniformity, genetic discontinuities throughout the range of this species suggest that populations were historically fragmented in at least two refugia in the southern Appalachian Mountains. The ranges of these two highly divergent clades expanded northward, resulting in two widely distributed lineages that are sympatric in regions previously proposed as suture zones for other taxa. The evolutionary history of spotted salamander populations underscores the generality of biogeographical processes in eastern North America: despite differences in population size, glacial refugia, and vagility, similar signatures of differentiation are evident among and within widespread taxa.  相似文献   

12.
Allozyme analysis of Erebia medusa over large regions of Europe revealed a significant population differentiation (FST: 0.149 ± 0.016). A UPGMA-analysis showed a division into four major lineages with mean inter-group genetic distances ranging from 0.051 (±0.010) to 0.117 (±0.024). An AMOVA revealed that rather more than two-thirds of the variance between samples was being between these lineages and less than one-third within lineages. An eastern group included the samples from the Czech Republic, Slovakia and north-eastern Hungary. This genetic lineage expressed significantly higher genetic diversity than the other three. A second lineage was formed by the samples from France and Germany. The two samples from western Hungary represent a third delimited lineage and the sample from northern Italy a fourth. We suppose that this genetic differentiation took place during the last ice-age in four disjunct refugia. The genetically more diverse eastern genetic lineage might have evolved in a relatively large refugium in south-eastern Europe. We assume that the other three lineages developed in relatively small relict areas around the Alps. It is likely for the western lineage that its ice-age distribution showed at least one disjunction in late Würm with the consequence of further genetic differentiation. Most probably, the eastern lineage colonized postglacial Central Europe using two alternative routes: one north and one south of the Carpathians. Up to now, neither similar glacial refugia, nor comparable secondary disjunctions in late Würm, are reported for any other animal or plant species.  相似文献   

13.
The number and location of Arctic glacial refugia utilized by taxa during the Pleistocene are continuing uncertainties in Holarctic phylogeography. Arctic grayling (Thymallus arcticus) are widely distributed in freshwaters from the eastern side of Hudson Bay (Canada) west to central Asia. We studied mitochondrial DNA (mtDNA) and microsatellite DNA variation in North American T. arcticus to test for genetic signatures of survival in, and postglacial dispersal from, multiple glacial refugia, and to assess their evolutionary affinities with Eurasian Thymallus. In samples from 32 localities, we resolved 12 mtDNA haplotypes belonging to three assemblages that differed from each other in sequence by between 0.75 and 2.13%: a 'South Beringia' lineage found from western Alaska to northern British Columbia, Canada; a 'North Beringia' lineage found on the north slope of Alaska, the lower Mackenzie River, and to eastern Saskatchewan; and a 'Nahanni' lineage confined to the Nahanni River area of the upper Mackenzie River drainage. Sequence analysis of a portion of the control region indicated monophyly of all North American T. arcticus and their probable origin from eastern Siberian T. arcticus at least 3 Mya. Arctic grayling sampled from 25 localities displayed low allelic diversity and expected heterozygosity (H(E)) across five microsatellite loci (means of 2.1 alleles and 0.27 H(E), respectively) and there were declines in these measures of genetic diversity with distance eastward from the lower Yukon River Valley. Assemblages defined by mtDNA divergences were less apparent at microsatellite loci, but again the Nahanni lineage was the most distinctive. Analysis of molecular variance indicated that between 24% (microsatellite DNA) and 81% (mtDNA) of the variance was attributable to differences among South Beringia, North Beringia and Nahanni lineages. Our data suggest that extant North American Arctic grayling are more diverse phylogeographically than previously suspected and that they consist of at least three major lineages that originated in distinct Pleistocene glacial refugia. T. arcticus probably originated and dispersed from Eurasia to North America in the late to mid-Pliocene, but our data also suggest more recent (mid-late Pleistocene) interactions between lineages across Beringia.  相似文献   

14.
Quaternary glaciations have played a major role in shaping the genetic diversity and distribution of plant species. Strong palaeoecological and genetic evidence supports a postglacial recolonization of most plant species to northern Europe from southern, eastern and even western glacial refugia. Although highly controversial, the existence of small in situ glacial refugia in northern Europe has recently gained molecular support. We used genomic analyses to examine the phylogeography of a species that is critical in this debate. Carex scirpoidea Michx subsp. scirpoidea is a dioecious, amphi‐Atlantic arctic–alpine sedge that is widely distributed in North America, but absent from most of Eurasia, apart from three extremely disjunct populations in Norway, all well within the limits of the Weichselian ice sheet. Range‐wide population sampling and variation at 5,307 single nucleotide polymorphisms show that the three Norwegian populations comprise unique evolutionary lineages divergent from Greenland with high between‐population divergence. The Norwegian populations have low within‐population genetic diversity consistent with having experienced genetic bottlenecks in glacial refugia, and host private alleles that probably accumulated in long‐term isolated populations. Demographic analyses support a single, pre‐Weichselian colonization into Norway from East Greenland, and subsequent divergence of the three populations in separate refugia. Other refugial areas are identified in North‐east Greenland, Minnesota/Michigan, Colorado and Alaska. Admixed populations in British Columbia and West Greenland indicate postglacial contact. Taken together, evidence from this study strongly indicates in situ glacial survival in Scandinavia.  相似文献   

15.
The Golden eagle (Aquila chrysaetos) is among the most widespread of the birds of prey, covering basically the whole Palaearctic from Europe and North Africa through Asia and Japan, to the North American continent. Only few studies have addressed the species’ genetic structure and the consequences of its demographic history so far, and none of them has covered larger areas of the distribution range. Our present study aims at closing this gap. Based on 283 samples (mostly feathers collected in the field or from museum collections) across the species’ distribution, but with a focus on Europe, we uncover the phylogeography of the Golden eagle. Results imply a phylogeographic split between mainly Northern Europe, Continental Asia, Japan and North America on the one hand and Central–Southern Europe on the other. The observed pattern is likely to be caused by the Last Ice Age, when the population survived in two reproductively isolated glacial refugia. Repopulation of Northern Europe occurred from a presumed Asian refugium, whereas the Alpine range was probably repopulated from a refugium in the Mediterranean region. In Eastern Europe, the Mediterranean and Alpine region we find a co‐occurrence of both lineages that heavily influences the local genetic diversity. This pattern is unlike that in most other large raptors in which usually a western and an eastern Eurasian lineage have been recovered.  相似文献   

16.
Quaternary climatic oscillations greatly influenced the present-day population genetic structure of animals and plants. For species with high dispersal and reproductive potential, phylogeographic patterns resulting from historical processes can be cryptic, overshadowed by contemporary processes. Here we report a study of the phylogeography of Odocoileus hemionus , a large, vagile ungulate common throughout western North America. We examined sequence variation of mitochondrial DNA (control region and cytochrome b ) within and among 70 natural populations across the entire range of the species. Among the 1766 individual animals surveyed, we recovered 496 haplotypes. Although fine-scale phylogenetic structure was weakly resolved using phylogenetic methods, network analysis clearly revealed the presence of 12 distinct haplogroups. The spatial distribution of haplogroups showed a strong genetic discontinuity between the two morphological types of O. hemionus , mule deer and black-tailed deer, east and west of the Cascade Mountains in the Pacific Northwest. Within the mule deer lineage, we identified several haplogroups that expanded before or during the Last Glacial Maximum, suggesting that mule deer persisted in multiple refugia south of the ice sheets. Patterns of genetic diversity within the black-tailed deer lineage suggest a single refugium along the Pacific Northwest coast, and refute the hypothesis that black-tailed deer persisted in one or more northern refugia. Our data suggest that black-tailed deer recolonized areas in accordance with the pattern of glacial retreat, with initial recolonization northward along a coastal route and secondary recolonization inland.  相似文献   

17.
The separation of populations by ice sheets into large refugia can account for much of the genetic diversity found in present day populations. The evolutionary implications of small glacial refugia have not been as thoroughly explored. To examine refugial origins of North American mountain sheep Ovis spp., we analyzed a 604 bp portion of the mitochondrial DNA (mtDNA) control region from 223 O. dalli and O. canadensis. Major refugia were identified in eastern Beringia and southern North America, and we found evidence for two smaller refugia situated between the Laurentide and Cordilleran glaciers. Our results are the first to demonstrate support for survival of any organism in the latter two refugia. These refugia also appear to have conserved a genetic signal that confirms past hybridization of O. dalli and O. canadensis.  相似文献   

18.
Boulet M  Gibbs HL 《Molecular ecology》2006,15(9):2505-2525
Birds of the Northern Hemisphere often harbour the genetic signature of postglaciation expansion but analyses identifying the location of refugia and the directionality of expansions are rare. Here we explore the evolutionary history of yellow warbler lineages, focusing on how these lineages recolonized their current range. We genotyped samples from 696 yellow warblers via direct sequencing of a 333-bp control region I mitochondrial DNA fragment or lineage-specific genotyping. Phylogenetic analysis revealed two monophyletic clades: a highly migratory group including previously identified eastern and western lineages and a less migratory group including a lineage consisting of tropical residents and a new 'southern' lineage localized in southwest United States. We then modelled the expansion of the eastern and western lineages, identified the location of potential refugia and assessed the importance of migration as a historical factor promoting gene flow. The expansion of the eastern lineage proceeded from a main refugia in the eastern United States, with possible contribution of an additional local refugia. In the western lineage, the expansion proceeded from a single refugia possibly located in western United States. Because two lineages overlapped to varying degrees in central North America, we suggest that the Canadian Prairies offered a bridge of riparian habitats where the lineages met after glacier retreat, while the US Central Great Plains acted as a barrier that limited secondary contact. Finally, gene flow was more important along the north-south axis of migration than away from it, suggesting spring migration played a role in the dispersal of lineages.  相似文献   

19.
North American tree species, subspecies and genetic varieties have primarily evolved in a landscape of extensive continental ice and restricted temperate climate environments. Here, we reconstruct the refugial history of western North American trees since the last glacial maximum using species distribution models, validated against 3571 palaeoecological records. We investigate how modern subspecies structure and genetic diversity corresponds to modelled glacial refugia, based on a meta-analysis of allelic richness and expected heterozygosity for 473 populations of 22 tree species. We find that species with strong genetic differentiation into subspecies had widespread and large glacial refugia, whereas species with restricted refugia show no differentiation among populations and little genetic diversity, despite being common over a wide range of environments today. In addition, a strong relationship between allelic richness and the size of modelled glacial refugia (r2 = 0.55) suggest that population bottlenecks during glacial periods had a pronounced effect on the presence of rare alleles.  相似文献   

20.
During climate change, species are often assumed to shift their geographic distributions (geographic ranges) in order to track environmental conditions – niches – to which they are adapted. Recent work, however, suggests that the niches do not always remain conserved during climate change but shift instead, allowing populations to persist in place or expand into new areas. We assessed the extent of range and niche shifts in response to the warming climate after the Last Glacial Maximum (LGM) in the desert horned lizard Phrynosoma platyrhinos, a species occupying the western deserts of North America. We used a phylogeographic approach with mitochondrial DNA sequences to approximate the species range during the LGM by identifying populations that exhibit a genetic signal of population stability versus those that exhibit a signal of a recent (likely post‐LGM) geographic expansion. We then compared the climatic niche that the species occupies today with the niche it occupied during the LGM using two models of simulated LGM climate. The genetic analyses indicated that P. platyrhinos persisted within the southern Mojave and Sonoran deserts throughout the latest glacial period and expanded from these deserts northwards, into the western and eastern Great Basin, after the LGM. The climatic niche comparisons revealed that P. platyrhinos expanded its climatic niche after the LGM towards novel, warmer and drier climates that allowed it to persist within the southern deserts. Simultaneously, the species shifted its climatic niche towards greater temperature and precipitation fluctuations after the LGM. We concluded that climatic changes at the end of the LGM promoted both range and niche shifts in this lizard. The mechanism that allowed the species to shift its niche remains unknown, but phenotypic plasticity likely contributes to the species ability to adjust to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号