首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The egg size of insects can vary depending on maternal body size or resource status, and it may influence offspring body size by determining initial resource level. 2. The giant rhinoceros beetle Trypoxylus dichotomus exhibits considerable variation in body size, some of which is attributed to the variation in larval food (humus) quality, although a substantial amount of variation in body size remains unexplained. In the present study, changes in the egg size and offspring body size in response to several maternal variables were examined (i.e. body size, age, and, nutritional status). 3. Nutritional intake of the females during the adult stage did not affect the egg size. Larvae hatched from small eggs partially recovered from the initial disadvantage during their ontogenetic processes by increasing growth rate (i.e. compensatory growth); however, there was still a positive relationship between egg size and pupal body size. 4. Older females produced small eggs, but because of compensatory growth, the pupae were no longer small. By contrast, due to a lack of compensatory growth, small females produced small eggs as well as small pupae. 5. These results suggest that maternal body size affects offspring body size through effects on egg size. This transgenerational effect may account for some of the variation in adult body size of T. dichotomus.  相似文献   

2.
Sexual selection has the potential to contribute to population divergence and speciation. Most studies of sexual selection in Drosophila have concentrated on a single signaling modality, usually either courtship song or cuticular hydrocarbons (CHCs), which can act as contact pheromones. We have examined the relationship between both signal types and reproductive success using F(1-3) offspring of wild-collected flies, raised in the lab. We used two populations of the Holarctic species Drosophila montana that represent different phylogeographic clades that have been separate for ca. 0.5 million years (MY), and differ to some extent in both traits. Here, we characterize the nature and identify the targets of sexual selection on song, CHCs, and both traits combined within the populations. Three measures of courtship outcome were used as fitness proxies. They were the probability of mating, mating latency, and the production of rejection song by females, and showed patterns of association with different traits that included both linear and quadratic selection. Courtship song predicted courtship outcome better than CHCs and the signal modalities acted in an additive rather than synergistic manner. Selection was generally consistent in direction and strength between the two populations and favored males that sang more vigorously. Sexual selection differed in the extent, strength, and nature on some of the traits between populations. However, the differences in the directionality of selection detected were not a good predictor of population differences. In addition, a character previously shown to be important for species recognition, interpulse interval, was found to be under sexual selection. Our results highlight the complexity of understanding the relationship between within-population sexual selection and population differences. Sexual selection alone cannot predict differences between populations.  相似文献   

3.
Abstract In many organisms, large offspring have improved fitness over small offspring, and thus their size is under strong selection. However, due to a trade-off between offspring size and number, females producing larger offspring necessarily must produce fewer unless the total amount of reproductive effort is unlimited. Because differential gene expression among environments may affect genetic covariances among traits, it is important to consider environmental effects on the genetic relationships among traits. We compared the genetic relationships among egg size, lifetime fecundity, and female adult body mass (a trait linked to reproductive effort) in the seed beetle, Stator limbatus , between two environments (host-plant species Acacia greggii and Cercidium floridum ). Genetic correlations among these traits were estimated through half-sib analysis, followed with artificial selection on egg size to observe the correlated responses of lifetime fecundity and female body mass. We found that the magnitude of the genetic trade-off between egg size and lifetime fecundity differed between environments–a strong trade-off was estimated when females laid eggs on C. floridum seeds, yet this trade-off was weak when females laid eggs on A. greggii seeds. Also differing between environments was the genetic correlation between egg size and female body mass–these traits were positively genetically correlated for egg size on A. greggii seeds, yet uncorrelated on C. floridum seeds. On A. greggii seeds, the evolution of egg size and traits linked to reproductive effort (such as female body mass) are not independent from each other as commonly assumed in life-history theory.  相似文献   

4.
Clinal variation can result from primary differentiation or secondary contact and determining which of these two processes is responsible for the existence of a cline is not a trivial problem. Samples from a coastal transect of New Zealand geckos (Woodworthia maculata) identified for the first time a body size cline 7-10 km wide. The larger geckos are almost twice the mass of the small adult geckos. Clines in allele and haplotype frequency were found at two of the four genetic loci examined. Estimated width of the morphological cline was concordant with neither the narrower mtDNA cline (3-7 m) nor the wider nuclear cline (RAG-2; 34-42 km), and cline centers were not coincident. Although the body size cline is narrow compared to the entire range of the species, it is 2-3 orders of magnitude greater than estimates of dispersal distance per generation for these geckos. No evidence of assortative mating, nor of hybrid disadvantage was identified, thus there is little evidence to infer that endogenous selection is maintaining a hybrid zone. We cannot distinguish secondary contact from primary origin of this body size cline but conclude that secondary contact is likely due to the occurrence of mtDNA haplotypes from three distinct clades within the coastal transect and the presence of two frequency clines within this region.  相似文献   

5.
Abstract.— Sexual size dimorphism (SSD), the difference in body size between males and females, is common in almost all taxa of animals and is generally assumed to be adaptive. Although sexual selection and fecundity selection alone have often been invoked to explain the evolution of SSD, more recent views indicate that the sexes must experience different lifetime selection pressures for SSD to evolve and be maintained. We estimated selection acting on male and female adult body size (total length) and components of body size in the waterstrider Aquarius remigis during three phases of life history. Opposing selection pressures for overall body size occurred in separate episodes of fitness for females in both years and for males in one year. Specific components of body size were often the targets of the selection on overall body size. When net adult fitness was estimated by combining each individual's fitnesses from all episodes, we found stabilizing selection in both sexes. In addition, the net optimum overall body size of males was smaller than that of females. However, even when components of body size had experienced opposing selection pressures in individual episodes, no components appeared to be under lifetime stabilizing selection. This is the first evidence that contemporary selection in a natural population acts to maintain female size larger than male size, the most common pattern of SSD in nature.  相似文献   

6.
Many field measurements of viability and sexual selection on body size indicate that large size is favoured. However, life-history theory predicts that body size may be optimized and that patterns of selection may often be stabilizing rather than directional. One reason for this discrepancy may be that field estimates of selection tend to focus on limited components of fitness and may not fully measure life-history trade-offs. We use an 8-year, demographic field study to examine both sexual selection and lifetime selection on body size of a coral reef fish (the bicolour damselfish, Stegastes partitus). Selection via reproductive success of adults was very strong (standardized selection differential=1.04). However, this effect was balanced by trade-offs between large adult size and reduced cumulative survival during the juvenile phase. When we measured lifetime fitness (net reproductive rate), selection was strongly stabilizing and only weakly directional, consistent with predictions from life-history theory.  相似文献   

7.
Resource competition is frequently strong among parasites that feed within small discrete resource patches, such as seeds or fruits. The properties of a host can influence the behavioural, morphological and life‐history traits of associated parasites, including traits that mediate competition within the host. For seed parasites, host size may be an especially important determinant of competitive ability. Using the seed beetle, Callosobruchus maculatus, we performed replicated, reciprocal host shifts to examine the role of seed size in determining larval competitiveness and associated traits. Populations ancestrally associated with either a small host (mung bean) or a large one (cowpea) were switched to each other's host for 36 generations. Compared to control lines (those remaining on the ancestral host), lines switched from the small host to the large host evolved greater tolerance of co‐occurring larvae within seeds (indicated by an increase in the frequency of small seeds yielding two adults), smaller egg size and higher fecundity. Each change occurred in the direction predicted by the traits of populations already adapted to cowpea. However, we did not observe the expected decline in adult mass following the shift to the larger host. Moreover, lines switched from the large host (cowpea) to the small host (mung bean) did not evolve the predicted increase in larval competitiveness or egg size, but did exhibit the predicted increase in body mass. Our results thus provide mixed support for the hypothesis that host size determines the evolution of competition‐related traits of seed beetles. Evolutionary responses to the two host shifts were consistent among replicate lines, but the evolution of larval competition was asymmetric, with larval competitiveness evolving as predicted in one direction of host shift, but not the reverse. Nevertheless, our results indicate that switching hosts is sufficient to produce repeatable and rapid changes in the competition strategy and fitness‐related traits of insect populations.  相似文献   

8.
In crustacean species with precopulatory mate-guarding, sexual size dimorphism has most often been regarded as the consequence of a large male advantage in contest competition for access to females. However, large body size in males may also be favoured indirectly through scramble competition. This might partly be the case if the actual target of selection is a morphological character, closely correlated with body size, involved in the detection of receptive females. We studied sexual selection on body size and antennae length in natural populations of Asellus aquaticus, an isopod species with precopulatory mate guarding. In this species, males are larger than females and male pairing success is positively related to body size. However, males also have longer antennae, relative to body size, than females, suggesting that this character may also be favoured by sexual selection. We used multivariate analysis of selection to assess the relative influences of body size and antennae length in five different populations in the field. Selection gradients indicated that, overall, body size was a better predictor of male pairing success than antennae length, although some variation was observed between sites. We then manipulated male antennae length in a series of experiments conducted in the lab, and compared the pairing ability of males with short or long antennae. Males with short antennae were less likely to detect, orient to, and to pair with a receptive female compared with males with long antennae. We discuss the implications of our results for studies of male body size and sexual dimorphism in relation to sexual selection in crustaceans.  相似文献   

9.
In crustacean species with precopulatory mate-guarding, sexual size dimorphism has most often been regarded as the consequence of a large male advantage in contest competition for access to females. However, large body size in males may also be favoured indirectly through scramble competition. This might partly be the case if the actual target of selection is a morphological character, closely correlated with body size, involved in the detection of receptive females. We studied sexual selection on body size and antennae length in natural populations of Asellus aquaticus, an isopod species with precopulatory mate guarding. In this species, males are larger than females and male pairing success is positively related to body size. However, males also have longer antennae, relative to body size, than females, suggesting that this character may also be favoured by sexual selection. We used multivariate analysis of selection to assess the relative influences of body size and antennae length in five different populations in the field. Selection gradients indicated that overall body size was a better predictor of male pairing success than antennae length, although some variation was observed between sites. We then manipulated male antennae length in a series of experiments conducted in the laboratory, and compared the pairing ability of males with short or long antennae. Males with short antennae were less likely to detect, orient to and to pair with a receptive female compared to males with long antennae. We discuss the implications of our results for studies of male body size and sexual dimorphism in relation to sexual selection in crustaceans.  相似文献   

10.
11.
Sexual size dimorphism varies substantially among populations and species but we have little understanding of the sources of selection generating this variation. We used path analysis to study how oviposition host affects selection on body size in a seed-feeding beetle (Stator limbatus) in which males contribute large ejaculates (nuptial gifts) to females. Females use nutrients in these ejaculates for egg production. Male body size, which affects ejaculate size, affects female fecundity and is thus under fecundity selection similar in magnitude to the fecundity selection on female body size. We show that when eggs are laid on a host on which larval mortality is low (seeds of Acacia greggii) fecundity predicts fitness very well and fecundity selection is the major source of selection on both male and female adult size. In contrast, when eggs are laid on a host on which larval mortality is high (seeds of Parkinsonia florida) fecundity poorly predicts fitness such that fecundity selection is relaxed on both male and female size. However, because egg size affects larval mortality on this poor host (P. florida) there is selection on female size via the female size --> egg size --> fitness path; this selection via egg size offsets the reduction in fecundity selection on female, but not male, body size. Thus, differences in host suitability (due to differences in larval mortality) affect the relative importance of two sources of selection on adult body size; fecundity selection on both male and female body size is lower on the poor quality host (P. florida) relative to the high quality host (A. greggii) whereas selection on female body size via effects of egg size on offspring survival (body size --> egg size --> fitness) is greater on the poor quality host relative to the high quality host. Because selection via the egg size path affects only females the difference in larval survival between hosts shifts the relative magnitude of selection on female vs. male size. Researchers working on other study systems should be alerted to the possible importance of subtle, but consequential, indirect selection on their study organisms.  相似文献   

12.
Interfertile populations of the seed beetle Callosobruchus maculatus differ genetically in several behavioral, morphological, and life-history traits, including traits that affect the intensity of larval competition within seeds. Previous studies have suggested that this variation depends on differences in host size. I performed a selection experiment in which replicate beetle lines were either maintained on a small, ancestral host (mung bean) or switched to a larger, novel host (cowpea). After 40 generations, I estimated survival, development time, and adult mass on each host, both in the presence and absence of larval competition. The shift to cowpea substantially reduced body size; irrespective of rearing host, adults from the cowpea lines were more than 10% lighter than those from the mung bean lines. Switching to cowpea also improved survival and reduced development time on this host, but without decreasing performance on the ancestral host. The most striking effect of the shift to a larger host was a reduction in larval competitiveness. When two even-aged larvae co-existed within a seed, the probability that both survived to adult emergence was > or = 65% if larvae were from the cowpea lines but < or = 12% if they were from the mung bean lines. The adverse effects of competition on development time and adult mass were also less severe in the cowpea lines than in the mung bean lines. By rapidly evolving smaller size and reduced competitiveness, the cowpea lines converged toward populations chronically associated with cowpea. These results suggest that evolutionary trajectories can be predictable, and that host-specific selection can play a major role in the diversification of insect life histories. Because host shifts by small, endophagous insects are comparable to the colonization of new habitats, adaptive responses may often include traits (such as larval competitiveness) that are not directly related to host use.  相似文献   

13.
14.
Theory predicts that organisms living in heterogeneous environmentswill exhibit phenotypic plasticity. One trait that may be particularlyimportant in this context is the clutch or brood size becauseit is simultaneously a maternal and offspring characteristic.In this paper, I test the hypothesis that the burying beetle,Nicrophorus orbicollis, adjusts brood size, in part, in anticipationof the reproductive environment of its adult offspring. N. orbicollisuse a small vertebrate carcass as a food resource for theiryoung. Both parents provide parental care and actively regulatebrood size through filial cannibalism. The result is a positivecorrelation between brood size and carcass size. Adult bodysize is an important determinant of reproductive success forboth sexes, but only at higher population densities. I testthree predictions generated by the hypothesis that beetles adjustbrood size in response to population density. First, averageadult body size should vary positively with population density.Second, brood size on a given-sized carcass should be larger(producing more but smaller young) in low-density populationsthan in high-density populations. Third, females should respondadaptively to changes in local population density by producinglarger broods when population density is low and small broodswhen population density is high. All three predictions weresupported using a combination of field and laboratory experiments.These results (1) show that brood size is a phenotypically plastictrait and (2) support the idea that brood size decisions arean intergenerational phenomenon that varies with the anticipatedcompetitive environment of the offspring.  相似文献   

15.
I consider the possibility of selection favouring large body size in a population of snow petrels (Pagodroma nivea), a long‐lived seabird species. I measured natural selection on body size traits in a population from 1987 to 1998. There was evidence of selection on body size associated with fecundity and survival. Directional selection on bill length and stabilizing selection on tarsus length associated with reproductive success were detected among males. Selection associated with survival favoured males with longer bills. However, selection was weak in all cases. No evidence of selection acting on female body size traits was detected. Offspring–parents regression suggested that bill length and tarsus length were heritable. Although I was able to identify the targets of selection in this population, I could not demonstrate the ecological implications of both tarsus length and bill length variation. The selection on male, but not on female, body size traits suggests factors such as intrasexual competition for nests and/or mates rather than factors such as feeding efficiency as mechanisms of selection on bill size.  相似文献   

16.
Correlations between male body size and phenotypes impacting post-copulatory sexual selection are commonly observed during the manipulation of male body size by environmental rearing conditions. Here, we control for environmental influences and test for genetic correlations between natural variation in male body size and phenotypes affecting post-copulatory sexual selection in Drosophila melanogaster. Dry weights of virgin males from 90 second-chromosome and 88 third-chromosome substitution lines were measured. Highly significant line effects (p<0.001) documented a genetic basis to variation in male body size. No significant correlations were identified between male body size and the components of sperm competitive ability. These results suggest that natural autosomal variation for male body size has little impact on post-copulatory sexual selection. If genetic correlations exist between male body size and post-copulatory sexual selection then variation in the sex chromosomes are likely candidates, as might be expected if sexually antagonistic coevolution was responsible.  相似文献   

17.
Recent evidence indicates that fruit size has evolved according to dispersers' size. This is hypothesized to result from a balance between factors favouring large seeds and dispersers setting the maximum fruit size. This hypothesis assumes that (1) the size of fruits that can be consumed by dispersers is limited, (2) fruit and seed size are positively correlated, and (3) the result of multiple selection pressures on seed size is positive. Our studies on the seed dispersal mutualism of Olea europaea have supported the first and second assumptions, but valid tests of the third assumption are still lacking. Here we confirm the third assumption. Using multiplicative fitness components, we show that conflicting selection pressures on seed size during and after dispersal reverse the negative pattern of selection exerted by dispersers.  相似文献   

18.
In species with low levels of sexual size dimorphism, it may be relatively easy to detect the role of natural selection in the evolution of body size. Habitat primary production (HPP) appears to be a key factor in the divergence of size in the hartebeest clade ( Alcelaphus spp.), such that subspecies in less productive savannahs are smaller than those in richer ones. Here I test whether a similar pattern exists within the genus Damaliscus (topi and their allies). Basal skull length was used as a surrogate of body size and measured in the seven allopatric subspecies of Damaliscus . Means for each subspecies and sex were regressed against climatic factors as surrogates of HPP. Variation in skull length across Damaliscus taxa was less than in hartebeest. Two clusters were present in both sexes and corresponded to the distinction between the species, Damaliscus dorcas and Damaliscus lunatus . This may reflect differences in productivity between edaphic grasslands, occupied by all D. lunatus , and dry grasslands, occupied by D. dorcas . Mean annual rainfall was the best predictor of body size in males and showed a non-significant positive tendency in females. After accounting for phylogenetic effects, these correlations were both non-significant. Edaphic grasslands might be less dependent on precipitation for primary production because the impeded drainage of their soil prolongs water availability after the end of the rains. Furthermore, they are probably more consistent in productivity across African regions than secondary grasslands and savannah woodlands, which rely on rainfall for grass growth. These properties of edaphic grasslands may explain why size in Damaliscus appears to be less sensitive to variation in rainfall and less variable across subspecies than in Alcelaphus .  相似文献   

19.
Sexual size dimorphism is assumed to be adaptive and is expected to evolve in response to a difference in the net selection pressures on the sexes. Although a demonstration of sexual selection is neither necessary nor sufficient to explain the evolution of sexual size dimorphism, sexual selection is generally assumed to be a major evolutionary force. If contemporary sexual selection is important in the evolution and maintenance of sexual size dimorphism then we expect to see concordance between patterns of sexual selection and patterns of sexual dimorphism. We examined sexual selection in the wild, acting on male body size, and components of body size, in the waterstrider Aquarius remigis, as part of a long term study examining net selection pressures on the two sexes in this species. Selection was estimated on both a daily and annual basis. Since our measure of fitness (mating success) was behavioral, we estimated reliabilities to determine if males perform consistently. Reliabilities were measured as ? statistics and range from fair to perfect agreement with substantial agreement overall. We found significant univariate sexual selection favoring larger total length in the first year of our study but not in the second. Multivariate analysis of components of body size revealed that sexual selection for larger males was not acting directly on total length but on genital length. Sexual selection for larger male body size was opposed by direct selection favoring smaller midfemoral lengths. While males of this species are smaller than females, they have longer genital segments and wider forefemora. Patterns of contemporary sexual selection and sexual size dimorphism agree only for genital length. For total length, and all other components of body size examined, contemporary sexual selection was either nonsignificant or opposed the pattern of size dimporhism. Thus, while the net pressures of contemporary selection for the species may still act to maintain sexual size dimorphism, sexual selection alone does not.  相似文献   

20.
产卵选择与后代发育适合度之间的相关性是进化生态学的主要科学问题之一。为探究广大腿小蜂(Brachymeria lasus)对不同体型大小寄主的选择和后代发育表现的关系,采用饥饿方法处理4龄菜粉蝶(Pieris rapae)幼虫以获得体型大小(用体质量表示)差异较大的寄主蛹,供寄生蜂选择寄生。结果表明,广大腿小蜂显著偏好体型较大的寄主蛹,而且在体型较大的蛹内产雌性后代的概率更大;子代蜂体型大小与寄主蛹大小存在显著的正相关性,但子代蜂发育历期与寄主蛹大小无相关性。研究说明,广大腿小蜂对菜粉蝶蛹的寄生选择与后代发育表现,符合寄主大小-质量模型的预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号