首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Organisms vary their rates of growth and development in response to environmental inputs. Such developmental plasticity may be adaptive and positively correlate with environmental heterogeneity. However, the evolution of developmental plasticity among closely related taxa is not well understood. To determine the evolutionary pattern of plasticity, we compared plasticity in time to and size at metamorphosis in response to water desiccation in tadpoles among spadefoot species that differ in breeding pond and larval period durations. Like most tadpoles, spadefoot tadpoles possess the remarkable ability to accelerate development in response to pond drying to avoid desiccation. Here, we hypothesize that desert spadefoot tadpoles have evolved reduced plasticity to avoid desiccation in ephemeral desert pools compared to their nondesert relatives that breed in long-duration ponds. We recorded time to and size at metamorphosis following experimental manipulation of water levels and found that desert-adapted species had much less plasticity in larval period and size at metamorphosis than nondesert species, which retain the hypothetical ancestral state of plasticity. Furthermore, we observed a correlation between degree of plasticity and fat body content that may provide mechanistic insights into the evolution of developmental plasticity in amphibians.  相似文献   

2.
Many amphibian species exploit temporary or even ephemeral aquatic habitats for reproduction by maximising larval growth under benign conditions but accelerating development to rapidly undergo metamorphosis when at risk of desiccation from pond drying. Here we determine mechanisms enabling developmental acceleration in response to decreased water levels in western spadefoot toad tadpoles (Pelobates cultripes), a species with long larval periods and large size at metamorphosis but with a high degree of developmental plasticity. We found that P. cultripes tadpoles can shorten their larval period by an average of 30% in response to reduced water levels. We show that such developmental acceleration was achieved via increased endogenous levels of corticosterone and thyroid hormone, which act synergistically to achieve metamorphosis, and also by increased expression of the thyroid hormone receptor TRΒ, which increases tissue sensitivity and responsivity to thyroid hormone. However, developmental acceleration had morphological and physiological consequences. In addition to resulting in smaller juveniles with proportionately shorter limbs, tadpoles exposed to decreased water levels incurred oxidative stress, indicated by increased activity of the antioxidant enzymes catalase, superoxide dismutase, and gluthatione peroxidase. Such increases were apparently sufficient to neutralise the oxidative damage caused by presumed increased metabolic activity. Thus, developmental acceleration allows spadefoot toad tadpoles to evade drying ponds, but it comes at the expense of reduced size at metamorphosis and increased oxidative stress.  相似文献   

3.
Food availability and pond desiccation are two of the most studied factors that condition amphibian metamorphosis. It is well known that, when food is abundant, organisms undergo metamorphosis early and when they are relatively large. The capability of anurans to accelerate their developmental rate in response to desiccation is also common knowledge. These two variables must act together in nature, since we know that, as a pond dries, the per capita resources decrease. We conduct an experiment to evaluate the effects of desiccation and food availability separately and in combination in tadpoles of the painted frog (Discoglossus pictus). We demonstrate that food deprivation leads to slow growth rates, which delay metamorphosis and produce smaller size and weight. The capability to accelerate metamorphosis when facing a drying pond is also confirmed, but, nevertheless, with factor interaction (when the pool is drying and resources are scarce) the capacity to respond to desiccation is lost. In addition, slow drying rates are shown to be stressful situations, but not enough to provoke a shortening of the larval period; in fact, the larval period becomes longer. We also demonstrate that the interaction of these factors changes the allometric relationship of different parts of the hind limb, which has implications for the biomechanics of jumping. Due to low mortality rates and an adequate response to both environmental factors, we expect D. pictus to have a great invasive potential in its new Mediterranean distribution area, where lots of temporary and ephemeral ponds are present.  相似文献   

4.
Life-history theory suggests that optimal timing of metamorphosis should depend on growth conditions and time constraints under which individuals develop. Current models cannot make reliable predictions for species in ephemeral habitats where individuals often face an increasing mortality risk over time because these models assume time-invariant mortality rates (i.e., daily mortality rates remain constant) and fixed seasons. We examined the plasticity of growth, development, and body mass at metamorphosis in tadpoles of the tree-hole breeding frog Phrynobatrachus guineensis in relation to an unpredictable time constraint in the field and in controlled experiments along a fixed density and food gradient. Mean mass and age at metamorphosis of sibships were positively correlated with per capita food level. Based on our results, we developed a simple model of the optimal timing of metamorphosis under time-dependent mortality rates showing that development rates are not only adjusted to growth conditions but also to time-variant mortality rates. The increasing mortality rate represents a time constraint that favors a reduced larval period, but because it is based on probabilities of survival it allows a trade-off between development time and mass. We extend this model to different types of time constraints and show that it can predict the range of documented reaction norms. Differences between species in␣the correlation of age and mass at metamorphosis may have evolved due to differences in their time-variant mortality rates.  相似文献   

5.
Björn Lardner 《Oikos》2000,88(1):169-180
Amphibian larvae often face two major sources of mortality: pond desiccation and predation. Tadpoles of seven anuran species with different preferences for type of breeding habitat, on a hydroperiod scale, were tested for responses to the presence of predators by raising them experimentally in the presence and absence of a separately caged invertebrate predator that was fed on conspecific tadpoles. The species typically breeding in temporary or semi-permanent ponds ( Rana temporaria , Rana arvalis , Rana dalmatina and Hyla arborea ) – where invertebrate predator populations are predicted to vary considerably spatiotemporally – all showed marked induced increases in tail fin depth in response to predator presence. These species also tended to respond by reduced growth rates. The representative of the most ephemeral habitats, Bufo calamita , did not respond in any of these traits. Its congeneric, Bufo bufo , a toxic inhabitant of permanent ponds and lakes, tended to respond to predator presence by reducing its growth rate, though not by a tail depth increase. I argue that the rather poor swimming performance in Bufo tadpoles may opt for defences other than locomotor ability. The palatable, permanent pond species Pelobates fuscus did not alter either its growth rate or tail morphology. Possible explanations for this result are discussed.  相似文献   

6.
Phenotypic plasticity has long been a focus of research, but the mechanisms of its evolution remain controversial. Many amphibian species exhibit a similar plastic response in metamorphic timing in response to multiple environmental factors; therefore, more than one environmental factor has likely influenced the evolution of plasticity. However, it is unclear whether the plastic responses to different factors have evolved independently. In this study, we examined the relationship between the plastic responses to two experimental factors (water level and food type) in larvae of the salamander Hynobius retardatus, using a cause-specific Cox proportional hazards model on the time to completion of metamorphosis. Larvae from ephemeral ponds metamorphosed earlier than those from permanent ponds when kept at a low water level or fed conspecific larvae instead of larval Chironomidae. This acceleration of metamorphosis depended only on the permanency of the larvae's pond of origin, but not on the conspecific larval density (an indicator of the frequency of cannibalism) in the ponds. The two plastic responses were significantly correlated, indicating that they may evolve correlatively. Once plasticity evolved as an adaptation to habitat desiccation, it might have relatively easily become a response to other ecological factors, such as food type via the pre-existing developmental pathway.  相似文献   

7.
Experimental manipulations of the densities of two larval anurans, Pelodytes punctatus and Bufo bufo , showed that these species compete asymmetrically in semi-natural conditions. Growth, mass at metamorphosis, date of metamorphosis, and survival were used as measures of response to interspecific competition. A mechanistic approach was used to collect information on the behaviour of the two species in different conditions. The competitive superiority of Pelodytes at individual level was correlated with a larger body, faster growth rate, increased per capita competitive impact on conspecifics, and greater reduction in the availability of trophic and spatial resources. In the presence of Pelodytes, Bufo showed slower growth, smaller size at metamorphosis and reduced survival. In the interspecific treatments Bufo individuals modified their behaviour by increasing activity and use of the water column while Pelodytes did not change their foraging activity or space use in the aquaria. However, the presence of Bufo resulted in a reduced larval period and smaller size at metamorphosis. We hypothesise that the presence of Bufo act as a signal of environmental degradation and shorten the larval period of Pelodytes, a typical temporal pond breeder . The smaller Bufo tadpoles are potentially stronger competitors at population level because they use relatively large amounts of energy (greater densities and higher metabolic rates). Consequently, they use larger proportions of the shared resources than their larger competitor. A possible evolutionary response for larger tadpoles is the development of interference mechanisms or "escaping" from ephemeral ponds where mortality by drying represent a high risk.  相似文献   

8.
Differential selection to avoid hybridization in two toad species   总被引:2,自引:0,他引:2  
Abstract.— The fitness consequences of hybridization critically affect the speciation process. When hybridization is costly, selection favors the evolution of prezygotic isolating mechanisms (e.g., mating behaviors) that reduce heter-ospecific matings and, consequently, enhance reproductive isolation between species (a process termed reinforcement). If, however, selection to avoid hybridization differs between species, reinforcement may be impeded. Here, we examined both the frequency and fitness effects of hybridization between plains spadefoot toads ( Spea bombifrons ) and New Mexico spadefoot toads ( S. multiplicata ). Hybridization was most frequent in smaller breeding ponds that tend to be ephemeral, and heterospecific pairs consisted almost entirely of S. bombifrons females and S. multiplicata males. Moreover, in controlled experimental crosses, hybrid offspring from crosses in which S. multiplicata was maternal had significantly lower survival and longer development time than pure S. multiplicata offspring. By contrast, hybrid offspring from crosses in which S. bombifrons was maternal outperformed pure S. bombifrons offspring by reaching metamorphosis faster. These data suggest that, although S. multiplicata females are under selection to avoid hybridization, selection might favor those S. bombifrons females that hybridize with S. multiplicata if their breeding pond is highly ephemeral. Generally, the strength of selection to avoid hybridization may differ for hybridizing species, possibly impeding reinforcement.  相似文献   

9.
Couch's spadefoot toads (Scaphiopus couchii) breed in ephemeral desert ponds that are highly variable in duration. Rapid development is expected to be advantageous in short-duration ponds, but slower development, allowing more time for growth, may be advantageous in ponds of longer duration. Previous experiments have revealed both genetic variation in development time and phenotypic plasticity in response to pond drying. In this paper, I examine the norms of reaction of five sibships of tadpoles to see whether there is genetic variation in the effect of pond duration, i.e., in phenotypic plasticity. Several important results emerged. 1) Differences among sibships in development time that were seen in the lab were also seen in the field. 2) There was no evidence for genetic variation in plasticity of development; all sibships exhibited faster development and decreased larval period in ponds of short duration. Plasticity in development appears to be adaptive, as size at metamorphosis was correlated with duration of larval period. The slowest developing sibship, however, suffered higher mortality compared to other sibships in short duration ponds. 3) Sibships did not differ in growth or size at metamorphosis in short-duration ponds, but the slowest developing sibship metamorphosed at the largest size in long duration ponds, resulting in a significant genotype x environment interaction for size at metamorphosis. Thus, although only one of the five sibships responded differently, there appears to be genetic variation for plasticity in growth, and a genetically determined trade-off between fitness in short-duration ponds (via rapid development) and fitness in long duration ponds (via large size at metamorphosis). This may explain the existence of both phenotypic plasticity and genetic variation in development. A single genotype, although capable of adaptive plasticity, is not sufficiently flexible to have equally high fitness in both long- and short-duration ponds.  相似文献   

10.
Past research has determined the habitat requirements of amphibian species predominantly from presence/absence studies. This study tested the hypothesis that relationships between breeding site habitat components, life history traits and fitness may provide a higher resolution of biological data relating to the habitat requirements of amphibian species. We tested this novel approach by using Litoria ewingii as our model species. We correlated larval and metamorph life history traits with habitat variables at 28 small to medium sized ponds within a commercially logged forest in southern Tasmania, Australia. To avoid larval mortality due to pond desiccation, L. ewingii laid eggs and metamorphosed earlier in smaller ponds. Snout vent length at metamorphosis increased with elevation and metamorphosis was earlier in less shaded ponds. Breeding ponds that maximised the fitness of L. ewingii were higher elevation ponds with reduced shading, steeper bank slopes and reduced pond isolation. The findings of the study equip land managers with a greater ecological understanding of ecosystem function in relation to specific species. The methodological approach has broad application to conservation biology where an awareness of the specific habitat requirements of amphibians is critical to successful ecosystem management.  相似文献   

11.
The impacts that predators have on prey behavior, growth, survival, and ultimately the composition of many ecological communities are mediated by prey defenses and the susceptibility of prey to predators. We hypothesized that prey populations inhabiting short-lived, species-poor, aquatic environments should lack significant morphological, developmental, and behavioral responses to predators and are therefore highly susceptible to predation. Furthermore, we predicted that the resultant decrease in prey density and increase in per capita resources due to high susceptibility to predators should enhance overall cohort survival because of enhanced growth of surviving prey. To test these ideas, we performed laboratory and outdoor mesocosm experiments to disentangle multiple effects of predators on an anuran (Scaphiopus couchii); a species highly adapted to breeding in ephemeral habitats and that has one of the shortest larval periods of all anurans. Chemical (presence of predator) and lethal predator cues (predator plus consumed conspecific) elicited no response in behavior, development, or morphology, indicating a lack of defensive mechanisms. Survivorship was significantly reduced in treatments where tadpoles were exposed to predators. However, this reduction in prey density led to accelerated time to metamorphosis, conferring an advantage to survivors who must metamorphose before ephemeral ponds dry. Our experiments demonstrated that in short-lived environments, prey may exhibit little or no response to the presence of predators presumably because selection for anti-predator defenses is countered by selection for rapid metamorphosis. However, predation actually resulted in an increase in overall cohort survival. Although predators are relatively rare in highly ephemeral aquatic environments, they may play an important role in facilitating the long-term persistence of their prey by reducing prey density.  相似文献   

12.
Determining the mechanisms responsible for the success of invasive species is critical for developing effective management strategies. Artificially draining managed wetlands to maintain natural ephemeral conditions is a common practice in the Pacific Northwest and is assumed to kill invasive American bullfrog (Lithobates catesbeianus) larvae, which typically overwinter in permanent wetlands before metamorphosis. Bullfrogs in the Willamette Valley, Oregon, however, have invaded ephemeral wetland sites with confirmed metamorphosis within 4 months after hatching at 1 site. We hypothesized that plasticity in growth and development rates in response to hydroperiod facilitated bullfrog invasion in Oregon. We tested this hypothesis by quantifying larval bullfrog development and growth in response to 3 hydroperiod conditions in a mesocosm setting. We tested clutches collected from both ephemeral (n = 3) and permanent (n = 3) wetlands. We found no differences in development or growth due to hydroperiod treatments (body length, P = 0.48; mass, P = 0.27), but we found differences in growth among clutches (P ≤ 0.001). These differences likely represent natural variation in growth rates because clutches collected from the same wetland type did not respond with similar growth and geographic barriers between collection sites did not account for the differences. These results indicate a lack of plasticity to hydroperiod and suggest that artificial hydroperiod manipulation in the Pacific Northwest will not induce rapid metamorphosis by invasive bullfrog larvae, although some genotypes may be capable of rapid growth and metamorphosis. © 2013 The Wildlife Society.  相似文献   

13.
This study examines the consequences of variation in the laying and hatching date for the time of metamorphosis in the common frog Rana temporaria . Field data are presented showing that eggs laid early tend to take longer to develop. Thus, the time advantage for early eggs is reduced at the time of hatching. There was an among-year variation in this phenomenon; it was not manifest in a phenologically late year. Also, field data revealed that mortality due to pond freezing is a real risk for early laid eggs. Finally, two experiments in tanks analyse the effects of hatching date variation for the time of metamorphosis. (1) When hatching was experimentally delayed by 7 or 11 days, this resulted in later metamorphosis, however, by only 2 and 5 days, respectively. (2a) When tadpoles from the same pond that naturally hatched at different times were compared, it was found that a hatching time difference of 6 days resulted in later metamorphosis by 2 days only. (2b) A comparison of tadpoles from two different ponds that hatched 11 days apart also resulted in only 2 days' difference in metamorphosis. In this case, the later but faster developing tadpoles metamorphosed at a smaller size. I suggest that eggs from these two ponds differed genetically in the growth and development strategy. Despite the obvious risks, and the moderate gain in terms of early metamorphosis, frogs breed dangerously early in spring. Possible reasons for this are discussed. These include external selective forces that promote early metamorphosis (also at a high cost), within-pond competition among tadpoles with an advantage for early and large tadpoles and finally factors relating to mate choice at the breeding site.  相似文献   

14.
We evaluated differences in larval habitats and life history of three species of spadefoot toads, then compared their life histories in a common garden study. Our field work defined the selective regime encountered by each species. Our Great Basin spadefoot (Spea intermontana) bred asynchronously in permanent streams and springs where there was no risk of larval mortality due to drying. The water chemistry remained fairly stable throughout the larval period. The western spadefoot toad, Sp. hammondii, bred fairly synchronously following heavy spring rains in temporary pools that remained filled an average of 81 d. Fifteen % of the breeding pools dried completely on or before the day the first larvae metamorphosed. The desert spadefoot toad, Scaphiopus couchii, bred synchronously after heavy summer showers in very short duration pools; 62% of the breeding pools dried completely on or before the day the first larvae metamorphosed. The concentration of ammonium nitrogen and CaCO3 increased markedly as the Sp. hammondii and S. couchii pools dried. S. couchii attained metamorphosis at a much earlier age and smaller size than the other two species. S. couchii also showed little variation in the age at metamorphosis but considerable variation in the size at metamorphosis, while the other two species varied in both age and size. The results identify some variables that could serve as cues of pool drying and demonstrate an association between breeding pool duration, breeding synchrony, development rate, and larval development. Our laboratory study yields information about the genetic basis of the differences in development and controlled comparisons of phenotypic plasticity. We manipulated food supply to study the plastic response of age and size at metamorphosis and hence construct the reaction norm for these variables as a function of growth rate. The growth rates ranged from below to above those observed in natural populations. As in the field, in the lab S. couchii attained metamorphosis at an earlier age and smaller size than the other two species. All three species had a similarly shaped reaction norm for size(y‐axis) and age (x‐axis) at metamorphosis, which was a concave upward curve. A consequence of this shape is that age at metamorphosis changes more readily at low levels of food availability and size at metamorphosis changes more readily at high levels of food availability. If we restrict our observations to just those growth rates that are seen in nature, then S. couchii has almost no variation in the age at metamorphosis but considerable variation in size at metamorphosis, while the other two species vary in both age and size at metamorphosis. All three species increased in size at metamorphosis with increased food levels. Our comparative reaction norm approach thus demonstrates that S. couchii has adapted to ephemeral environments by shifting its growth rate reaction norm so that age at metamorphosis is uniformly fast and is not associated with growth rate. The realized variation is concentrated in size rather than age at metamorphosis.  相似文献   

15.
Our objective was to determine how green frogs (Rana clamitans) are affected by multiple exposures to a sublethal level of the carbamate insecticide, carbaryl, in outdoor ponds. Tadpoles were added to 1,000-l ponds at a low or high density which were exposed to carbaryl 0, 1, 2, or 3 times. Length of the larval period, mass, developmental stage, tadpole survival, and proportion metamorphosed were used to determine treatment effects. The frequency of dosing affected the proportion of green frogs that reached metamorphosis and the developmental stage of tadpoles. Generally, exposure to carbaryl increased rates of metamorphosis and development. The effect of the frequency of carbaryl exposure on development varied with the density treatment; the majority of metamorphs and the most developed tadpoles came from high-density ponds exposed to carbaryl 3 times. This interaction suggests that exposure to carbaryl later in the larval period stimulated metamorphosis, directly or indirectly, under high-density conditions. Our study indicates that exposure to a contaminant can lead to early initiation of metamorphosis and that natural biotic factors can mediate the effects of a contaminant in the environment.  相似文献   

16.
Understanding constraints on phenotypic plasticity is central to explaining its evolution and the evolution of phenotypes in general, yet there is an ongoing debate on the classification and relationships among types of constraints. Since plasticity is often a developmental process, studies that consider the ontogeny of traits and their developmental mechanisms are beneficial. We manipulated the timing and reliability of cues perceived by fire salamander larvae for the future desiccation of their ephemeral pools to determine whether flexibility in developmental rates is constrained to early ontogeny. We hypothesized that higher rates of development, and particularly compensation for contradictory cues, would incur greater endogenous costs. We found that larvae respond early in ontogeny to dried conspecifics as a cue for future desiccation, but can fully compensate for this response in case more reliable but contradictory cues are later perceived. Patterns of mortality suggested that endogenous costs may depend on instantaneous rates of development, and revealed asymmetrical costs of compensatory development between false positive and false negative early information. Based on the results, we suggest a simple model of costs of development that implies a tradeoff between production costs of plasticity and phenotype-environment mismatch costs, which may potentially underlie the phenomenon of ontogenetic windows constraining plasticity.  相似文献   

17.
Phenotypic plasticity provides means for adapting to environmental unpredictability. In terms of accelerated development in the face of pond-drying risk, phenotypic plasticity has been demonstrated in many amphibian species, but two issues of evolutionary interest remain unexplored. First, the heritable basis of plastic responses is poorly established. Second, it is not known whether interpopulational differences in capacity to respond to pond-drying risk exist, although such differences, when matched with differences in desiccation risk would provide strong evidence for local adaptation. We investigated sources of within- and among-population variation in plastic responses to simulated pond-drying risk (three desiccation treatments) in two Rana temporaria populations originating from contrasting environments: (1) high desiccation risk with weak seasonal time constraint (southern population); and (2) low desiccation risk with severe seasonal time constraint (northern population). The larvae originating from the environment with high desiccation risk responded adaptively to the fast decreasing water treatment by accelerating their development and metamorphosing earlier, but this was not the case in the larvae originating from the environment with low desiccation risk. In both populations, metamorphic size was smaller in the high-desiccation-risk treatment, but the effect was larger in the southern population. Significant additive genetic variation in development rate was found in the northern and was nearly significant in the southern population, but there was no evidence for genetic variation in plasticity for development rates in either of the populations. No genetic variation for plasticity was found either in size at metamorphosis or growth rate. All metamorphic traits were heritable, and additive genetic variances were generally somewhat higher in the southern population, although significantly so in only one trait. Dominance variances were also significant in three of four traits, but the populations did not differ. Maternal effects in metamorphic traits were generally weak in both populations. Within-environment phenotypic correlations between larval period and metamorphic size were positive and genetic correlations negative in both populations. These results suggest that adaptive phenotypic plasticity is not a species-specific fixed trait, but evolution of interpopulational differences in plastic responses are possible, although heritability of plasticity appears to be low. The lack of adaptive response to desiccation risk in northern larvae is consistent with the interpretation that selection imposed by shorter growing season has favored rapid development in north (approximately 8% faster development in north as compared to south) or a minimum metamorphic size at the expense of phenotypic plasticity.  相似文献   

18.
R. A. Newman 《Oecologia》1987,71(2):301-307
Summary The effects of density on growth and development of Scaphiopus couchi tadpoles in desert ponds were investigated, and sources of mortality over a three-year period were documented. In 16 of the 82 ponds monitored, predation was the principal cause of death, demonstrating that tadpoles in desert ponds may be exposed to high levels of predation, although the overall importance of predation is less here than in more mesic areas. Desiccation was the primary cause of mortality in 49 ponds. Growth and development were extremely slow in most high density ponds and as a result most tadpoles were unable to metamorphose before ponds dried. Only 8 ponds produced metamorphs, and mortality was high even in these. Food-supplementation resulted in some metamorphosis in high density ponds, although the effect was diminished by the extreme crowding in most ponds. In low density ponds, S. couchi tadpoles can develop very quickly and metamorphose. High mortality due to desiccation is largely a consequence of high density: tadpoles rarely completed development in high density ponds, regardless of pond duration.  相似文献   

19.
A. Hamer  S. Lane  M. Mahony 《Oecologia》2002,132(3):445-452
The introduction of fish has decimated many amphibian populations through increased predation, primarily on their larvae. Some amphibian species now occupy marginal habitats as a response to the presence of introduced fish predators. Such habitats may include ephemeral water bodies where fish do not usually occur, although breeding in these suboptimal environments may incur some cost to a species if its larvae are not adapted to develop under these conditions. We investigated this scenario of amphibian decline using the endangered green and golden bell frog (Litoria aurea) and the introduced mosquitofish (Gambusia holbrooki) in a factorial experiment to determine the responses of tadpoles to declining water levels and the introduced predator. Tadpoles metamorphosed asynchronously but did not accelerate development in declining water or when housed with mosquitofish. Mass at metamorphosis was 30% less in declining water. Mass increased with time to metamorphosis in constant water-level treatments, but decreased in declining water. Tadpoles did not respond to mosquitofish and were therefore assumed to be naive to this predator. These results suggest that ephemeral habitats may be suboptimal for breeding, and tadpoles appear better suited to develop in permanent water bodies free of introduced fish. Intra-clutch variability in larval development (i.e. bet-hedging) may allow L. aurea to cope with unpredictable pond duration, whereby even permanent water bodies may occasionally dry out. The responses observed in L. aurea suggest that introduced fish may have reduced the suitability of permanent water bodies as breeding sites for other pond-breeding amphibian species. The use of less favourable ephemeral habitats as breeding sites may be responsible for some of the declines reported in amphibians since the 1970s.  相似文献   

20.
Adaptive phenotypic plasticity is widespread and involves diverse phenotypes. Key environmental stressors, such as predation risk, can simultaneously induce changes in multiple traits, but the magnitude of response is dependent upon the environmental conditions. Species that utilize temporary ponds are expected to exhibit stronger predator‐induced responses in the form of morphology than behaviour (i.e. reduced activity) to meet the demands of rapid development by maintaining high foraging activity while reducing predation risk via morphologically plastic traits. In a laboratory experiment, I examined the effects of predator chemical cues and conspecific alarm cues on activity, development and morphology on Leptodactylus bufonius tadpoles. This species has terrestrial oviposition and completes the early part of its development outside of ephemeral and temporary ponds in the Gran Chaco ecoregion of South America. Tadpoles in the predator treatments exhibited both behavioural and morphological predator‐induced plastic responses. Tadpoles tended to possess shorter, deeper tails when exposed to predators. The greatest reduction in activity was observed in tadpoles exposed to both predator and conspecific alarm cues, which subsequently resulted in the slowest development. Temporary and ephemeral pond adapted species with terrestrial oviposition may capitalize on a head start in development by being able to afford reduced growth rates via a reduction in activity. This may occur when the constraints imposed by pond hydroperiod (e.g. risk of pond drying) are relaxed when compared with species with aquatic oviposition, which must undergo all stages of development during the pond's hydroperiod. Thus, in addition to the predator and hydroperiod gradients, examining phenotypically plastic responses along a ‘terrestriality gradient’ in a comparative framework would provide insights as to the costs and benefits of increasing terrestriality in anuran reproductive modes to environmental stressors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号