首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cortex of soybean ( Glycine max L. cv. Centennial) nodules contain an organellerich layer of vascular parenchyma tissue, which encircles the elaborate vascular tissue of the nodule. Peroxisomes with small, electron-opaque nucleoids are found in the vascular parenchyma cells. Positive cytochemical staining for catalase (EC 1.11.1.6) confirms their morphological identification as peroxisomes. Activities of both glycolate oxidase (EC 1.1.3.1) and urate oxidase (EC 1.7.3.3) were detected cytochemically in these peroxisomes. Nodule-specific urate oxidase was localized principally in the nucleoid region of these vascular parenchyma peroxisomes, as indicated by immunogold labelling using antibodies against nodulin-35, the nodule-specific urate oxidase. The density of urate oxidase immunogold labelling in the vascular parenchyma peroxisome nucleoid is similar to that of the more well-characterized interstitial cell peroxisomes of the infected zone. These results show that the induction of nodule-specific urate oxidase may be induced in tissue outside of the infected zone.  相似文献   

2.
Biochemical, electrophoretic and immunological studies were made among peroxisomal enzymes in three organs of soybean [Glycine max (L.) Merr. cv. Centennial] to compare the enzyme distribution and characteristics of specialized peroxisomes in one species. Leaves, nodules and etiolated cotyledons were compared with regard to several enzymes localized solely in their peroxisomes: catalase (EC 1.11.1.6), malate synthase (EC 4.1.3.2), glycolate oxidase (EC 1.1.3.1), and urate oxidase (EC 1.7.3.3). Catalase activity was found in all tissue extracts. Electrophoresis on native polyacrylamide gels indicated that leaf catalase migrated more anodally than nodule or cotyledon catalase as shown by both activity staining and Western blotting. Malate synthase activity and immunologically detectable protein were present only in the cotyledon extracts. Western blots of denaturing (lithium dodecyl sulfate) gels probed with anti-cotton malate synthase antiserum, reveal a single subunit of 63 kDa in both cotton and soybean cotyledons. Glycolic acid oxidase activity was present in all three organs, but ca 20-fold lower (per mg protein) in both nodule and cotyledon extracts compared to leaf extracts. Electrophoresis followed by activity staining on native gels indicated one enzyme form with the same mobility in nodule, cotyledon and leaf preparations. Urate oxidase activity was found in nodule extracts only. Native gel electrophoresis showed a single band of activity. Novel electrophoretic systems had to be developed to resolve the urate oxidase and glycolate oxidase activities; both of these enzymes moved cathodally in the gel system employed while most other proteins moved anodally. This multifaceted study of enzymes located within three specialized types of peroxisomes in a single species has not been undertaken previously, and the results indicate that previous comparisons between the enzyme content of specialized peroxisomes from different organisms are mostly consistent with that for a single species, soybean.  相似文献   

3.
Microbodies containing bipyramidal crystalline nucleoid inclusions occur within every cortical cell in roots of Yucca torreyi. Reaction product deposition attributable to catalase, glycolate oxidase, and urate oxidase activities are cytochemically localized to Yucca root microbodies and classifies them as unspecialized peroxisomes on the basis of their enzyme complement and tissue origin. Crystalline nucleoids do not stain for glycolate or urate oxidase activities, appearing as negatively-stained inclusions, but are apparently reactive for catalase activity. Development of unspecialized peroxisomes in Yucca roots is consistent with all evidence for glyoxysome and leaf-type peroxisome biogenesis from ER. Dilated ends of ER cisternae accumulate cytochemically detectable glycolate oxidase activity. After considerable dilation, paracrystalline precursors to nucleoids form within the bulge, and the inclusion enlarges to comprise the majority of peroxisomal volume. Peroxisomes that are not attached to ER are observed with high voltage electron microscopy and in serial thin sections, implying that eventually the budding peroxisomes are vesiculated. The functions of these unspecialized peroxisomes are suggested based upon cytochemical detection of their partial enzyme complement and their spatial and developmental timing relationships within developing Yucca root cortical parenchyma cells.  相似文献   

4.
Subperoxisomal localization of glycolate oxidase   总被引:1,自引:0,他引:1  
K C Vaughn 《Histochemistry》1989,91(2):99-105
The subperoxisomal distribution of glycolate oxidase (GO) in leaves and cotyledons of several plants was investigated using post-embedding immunogold labelling. In peroxisomes with amorphous nucleoids, all of the immunolabelling is associated with the matrix of the peroxisome, even in tissue embedded in Lowicryl, a resin that preserves antigenicity best. This same staining pattern was found after cytochemical staining for GO activity with cerium. In peroxisomes with crystalline inclusions, the inclusions are only lightly labelled, compared with the densely-labelled matrix. Cytochemical reactions are noted between the units of the crystal in these peroxisome types. Because cytochemical reactions for catalase are concentrated in the amorphous nucleoid and crystalline peroxisomal inclusions, the general lack of immunogold staining of GO and other peroxisomal proteins indicate that catalase may be the major (or in some cases the exclusive) constituent of these peroxisomal inclusions.  相似文献   

5.
Summary The subperoxisomal distribution of glycolate oxidase (GO) in leaves and cotyledons of several plants was investigated using post-embedding immunogold labelling. In peroxisomes with amorphous nucleoids, all of the immunolabelling is associated with the matrix of the peroxisome, even in tissue embedded in Lowicryl, a resin that preserves antigenicity best. This same staining pattern was found after cytochemical staining for GO activity with cerium. In peroxisomes with crystalline inclusions, the inclusions are only lightly labelled, compared with the denselylabelled matrix. Cytochemical reactions are noted between the units of the crystal in these peroxisome types. Because cytochemical reactions for catalase are concentrated in the amorphous nucleoid and crystalline peroxisomal inclusions, the general lack of immunogold staining of GO and other peroxisomal proteins indicate that catalase may be the major (or in some cases the exclusive) constituent of these peroxisomal inclusions.  相似文献   

6.
A. P. Kausch  H. T. Horner 《Planta》1985,164(1):35-43
Three peroxisomal enzymes, glycolate oxidase, urate oxidase and catalase were localized cytochemically in Psychotria punctata (Rubiaceae) leaves and Yucca torreyi (Agavaceae) seedling root tips, both of which contain developing and mature calcium-oxalate raphide crystal idioblasts. Glycolate-oxidase (EC 1.1.3.1) and catalase (EC 1.11.1.6) activities were present within leaftype peroxisomes in nonidioblastic mesophyll cells in Psychotria leaves, while urate-oxidase (EC 1.7.3.3) activity could not be conclusively demonstrated in these organelles. Unspecialized peroxisomes in cortical parenchyma of Yucca roots exhibited activities of all three enzymes. Reactionproduct deposits attributable to glycolate-oxidase activity were never observed in peroxisomes of any developing or mature crystal idioblasts of Psychotria or Yucca. Catalase localization indicates that idioblast microbodies are functional peroxisomes. The apparent absence of glycolate oxidase in crystal idioblasts of Psychotria and Yucca casts serious doubt that pathways involving this enzyme are operational in the synthesis of the oxalic acid precipitated as calcium-oxalate crystals in these cells.Abbreviations AMPD 2-amino-2-methyl-1,3-propandiol - CTEM conventional transmission electron microscopy - DAB 3,3-diaminobenzidine tetrahydrochloride - HVEM high-voltage electron microscopy  相似文献   

7.
Cells of Hansenula polymorpha growing exponentially on glucose generally contained a single peroxisome of small dimension, irregular in shape and located in close proximity to the cell wall. Crystalline inclusions in the peroxisomal matrix were not observed. Associations of the organelles with one or more strands of endoplasmic reticulum were evident. In stationary phase cells the size of the peroxisomes had increased considerably. They were more cubical in form and showed a partly or completely crystalline matrix.After the transfer of cells growing exponentially on glucose into media containing methanol, large peroxisomes with a partly crystalline matrix developed in the cells within 6 h. These organelles originated from the small peroxisomes in the glucose-grown cells. De novo synthesis of peroxisomes was not observed. Prolonged cultivation in the presence of methanol resulted in a gradual increase in the number of peroxisomes by means of separation of small peroxisomes from mature organelles. During growth of peroxisomes associations with the endoplasmic reticulum remained evident.The increase in volume density of peroxisomes in stationary phase cells grown on glucose and in methanol-grown cells was accompanied by the synthesis of the peroxisomal enzymes alcohol oxidase and catalase. Cytochemical staining techniques revealed that alcohol oxidase activity was only detected when the peroxisomes contained a crystalloid inclusion. Since in peroxisomes of an alcohol oxidase-negative mutant of Hansenula polymorpha crystalline inclusions were never detected, it is concluded that the development of crystalloids inside peroxisomes is due to the accumulation of alcohol oxidase in these organelles.  相似文献   

8.
The Effect of Light on the Structure and Organization of Lemna Peroxisomes   总被引:1,自引:0,他引:1  
The effect of light on a number of Lemna minor enzyme activitieswas investigated. The levels of activity of glycolate oxidase,catalase and RuBPCase increased with increasing irradiance,paralleling the increase in Lemna growth rate. In contrast withresults obtained for other species, no glycolate oxidase activitycould be detected in etiolated Lemna fronds or when these weretreated with light or glycolate, in vivo or in vitro, for upto 24 h. The number of peroxisome profiles per cell section was determinedin Lemna grown under different light conditions. When frondswere grown under dim light, the number of peroxisome profilesper cell section appeared to increase with increasing irradiance,although no further increase in the peroxisome number was apparentwhen the fronds were grown under higher irradiances. The levelof glycolate oxidase activity per peroxisome was shown to increasewith increasing irradiance, whereas that of catalase remainedrelatively constant, indicating that differential addition ofenzymes to pre-existing peroxisomes is possible. Peroxisomes from Lemna grown under high irradiance were subjectedto serial sectioning and examined under the electron microscope.Some peroxisomes were found to have a three dimensional structuresuggesting either fission and/or fusion or branching of theseorganelles, supporting the hypothesis of a peroxisomal reticulum.The dynamic relationship between the various shapes is discussed. Key words: Peroxisomes, glycolate oxidase, catalase  相似文献   

9.
Ascospore formation was studied in liquid cultures of the yeast Hansenula polymorpha, previously grown under conditions in which the synthesis of alcohol oxidase was repressed (glucose as growth substrate) or derepressed (methanol, glycerol and dihydroxyacetone as growth substrates and after growth on malt agar plates). In ascospores obtained from repressed cells, generally one small peroxisome was present. The organelle probably originated from the small peroxisome, originally present in the vegetative cells. They had no crystalline inclusions and cytochemical experiments indicated the presence of catalase, urate oxidase and amino acid oxidase activities in these organelles. In ascospores obtained from derepressed cells, generally 1–3 crystalline peroxisomes were observed. These organelles also originated from the peroxisomes originally present in the vegetative cells by means of fragmentation or division. They contained, in addition to the enzymes characteristic for peroxisomes in spores from repressed cells, also alcohol oxidase. The latter enzyme is probably responsible for the crystalline substructure of these peroxisomes.Peroxisomes had no apparent physiological function in the process of ascosporogenesis. A glyoxysomal function of the organelles during germination of the ascospores was also not observed. Germination of mature ascospores in media containing different sources of carbon and nitrogen showed that the function of the peroxisomes present in ascospores of Hansenula polymorpha is probably identical to that in vegetative haploid cells. They are involved in the oxidative metabolism of different carbon and nitrogen sources. Their enzyme profile is a reflection of that of peroxisomes of vegetative cells and their presence may enable the formation of cells which are optimally adapted to environmental conditions extant during spore germination.  相似文献   

10.
Plant peroxisomes have the capacity to generate different reactive oxygen and nitrogen species(ROS and RNS),such as H_2O_2,superoxide radical(O_2~-),nitric oxide and peroxynitrite(ONOO~-).These organelles have an active nitrooxidative metabolism which can be exacerbated by adverse stress conditions.Hydrogen sulfide(H_2S)is a new signaling gasotransmitter which can mediate the posttranslational modification(PTM)persulfidation.We used Arabidopsis thaliana transgenic seedlings expressing cyan fluorescent protein(CFP)fused to a canonical peroxisome targeting signal 1(PTS1)to visualize peroxisomes in living cells,as well as a specific fluorescent probe which showed that peroxisomes contain H_2S.H_2S was also detected in chloroplasts under glyphosate-induced oxidative stress conditions.Peroxisomal enzyme activities,including catalase,photorespiratory H_2O_2-generating glycolate oxidase(GOX)and hydroxypyruvate reductase(HPR),were assayed in vitro with a H_2S donor.In line with the persulfidation of this enzyme,catalase activity declined significantly in the presence of the H_2S donor.To corroborate the inhibitory effect of H_2S on catalase activity,we also assayed pure catalase from bovine liver and pepper fruit-enriched samples,in which catalase activity was inhibited.Taken together,these data provide evidence of the presence of H_2S in plant peroxisomes which appears to regulate catalase activity and,consequently,the peroxisomal H_2O_2 metabolism.  相似文献   

11.
Glycolate oxidase (E.C. 1.1.3.1) was purified from spinach leaves (Spinacia oleracea). The molecular weight of the native protein was determined by sucrose density gradient centrifugation to be 290,000 daltons (13S), whereas that of the monomeric form was 37,000 daltons. The quaternary structure of the holoenzyme is likely to be octameric, analogous to pumpkin cotyledon glycolate oxidase [Nishimura et al, 1982]. The subcellular localization of the enzyme was studied using linear sucrose density gradient centrifugation, and it was found that glycolate oxidase activity is detectable in both leaf peroxisomal and supernatant fractions, but not in chloroplasts and mitochondria; the activity distribution pattern is essentially similar to that for catalase, a known leaf peroxisomal enzyme. Ouchterlony double diffusion and immunotitration analyses, demontrated that the rabbit antiserum against purified spinach leaf glycolate oxidase cross-reacted, identically, with the enzyme molecules present in two different subcellular fractions, i.e, the leaf peroxisome and supernatant fractions. It is thus concluded that the enzyme present in the supernatant is due to the disruption of leaf peroxisomes during the isolation, and hence glycolate oxidase is exclusively localized in leaf peroxisomes in spinach leaves.  相似文献   

12.
Freshly prepared spinach leaf protoplasts were gently ruptured by mechanical shearing followed by sucrose density gradient centrifugation to separate constituent cell organelles. The isolation of intact Class I chloroplasts (d = 1.21) in high yield, well separated from peroxisomes and mitochondria, was evidenced by the specific localization of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39), NADP triose-P dehydrogenase (EC 1.2.1.9), and carbonic anhydrase (EC 4.2.1.1) in the fractions. A clear separation of chloroplastic ribosomes from the soluble cytoplasmic ribosomes was also demonstrated by the band patterns of constituent RNA species in the polyacrylamide gel electrophoresis. Localization of several enzyme activities specific to leaf peroxisomes, e.g. catalase (EC 1.11.1.6), glycolate oxidase (EC 1.1.3.1), glyoxylate reductase (EC 1.1.1.26), glutamate glyoxylate aminotransferase (EC 2.6.1.4), serine glyoxylate aminotransferase, and alanine glyoxylate aminotransferase (EC 2.6.1.12) in the peroxisomal fractions (d = 1.25), was demonstrated. Overall results show the feasibility of the method for the isolation of pure organelle components in leaf tissues.  相似文献   

13.
Glycolate oxidase (E.C. 1.1.3.1) was purified from spinach leaves (Spinacia oleracea). The molecular weight of the native protein was determined by sucrose density gradient centrifugation to be 290,000 daltons (13S), whereas that of the monomeric form was 37,000 daltons. The quaternary structure of the holoenzyme is likely to be octameric, analogous to pumpkin cotyledon glycolate oxidase [Nishimura et al, 1982]. The subcellular localization of the enzyme was studied using linear sucrose density gradient centrifugation, and it was found that glycolate oxidase activity is detectable in both leaf peroxisomal and supernatant fractions, but not in chloroplasts and mitochondria; the activity distribution pattern is essentially similar to that for catalase, a known leaf peroxisomal enzyme. Ouchterlony double diffusion and immunotitration analyses, demonstrated that the rabbit antiserum against purified spinach leaf glycolate oxidase cross-reacted, identically, with the enzyme molecules present in two different subcellular fractions, i.e, the leaf peroxisome and supernatant fractions. It is thus concluded that the enzyme present in the supernatant is due to the disruption of leaf peroxisomes during the isolation, and hence glycolate oxidase is exclusively localized in leaf peroxisomes in spinach leaves.  相似文献   

14.
Using routine transmission electron microscopy and light and electron microscopic techniques for the histologic demonstration (localization) of catalase (a peroxisomal enzyme), peroxisomes in chick duodenal epithelial cells were identified and studied. In these cells, peroxisomes were seen to be small, ovoid structures, delimited by a single unit membrane. They were concentrated in the supranuclear cytoplasm in initimate association with the smooth endoplasmic reticulum. As demonstrated histochemically, the heterogeneous matrix of these organelles was catalase positive. In addition, most of the larger peroxisomes revealed central nucleoids; however, the smaller peroxisomes were generally anucleoid. It thus appears that two classes of peroxisomes exist in chick intestinal absorptive cells: (1) small, anucleoid microperoxisomes, and (2) larger, nucleoid-containing peroxisomes. In addition to the above morphological characteristics, both peroxisome types were numerous in normal and vitamin-D-replete tissues, but were conspicuously decreased or absent from the apical cytoplasm of rachitic epithelial cells. From these observations it is hypothesized that these organelles may be involved in the overall vitamin-D response of the small intestine.  相似文献   

15.
The rice ( Oryza saliva L. cv. S-6) cells in anaerobic coleoptiles maintained their ultra-structure. Most of the organelles did not show significant changes as compared to those from aerobic tissues. However, the number of mitochondria was reduced by 34% and they showed enlarged cristae. Most affected were unspecialized micro-bodies: Their number was reduced by 80% under anaerobiosis and both matrix and membrane structure appeared altered. The activities of the unspecialized microbody enzymes, glycolate oxidase (EC 1.1.3.1), urate oxidase (EC 1.7.3.3) and catalase (EC 1.11.1.6) were alt reduced by anoxia. Catalase decreased to the same extent as the number of microbodies.  相似文献   

16.
H. Stabenau  U. Winkler  W. Säftel 《Planta》1993,191(3):362-364
The occurrence of glycolate oxidase in addition to glycolate dehydrogenase in Dunaliella salina and D. primolecta, as reported in the literature, could not be confirmed. Both species were demonstrated to possess only glycolate dehydrogenase. After separation of organelles by gradient centrifugation, glycolate dehydrogenase along with hydroxypyruvate reductase was found exclusively in the mitochondria. Thus the peroxisomes from Dunaliella are not of the leaf-type: because of their content of catalase, uricase and hydroxyacyl-CoA dehydrogenase they appear to be of the same type as in Eremosphaera and other chlorophycean algae. No activity of glycolate dehydrogenase was found in the chloroplast fraction when the 2,6-dichlorophenol-indophenol test was used.This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

17.
A Survey of Plants for Leaf Peroxisomes   总被引:28,自引:20,他引:8       下载免费PDF全文
Leaves of 10 plant species, 7 with photorespiration (spinach, sunflower, tobacco, pea, wheat, bean, and Swiss chard) and 3 without photorespiration (corn, sugarcane, and pigweed), were surveyed for peroxisomes. The distribution pattern for glycolate oxidase, glyoxylate reductase, catalase, and part of the malate dehydrogenase indicated that these enzymes exist together in this organelle. The peroxisomes were isolated at the interface between layers of 1.8 to 2.3 m sucrose by isopycnic nonlinear sucrose density gradient centrifugation or in 1.95 m sucrose on a linear gradient. Chloroplasts, located by chlorophyll, and mitochondria by cytochrome c oxidase, were in 1.3 to 1.8 m sucrose.In leaf homogenates from the first 7 species with photorespiration, glycolate oxidase activity ranged from 0.5 to 1.5 mumoles x min(-1) x g(-1) wet weight or a specific activity of 0.02 to 0.05 mumole x min(-1) x mg(-1) protein. Glyoxylate reductase activity was comparable with glycolate oxidase. Catalase activity in the homogenates ranged from 4000 to 12,000 mumoles x min(-1) x g(-1) wet weight or 90 to 300 mumoles x min(-1) x mg(-1) protein. Specific activities of malate dehydrogenase and cytochrome oxidase are also reported. In contrast, homogenates of corn and sugarcane leaves, without photorespiration, had 2 to 5% as much glycolate oxidase, glyoxylate reductase, and catalase activity. These amounts of activity, though lower than in plants with photorespiration, are, nevertheless, substantial.Peroxisomes were detected in leaf homogenates of all plants tested; however, significant yields were obtained only from the first 5 species mentioned above. From spinach and sunflower leaves, a maximum of about 50% of the marker enzyme activities was found to be in these microbodies after homogenization. The specific activity for peroxisomal glycolate oxidase and glyoxylate reductase was about 1 mumole x min(-1) x mg(-1) protein; for catalase. 8000 mumoles x min(-1) x mg(-1) protein, and for malate dehydrogenase, 40 mumoles x min(-1) x mg(-1) protein. Only small to trace amounts of marker enzymes for leaf peroxisomes were recovered on the sucrose gradients from the last 5 species of plants. Bean leaves, with photorespiration, had large amounts of these enzymes (0.57 mumole of glycolate oxidase x min(-1) x g(-1) tissue) in the soluble fraction, but only traces of activity in the peroxisomal fraction. Low peroxisome recovery from certain plants was attributed to particle fragility or loss of protein as well as to small numbers of particles in such plants as corn and sugarcane.Homogenates of pigweed leaves (no photorespiration) contained from one-third to one-half the activity of the glycolate pathway enzymes as found in comparable preparations from spinach leaves which exhibit photorespiration. However, only traces of peroxisomal enzymes were separated by sucrose gradient centrifugation of particles from pigweed. Data from pigweed on the absence of photorespiration yet abundance of enzymes associated with glycolate metabolism is inconsistent with current hypotheses about the mechanism of photorespiration.Most of the catalase and part of the malate dehydrogenase activity was located in the peroxisomes. Contrary to previous reports, the chloroplast fractions from plants with photo-respiration did not contain a concentration of these 2 enzymes, after removal of peroxisomes by isopycnic sucrose gradient centrifugation.  相似文献   

18.
Summary Alpha hydroxy acid oxidase activity (using glycolate as substrate) was demonstrated cytochemically in leaf-type peroxisomes, glyoxysomes, and unspecialized peroxisomes of higher plant tissues with the CeCl3 technique in which cerous ions react with enzyme-generated H2O2 to form insoluble, electron-dense cerium perhydroxide. In all peroxisomes examined, reaction product was deposited throughout the matrices. None of the three types of microbody inclusions (crystals, amorphous nucleoids, or fibrillar, threadlike structures) observed in leaftype peroxisomes showed cytochemical reactivity. However, results with crystal-containing peroxisomes of guayule and tobacco leaves indicate an intimate association of glycolate oxidase with the crystals; reaction product was deposited in the spaces between the structural units of the crystal.Prolonged (18- versus 3-hour) incubation with glycolate and CeCl3 were required for reliable cytochemical reactivity in glyoxysomes of castor bean endosperm and unspecialized peroxisomes of barley coleoptile, both of which contain relatively low enzyme activity. The CeCl3 procedure may prove useful for helping identify microbodies observed with the electron microscope as peroxisomes. The lack of significant background deposits, and resolution of reaction product within crystals, illustrate qualities of the CeCl3 procedure superior to those of the ferricyanide-reduction method, which was previously used to localize glycolate oxidase in higher plant microbodies.  相似文献   

19.
We have studied the intraperoxisomal location of catalase in peroxisomes of methanol-grown Hansenula polymorpha by (immuno)cytochemical means. In completely crystalline peroxisomes, in which the crystalline matrix is composed of octameric alcohol oxidase (AO) molecules, most of the catalase protein is located in a narrow zone between the crystalloid and the peroxisomal membrane. In non-crystalline organelles the enzyme was present throughout the peroxisomal matrix. Other peroxisomal matrix enzymes studied for comparison, namely dihydroxyacetone synthase, amine oxidase and malate synthase, all were present throughout the AO crystalloid. The advantage of location of catalase at the edges of the AO crystalloids for growth of the organism on methanol is discussed.  相似文献   

20.
Peroxisomes, single-membrane-bounded organelles with essentially oxidative metabolism, are key in plant responses to abiotic and biotic stresses. Recently, the presence of nitric oxide (NO) described in peroxisomes opened the possibility of new cellular functions, as NO regulates diverse biological processes by directly modifying proteins. However, this mechanism has not yet been analysed in peroxisomes. This study assessed the presence of S-nitrosylation in pea-leaf peroxisomes, purified S-nitrosylated peroxisome proteins by immunoprecipitation, and identified the purified proteins by two different mass-spectrometry techniques (matrix-assisted laser desorption/ionization tandem time-of-flight and two-dimensional nano-liquid chromatography coupled to ion-trap tandem mass spectrometry). Six peroxisomal proteins were identified as putative targets of S-nitrosylation involved in photorespiration, β-oxidation, and reactive oxygen species detoxification. The activity of three of these proteins (catalase, glycolate oxidase, and malate dehydrogenase) is inhibited by NO donors. NO metabolism/S-nitrosylation and peroxisomes were analysed under two different types of abiotic stress, i.e. cadmium and 2,4-dichlorophenoxy acetic acid (2,4-D). Both types of stress reduced NO production in pea plants, and an increase in S-nitrosylation was observed in pea extracts under 2,4-D treatment while no total changes were observed in peroxisomes. However, the S-nitrosylation levels of catalase and glycolate oxidase changed under cadmium and 2,4-D treatments, suggesting that this post-translational modification could be involved in the regulation of H(2)O(2) level under abiotic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号