首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the ANTARES 3 cruise in the Indian sector of the SouthernOcean in October–November 1995, the surface waters ofKerguelen Islands plume, and the surface and deeper waters (30–60m) along a transect on 62°E from 48°36'S to the iceedge (58°50'S), were sampled. The phytoplankton communitywas size-fractionated (2 µm) and cell numbers, chlorophyllbiomass and carbon assimilation, through Rubisco and ß-carboxylaseactivities, were characterized. The highest contribution of<2 µm cells to total biomass and total Rubisco activitywas reported in the waters of the Permanent Open Ocean Zone(POOZ) located between 52°S and 55°S along 62°E.In this zone, the picophytoplankton contributed from 26 to 50%of the total chlorophyll (a + b + c) with an average of 0.09± 0.02 µg Chl l–1 for <2 µm cells.Picophytoplankton also contributed 36 to 64% of the total Rubiscoactivity, with an average of 0.80 ± 0.30 mg C mg Chla–1 h–1 for <2 µm cells. The picophytoplanktoncells had a higher ß-carboxylase activity than largercells >2 µm. The mixotrophic capacity of these smallcells is proposed. From sampling stations of the Kerguelen plume,a relationship was observed between the Rubisco activity perpicophytoplankton cell and apparent cell size, which variedwith the sampled water masses. Moreover, a depth-dependent photoperiodicityof Rubisco activity per cell for <2 µm phytoplanktonwas observed during the day/night cycle in the POOZ. In thenear ice zone, a physiological change in picophytoplankton cellsfavouring phosphoenolpyruvate carboxykinase (PEPCK) activitywas reported. A species succession, or an adaptation to unfavourableenvironmental conditions such as low temperature and/or availableirradiance levels, may have provoked this change. The high contributionof picophytoplankton to the total biomass, and its high CO2fixation capacity via autotrophy and mixotrophy, emphasize thestrong regeneration of organic materials in the euphotic layerin the Southern Ocean.  相似文献   

2.
ERRATUM     
Delete "In contrast, under 5% CO2, the cells grew even at 40µM NaCl (Fig. 3), and the growth rate at 0.5–10mM NaCl during the linear-growth period was 0.24 µg Chl?(mlculture)–1?h–1"  相似文献   

3.
Trends in several photosynthetic parameters and their responseto changed growth light were followed for 15 d in leaves ofyoung birch saplings using a rapid-response gas exchange measuringequipment. These in vivo measurements were compared to biochemicalassays that were made from the same leaves after the gas exchangestudies. The measurements were made on leaves that were selectedprior to the study and were at that time of similar age. Forthe first 7 d the photosynthetic parameters were followed fromthe growth conditions of moderate light (200 µmol m–2s–1; referred to as controls later in the text). On day7 some of the saplings were transferred to grow either underhigh (450 µmol m–2 s–1; referred to as highlight plants) or low (75 µmol m–2 s–1; referredto as low light plants) light and the capability of the preselectedleaves for acclimation was followed for 6 d. For comparison,at the end of the experiment the measurements were made on bothcontrols and on young leaves that had developed under high andlow light. Generally the in vivo measured rate of CO2 uptake (gross photosynthesis)both at 310 ppm CO2 and 2000 ppm CO2 corresponded very wellto the biochemically determined CO2 fixation capacity in vitroafter rapid extraction (measured as the initial and total activityof Rubisco, respectively). However, if the flux of CO2 intothe chloroplasts was limited by the closure of the stomata,as was the case of the high light plants, then the in vitromeasured Rubisco activity was greater than the in vivo measuredCO2 uptake. Vmax, calculated from the mesophyll conductanceat 1% O2, exceeded the initial activity of Rubisco (assayedat saturating RuBP and CO2) constantly by 60%. The catalyticactivity of Rubisco in birch leaves was overall very low, evenwhen calculated from the total activity of Rubisco (Kcat 0.63–1.18 s–1), when compared to herbaceous C3 species. Signs of light acclimation were not observed in most of thephotosynthetic parameters and in chloroplast structure whenmature birch leaves were subjected to changes in growth lightfor 6 d. However, the change of the growth light either to highor low light caused day-to-day fluctuations in most of the measuredphotosynthetic parameters and in the case of the high lightplants signs of photoinhibition and photodestruction were alsoobserved (decrease in the amount of chlorophyll and increasein chlorophyll a/b ratio). As a result of these fluctuationsthese plants achieved a new and lower steady-state conditionbetween the light and dark reactions, as judged from the molarratio of RuBP to Rubisco binding site. Key words: Acclimation, photosynthesis, light, Rubisco, birch  相似文献   

4.
The Cyanobacterium Anabaena variabilis ATCC 29413 grown at lowCO2 concentration under mixotrophic conditions with fructoseshowed a repression in the ability to fix inoganic carbon. Thisrepression was not due to a diminution in the ability to transportexternal inorganic carbon but could be explained by a decreaseof two enzymatic activities involved in the assimilation ofinorganic carbon: carbonic anhydrase and Rubisco. Carbonic anhydraseactivity was close to 50% lower in mixotrophic than in autotrophiccells. Moreover growth under mixotrophic conditions reducedRubisco activity at all dissolved inorganic carbon concentrationsassayed (5–60 mM). Maximum Rubisco activity (Vmax decreasedfrom µmol CO2 mg protein-1h-1 in autotrophic cells to2.3 µmol CO2 mg protein-1h-1 in mixotrophic cells. Nosignificant differences in Km(C1) between autotrophic and mixotrophiccells were however observed. The possible mechanisms involvedin the inhibition of Rubisco are discussed. (Received November 8, 1994; Accepted October 12, 1995)  相似文献   

5.
The effects of elevated CO2 were studied on the photosyntheticgas exchange behaviour and leaf physiology of two contrastingpoplar (Populus) hybrids grown and treated in open top chambers(OTCs in Antwerp, Belgium) and in closed glasshouse cabinets(GHCs in Sussex, UK). The CO2 concentrations used in the OTCswere ambient and ambient +350 µmol mol–1 while inthe GHCs they were c. 360 µmol mol–1 versus 719µmol mol–1. Measurements of photosynthetic gas exchangewere made for euramerican and interamerican poplar hybrids incombination with measurements of dark respiration rate and Rubiscoactivity. Significant differences in the leaf anatomy and structure(leaf mass per area and chlorophyll content) were observed betweenthe leaves grown in the OTCs and those grown in the GHCs. ElevatedCO2 stimulated net photosynthesis in the poplar hybrids after1 month in the GHCs and after 4 months in the OTCs, and therewas no evidence of downward acclimation (or down-regulation)of photosynthesis when the plants in the two treatments weremeasured in their growth CO2 concentration. There was also noevidence of down-regulation of Rubisco activity and there wereeven examples of increases in Rubisco activity. Rubisco exerteda strong control over the light-saturated rate of photosynthesis,which was demonstrated by the close agreement between observednet photosynthetic rates and those that were predicted fromRubisco activities and Michaelis-Menten kinetics. After 17 monthsin elevated CO2 in the OTCs there was a significant loss ofRubisco activity for one of the hybrid clones, i.e. Beaupr,but not for clone Robusta. The effect of the CO2 measurementconcentration (i.e. the short-term treatment effect) on netphotosynthesis was always larger than the effect of the growthconcentration in both the OTCs or GHCs (i.e. the longterm growthCO2 effect), with one exception. For the interamerican hybridBeaupr dark respiration rates in the OTCs were not significantlyaffected by the elevated CO2 concentrations. The results suggestthat for rapidly growing tree species, such as poplars, thereis little evidence for downward acclimation of photosynthesiswhen plants are exposed to elevated CO2 for up to 4 months;longer term exposure reveals loss of Rubisco activity. Key words: Elevated CO2, Populus, Rubisco, photosynthesis, chlorophyll content  相似文献   

6.
Respiratory electron transport system (ETS) activity was measuredin plankton samples (<200 µm) collected in the NW AlboranSea. Sampling was carried out during seasonal cruises (summerand autumn 2003 and winter and spring 2004) in 12 stations locatedin transects off the coast of Malaga (southern Spain). Thiswork reports for the first time seasonal variations of the Arrheniusactivation energy (Ea) as well as being the first study to addressCO2 balance in the NW Alboran Sea. These variations were relatedto changes in the phytoplankton community assemblage, whichcould ultimately be caused by the seasonal variability of hydrologicalconditions. ETS activity was significantly higher in summer,coinciding with a higher chlorophyll a (Chl a) concentrationand relatively high levels of particulate organic matter. TheETS:Chl atotal ratios were low during the four seasons, suggestinga high contribution of autotrophic phytoplankton to the respiratoryactivity of planktonic community. Respiratory CO2 production(RCP) calculated from ETS activity ranged from 4.6 to 28.1 mgC m–3 day–1 during the four cruises. Chl a-specificRCP was lower than the maximum photosynthetic rates reportedin the literature for the studied area, suggesting that primaryproduction (PP) and respiration in the water column might beunbalanced.  相似文献   

7.
Photosynthetic 14C fixation by Characean cells in solutionsof high pH containing NaH14CO3 gave a measure of the abilityof these cells to take up bicarbonate (H14CO3). Whereascells of Nitella translucens from plants collected and thenstored in the laboratory absorbed bicarbonate at 1–1.5µµmoles cm–2 sec–1, rates of 3–8µµmoles cm–2 sec–1 were obtained withN. translucens cells from plants grown in the laboratory. Influxesof 5–6 µµmoles cm–2 sec–1 wereobtained with Chara australis, 3–8 µµmolescm–2 sec–1 with Nitellopsis obtusa, and 1–5µµmoles cm–2 sec–1 with Tolypella intricata.It is considered that these influxes represent the activityof a bicarbonate pump, which may be an electrogenic process. In solutions of lower pH, H14CO3 uptake would be maskedby rapid diffusion of 14CO2 into the cells: the four Characeanspecies fixed 14CO2 at maximum rates of 30–40 µµmolescm–2 sec–1 (at 21° C).  相似文献   

8.
Mass spectrometry has been used to investigate the transportof CO2 in the freshwater diatom Navicula pelliculosa. The timecourseof CO2 formation in the dark after addition of 100 mmol m–3dissolved inorganic carbon (DIC) to cell suspensions showedthat no external carbonic anhydrase (CA) was present in thesecells. Upon illumination, cells pre-incubated at pH 75 with100 mmol m–3 DIC, removed almost all free CO2 from themedium at an initial rate of 285 µmol CO2 mg–1Chl h–1. Equilibrium between HCO3 and CO2 in themedium occurred rapidly upon addition of bovine CA, showingthat CO2 depletion resulted from a selective uptake of CO2 ratherthan an uptake of all inorganic carbon species. However, photosyntheticO2 evolution rate remained constant after CO2 had been depletedfrom the medium indicating that photosynthesis is sustainedprimarily by active HCO3 uptake. Treatment of cells with2-iodoacetamide (83 mol m–3) completely inhibited CO2fixation but had little effect on CO2 transport since initialrates of CO2 depletion were about 81% that of untreated cells.Transfer of iodoacetamide-treated cells to the dark caused arapid increase in the CO2 concentration in the medium largelydue to the efflux of the unfixed intracellular DIC pool whichwas found to be about 194 times the concentration of that inthe external medium. These results indicate that Navicula pelliculosaactively takes up molecular CO2 against a concentration gradientby a process distinct from HCO3 transport. Key words: Dissolved inorganic carbon, carbonic anhydrase, bicarbonate transport, CO2 transport, mass spectrometry  相似文献   

9.
The relationships between CO2 concentrating mechanisms, photosyntheticefficiency and inorganic carbon supply have been investigatedfor the aquatic macrophyte Littorella uniflora. Plants wereobtained from Esthwaite Water or a local reservoir, with thelatter plants transplanted into a range of sediment types toalter CO2 supply around the roots. Free CO2 in sediment-interstitial-waterranged from 1–01 mol m–3 (Esthwaite), 0.79 mol m–3(peat), 0.32 mol m–3 (silt) and 0–17 mol m–3(sand), with plants maintained under PAR of 40 µmol m–2s–1. A comparison of gross morphology of plants maintained underthese conditions showed that the peat-grown plants with highsediment CO2 had larger leaf fresh weight (0–69 g) andtotal surface area (223 cm2 g–1 fr. wt. including lacunalsurface area) than the sand-grown plants (0.21 g and 196 cm2g–1 fr. wt. respectively). Root fresh weights were similarfor all treatments. In contrast, leaf internal CO2 concentration[CO2], was highest in the sand-grown plants (2–69 molm–3, corresponding to 6.5% CO2 in air) and lowest inthe Esthwaite plants (1–08 mol m–3). Expressionof CAM in transplants was also greatest in the low CO2 regime,with H+ (measured as dawn-dusk titratable acidity) of 50µmolg fr. wt., similar to Esthwaite plants in natural sediment.Assuming typical CAM stoichiometry, decarboxylation of malatecould account largely for the measured [CO2]1 and would makea major contribution to daytime CO2 fixation in vivo. A range of leaf sections (0–2, 1–0, 5–0 and17–0 mm) was used to evaluate diffusion limitation andto select a suitable size for comparative studies of photosyntheticO2 evolution. The longer leaf sections (17.0 mm), which weresealed and included the leaf tip, were diffusion-limited witha linear response to incremental addition of CO2 and 1–0mol m–3 exogenous CO2 was required to saturate photosynthesis.Shorter leaf sections were less diffusion-limited, with thegreatest photosynthetic capacity (36 µmol O2 g–1 fr. wt. h–1) obtainedfrom the 1.0 mm size and were not infiltrated by the incubatingmedium. Comparative studies with 1.0 mm sections from plants grown inthe different sediment types revealed that the photosyntheticcapacity of the sand-grown plants was greatest (45 µmolO2 g–1 fr. wt. h–1) with a K0.5 of 80 mmol m–3.In terms of light response, saturation of photosynthesis intissue slices occurred at 850–1000 µmol m–2s–1 although light compensation points (6–11 µmolm–2s–1) and chlorophyll a: b ratios (1.3) were low.While CO2 and PAR responses were obtained using varying numbersof sections with a constant fresh weight, the relationshipsbetween photosynthetic capacity and CO2 supply or PAR were maintainedwhen the data were expressed on a chlorophyll basis. It is concludedthat under low PAR, CO2 concentrating mechanisms interact inintact plants to maintain saturating CO2 levels within leaflacunae, although the responses of the various components ofCO2 supply to PAR require further investigation. Key words: Key words-Uttorella uniflora, internal CO2 concentration, crassulacean acid metabolism, root inorganic carbon supply, CO2 concentrating mechanism  相似文献   

10.
The photosynthetic response to CO2 concentration, light intensityand temperature was investigated in water hyacinth plants (Eichhorniacrassipes (Mart.) Solms) grown in summer at ambient CO2 or at10000 µmol(CO2) mol–1 and in winter at 6000 µmol(CO2)mol–1 Plants grown and measured at ambient CO2 had highphotosynthetic rate (35 µmo1(CO2) m–2 s–1),high saturating photon flux density (1500–2000) µmolm–2 s–1 and low sensitivity to temperature in therange 20–40 °C. Maximum photosynthetic rate (63 µmol(CO2)m–2 s–1) was reached at an internal CO2 concentrationof 800 µmol mol–1. Plants grown at high CO2 in summerhad photosynthetic capacities at ambient CO2 which were 15%less than for plants grown at ambient CO2, but maximum photosyntheticrates were similar. Photosynthesis by plants grown at high CO2and high light intensity had typical response curves to internalCO2 concentration with saturation at high CO2, but for plantsgrown under high CO2 and low light and plants grown under lowCO2 and high light intensity photosynthetic rates decreasedsharply at internal CO2 concentrations above 1000 µmol–1. Key words: Photosynthesis, CO2, enrichment, Eichhornia crassipes  相似文献   

11.
Young tomato plants were exposed to two weeks of chilling undernon-photoinhibiting or mild photoinhibiting conditions. Thedevelopment of the leaves was studied under chilling and controlconditions by measuring several physiological parameters. Agradual decrease of the efficiency of the photosynthetic apparatuswith maturation and ageing occurred in unchilled plants. Thiswas reflected by gradual changes in CO2-saturated photosynthesisand protein and rubisco contents. Except for senescing leaves,a correlation close to 1 : 1 was observed between maximum rubiscoactivity and CO2-saturated photosynthesis. Chlorophyll (Chl)contents and photochemical chlorophyll fluorescence quenchingshowed strong decreases only in the last phase of senescencein the oldest leaves. In plants chilled under non-photoinhibitingconditions (10C, 100–150 µE m–2 s–1or 6C, 30–50 µE m-2 s–1), a similar patternof ageing was observed, and no indications were found for aninduction of protein or rubisco degradation by chilling. Sincethese plants stopped growing in the cold, they revealed lowertotal photosynthetic capacities than unchilled plants of thesame size. When the chilling conditions were mildly photoinhibitory(6C, 100–150 µE m–2 s–1), a much strongerdepression of rubisco activity and photosynthetic capacity wasfound in all leaves, which was partly reversible in the youngones. This decrease in CO2fixation capacity, in turn, led toa higher susceptibility of the chilled plants to photoinhibitionat 20C. It is concluded that the decrease of both photosyntheticcapacity and growth after long-term chilling in tomato is aconsequence of the preceeding ageing and senescing of the leavesduring chilling, in contrast to chilling-tolerant species withthe ability for acclimation to low temperatures. (Received April 26, 1993; Accepted September 7, 1993)  相似文献   

12.
Photosynthesis is known to occur in rice panicles, but littlehas been reported about the photosynthetic or biochemical characteristicsof such panicles. The estimated gross amount of photo-syntheticallyassimilated CO2 in a panicle is 30% of that in a flag leaf.This result and the good light-intercepting characteristicsof the panicle in the canopy suggest that photosynthesis inthe panicle may contribute significantly to grain filling. Therice panicle is composed of spikelets and of rachis-branchesincluding rachis which have estimated gross rates of photosynthesisduring the 30-day period after anthesis of 130 to 180 and 50to 100 µmol CO2.(mg Chl)–1.h–1, respectively.The corresponding rate for the flag leaf is 180 to 230 µmolCO2.(mg Chl).h. On the basis of Chl, spikeletshave a high photosynthetic capability which is similar to thatof the flag leaf. The activities of ribulose-l,5-bisphosphate carboxylase (RuBPCase),phosphoenolpyruvate carboxylase (PEPCase), and pyruvate.Pi dikinase(PPDK) in spikelets were 129, 220, and 87 µmol.(mg Chl).h,respectively. The activities of PEPCase and PPDK in spikeletswere considerably higher than those in the flag leaf or rachis-branches.Oxygen-insensitive photosynthesis was found only in spikelets.The Km of NaHCO3 for photosynthesis by slices of spikelets inan aqueous solution (0.6 mM) was considerably lower than thatfor slices of flag leaf (4.2 mM). All these results indicatethat spikelets have different photosynthetic characteristicsfrom those of the flag leaf and rachis-branches. The possibilityof C3–C4 intermediate photosynthesis or C4-like photosynthesisin spikelets is discussed. 4Present address: Department of Biochemistry, Faculty of Science,Saitama University, Urawa, 338 Japan (Received February 14, 1990; Accepted June 12, 1990)  相似文献   

13.
The causes of interspecific differences in the µ-l relationshipare examined in the context of a mechanistic model which relatesµ to irradiance in terms of six factors:, kc photosyntheticquotient (PQ), Chl a:C, respiration and excretion. The effectof cell size on the light saturated growth rate is also considered.It is shown that photosynthetic efficiency and PQ exhibit remarkablylittle interspecific variability, and average 0.024 ±0.005 µg C(µg Chl a)–1 h–1 (µEm–2 s–1)–1 and 1.5 ± 0.2 mol 02 molC–1 (when NO3 is the nitrogen source) respectively.Two useful relationships were derived: (i) between growth efficiency,g and Chl a:C at µ. = 0; (ii) between the compensationintensity, Ic and the Chl a-specific maintenance respirationrate. Both relationships were independent of temperature anddaylength. Species best adapted to growth at low light werefound to exhibit high Chl a:C ratios and low maintenance respirationrates. As a group, diatoms were consistently the best adaptedfor growth at low irradiance. Chiorophytes, haptophytes, chrysophytesand cryptophytes were intermediate in their performance at lowirradiance. Dinoflagellates exhibited extreme diversity, withspecies spanning the spectrum from very good performance atlow irradiance to very poor. A new µmax-cell carbon relationshipis given based on growth rates normalized to 15°C. Evidenceis presented to show that noise in this relationship can besignificantly reduced by using only carbon-specific growth ratesand using only data for species grown at the same daylength.  相似文献   

14.
Red beech (Nothofagus fusca (Hook. F.) Oerst.; Fagaceae) andradiata pine (Pinus radiata D. Don; Pinaceae) were grown for16 months in large open-top chambers at ambient (37 Pa) andelevated (66 Pa) atmospheric partial pressure of CO2, and incontrol plots (no chamber). Summer-time measurements showedthat photosynthetic capacity was similar at elevated CO2 (lightand CO2-saturated value of 17.2 µmol m–2 s–1for beech, 13.5 µmol m–2 s–1 for pine), plantsgrown at ambient CO2 (beech 21.0 µmol–2 s–1,pine 14.9 µmol m–2s–1) or control plants grownwithout chambers (beech 23.2 µmol m–2 s–1,pine 12.9 µmol m–2 s–1). However, the higherCO2 partial pressure had a direct effect on photosynthetic rate,such that under their respective growth conditions, photosynthesisfor the elevated CO2 treatment (measured at 70 Pa CO2 partialpressure: beech 14.1 µmol m–2 s–1 pine 10.3)was greater than in ambient (measured at 35 Pa CO2: beech 9.7µmol m–2 s–1, pine 7.0 µmol m–2s–1) or control plants (beech 10.8 µmol m–2s–1, pine 7.2 µmol m–2 s–1). Measurementsof chlorophyll fluorescence revealed no evidence of photodamagein any treatment for either species. The quantity of the photoprotectivexanthophyll cycle pigments and their degree of de-epoxidationat midday did not differ among treatments for either species.The photochemical efficiency of photosystem II (yield) was lowerin control plants than in chamber-grown plants, and was higherin chamber plants at ambient than at elevated CO2. These resultssuggest that at lower (ambient) CO2 partial pressure, beechplants may have dissipated excess energy by a mechanism thatdoes not involve the xanthophyll cycle pigments. Key words: Carotenoids, chlorophyll fluorescence, photosynthesis, photoinhibition, photoprotection, xanthophyll cycle  相似文献   

15.
The results of our previous study [Sawada et al. (1989) PlantCell Physiol. 30: 691] implied that, under sink-limited conditions,a decrease in the activity of ribulose-l,5-bisphosphate carboxylase(EC 4.1.1.39 [EC] ) caused a reduction in the rate of photosyntheticfixation of CO2 in single-rooted leaves of soybean (Glycinemax L. Merr. cv. Tsurunoko). This reduction in the rate of photosynthesisin source leaves seemed to correspond to a decrease in the demandby sink tissues for photoassimilates. In the present study,the activity of RuBPcase in vivo was estimated by measuringthe "initial" activity immediately after extraction from standardleaves (grown under a regime of 10 h of light and 14 h of darkness)and from sink-limited leaves (exposed for 6 or 7 d to continuouslight to alter the source/sink balance). The rate of photosynthesisin the sink-limited leaves decreased to 47% of that in the standardleaves. The "initial" activity of RuBPcase was 4.3 in the standardleaves but only 1.6 µmole CO2.(mg Chl)–1.min–1in the sink-limited leaves. These results appear to indicatethat the reduction in photosynthetic activity under sink-limitedconditions was mostly due to a deactivation of RuBPcase. Theactivity of deactivated RuBPcase in the sink-limited leaveswas restored to 4.1 µmole CO2.(mg Chl)–1.min–1by incubation of the enzyme in a medium that contained onlyNa2HPO4. This result suggests that free Pi in chloro-plastsplays an important role in the activation of the enzyme. Thelevel of Pi in the sink-limited leaves was 62% of that in thestandard leaves. On the basis of these various results, it appearsthat the deactivation of RuBPcase in the sink-limited leavesis the result of a decrease in the level of Pi. The role offree Pi in the activation of RuBPcase, in particular at atmosphericconcentrations of CO2, was also investigated. (Received November 30, 1989; Accepted May 11, 1990)  相似文献   

16.
Effects of CO2 Enrichment on Four Poplar Clones. I. Growth and Leaf Anatomy   总被引:2,自引:0,他引:2  
The poplar clones Columbia River, Beaupre, Robusta and Raspaljehave been investigated under the present (350 µmol mol–1)and double the present (700 µmol mol–1) atmosphericCO2 concentration. Cuttings were planted in pots and were grownin open-top chambers inside a glasshouse for 92 d. The number of leaves, total length of stem, total leaf area,overall growth rate, total leaf, stem and root d. wt respondedpositively to increased CO2 but the leaf size and biomass allocationshowed no change with CO2 enrichment. Beaupre and Robusta showeda larger growth response than either Columbia River or Raspalje. The effects of CO2 enrichment were restricted to the early phaseof growth at the beginning of the growth season. Leaf cell numbers in all the clones were not affected by CO2enrichment. Leaf thickness was affected; this was mainly theresult of larger mesophyll cells and more extensive intercellularspaces. Poplar clones, CO2 enrichment, growth, leaf anatomy, leaf cell number  相似文献   

17.
Seventeen size-fractionation experiments were carried out duringthe summer of 1979 to compare biomass and productivity in the< 10, <8 and <5 µm size fractions with that ofthe total phytoplankton community in surface waters of NarragansettBay. Flagellates and non-motile ultra-plankton passing 8 µmpolycarbonate filters dominated early summer phytoplankton populations,while diatoms and dinoflagellates retained by 10 µm nylonnetting dominated during the late summer. A significant numberof small diatoms and dinoflagellates were found in the 10–8µm size fraction. The > 10 µm size fraction accountedfor 50% of the chlorophyll a standing crop and 38% of surfaceproduction. The <8 µm fraction accounted for 39 and18% of the surface biomass and production. Production by the< 8 µm fraction exceeded half of the total communityproduction only during a mid-summer bloom of microflagellates.Mean assimilation numbers and calculated carbon doubling ratesin the <8 µm (2.8 g C g Chl a–1 h–1; 0.9day–1)and<5 µm(1.7 g C g Chl a–1h–1; 0.5day–1)size fractions were consistently lower than those of the totalpopulation (4.8 g C g Chl a–1 h–1; 1.3 day–1)and the <10 µm size fraction (5.8 g C g Chl a–1h–1; 1.4 day –1). The results indicate that smalldiatoms and dinoflagellates in fractionated phytoplankton populationscan influence productivity out of proportion to their numbersor biomass. 1Present address: Australian Institute of Marine Science, P.M.B.No. 3, Townsville M.S.O., Qld. 4810, Australia.  相似文献   

18.
The activation of ribulose–1, 5-bisphosphate carb-oxylase/oxygenase(Rubisco, EC 4.1.1.39 [EC] ) from the floating angiosperm Spirodelapolyrhiza (L.) Schleid. (giant duckweed) grown at a photon irradianceof 200 or 400 mol photons m–2 s–1 was consistentlylow, in the range of 56–62%. Similarly low values wereobserved with four other emergent aquatic species growing underfull sun irradiance. Transference of Spirodela plants for short(minutes) or long (days) periods to the higher or lower irradianceincreased or decreased, respectively, the activation by onlyabout 15%. Activation was not greatly altered by exposure ofthe plants to full sun irradiance of >2000 mol photons m–2s–1 or CO2 concentrations in air of 0 and 1170 mol mor–1but darkness caused a slow decline to 20% activation. Transientoscillations were observed following a change in irradianceor CO2 concentration indicating that Rubisco was responsiveto environmental perturbations. The low Rubisco activation wasnot due to the tight binding of inhibitors such as carboxyarabinitol-1-phosphate.It is concluded that a substantial proportion of the Rubiscoprotein in these naturally-occurring species may not be usedfor CO2-fixation at any given moment. Key words: Rubisco  相似文献   

19.
Single clonal plants of white clover (Trifolium repens L) grownfrom explants in a Perlite rooting medium, and dependent fornitrogen on N2 fixation in root nodules, were grown for severalweeks in controlled environments which provided two regimesof CO2, and temperature 23/18 °C day/night temperaturesat 680 µmol mol–1 CO2, (C680), and 20/15 °Cday/night temperatures at 340 µmol mol–1 CO2 (C340)After 3–4 weeks of growth, when the plants were acclimatedto the environmental regimes, leaf and whole-plant photosynthesisand respiration were measured using conventional infra-red gasanalysis techniques Elevated CO2 and temperature increased ratesof photosynthesis of young, fully expanded leaves at the growthirradiance by 17–29%, despite decreased stomatal conductancesand transpiration rates Water use efficiency (mol CO2 mol H2O–1)was also significantly increased Plants acclimated to elevatedCO2, and temperature exhibited rates of leaf photosynthesisvery similar to those of C340 leaves ‘instantaneously’exposed to the C680 regime However, leaves developed in theC680 regime photosynthesised less rapidly than C340 leaves whenboth were exposed to a normal CO2, and temperature environmentIn measurements where irradiance was varied, the enhancementof photosynthesis in elevated CO2 at 23 °C increased graduallyfrom approx 10 % at 100 µmol m–1 s–1 to >27 % at 1170 µmol m–2 s–1 In parallel, wateruse efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 In parallel,water use efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 to approx100 % at the highest irradiance Elevated CO2, and temperatureincreased whole-plant photosynthesis by > 40 %, when expressedin terms of shoot surface area or shoot weight No effects ofelevated CO2 and temperature on rate of tissue respiration,either during growth or measurement, were established for singleleaves or for whole plants Dependence on N2, fixation in rootnodules appeared to have no detrimental effect on photosyntheticperformance in elevated CO2, and temperature Trifolium repens, white clover, photosynthesis, respiration, elevated CO2, elevated temperature, water use efficiency, N2 fixation  相似文献   

20.
Barley (Hordeum vulgare L. cv. Digger) was grown for 22 d inenclosed chambers with a CO2 enrichment of 35, 155, 400 or 675µmol CO2 mol1. CO2 enrichment increased photosyntheticcapacity in the plants grown at either of the two highest levelsof pCO2. A CO2 enrichment of 675µmol CO2 caused a significantincrement of shoot dry weight, whereas no changes were observedin fresh weight, chlorophyll or protein levels. At a light intensityof 860µmol m–2s–1 CO2 enrichment caused photosyntheticcapacity to increase by 250%, whereas no effect was observedat 80 µmol m–2 s–1. Over time, photosynthesisdecreased by 70% independent of CO2. A time-dependent increasein the level of extractable fructose was observed whereas totalextractable carbohydrate only changed slightly. Key words: Carbohydrates, CO2 enrichment, Hordeum vulgare, photosynthesis, respiration  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号