首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Borna disease virus (BDV) causes neurological disease in horses, however, there is no consensus as to the extent or significance of human infection. BDV antigen levels in plasma (BDVpAg) and anti-BDV were measured by ELISAs. Confirmation was by Western blot (WB), immunofluorescence assay (IFA) or BDV-peptide-epitope ELISA. For 42 volunteers psychiatrically-defined as non-depressed (82 samples) neither BDVpAg nor anti-BDV was detected. For 104 patients with diagnosed depression (290 samples) 1 was BDVpAg positive and 5 anti-BDV positive, one epitope-e8 positive and 4 IFA positive, with 96% concordance for repeat samples. No BDVpAg was detected in 214 pregnant women, 2 were anti-BDV positive, one WB-confirmed (p24/p40). For 219 donors 2 were BDVpAg positive with anti-BDV detected in 5 (2.3%) one IFA 1:10, another IFA 1:40/epitope-e8 positive. In multitransfused patients, 3/168 were BDV pAg positive, with 14/168 anti-BDV positive, 1 epitope-e8 positive, 2 WB positive and 1 IFA 1:10. In BDVpAg positive multi-transfused patients there was an elevated risk of transaminitis. In one case, a patient BDV-negative prior to transfusion was BDVpAg positive for several months posttransfusion (associated with transaminitis). These data provide serological evidence, supported by confirmatory assays and repeat-sample concordance, of BDV infection in Australia, particularly in multi-transfused patients.  相似文献   

2.
3.
4.
In the early 1970s a fatal neurological disorder in cats was reported in the areas around Lake M?laren in central Sweden. The major signs were hind-leg ataxia, as well as absence or marked decrease in postural reactions and in some cases behavioural changes. The pathology of the disorder was characterized as a non-suppurative meningoencephalomyelitis, but the etiology was not determined. Almost twenty years later, the disorder now known as staggering disease (SD), was further characterized both clinically and pathologically. The same histopathological picture was seen as in the previous study, with inflammatory nodules, neuronal degeneration and perivascular cuffs mainly consisting of lymphocytes. The most severe inflammatory changes were seen in the grey matter of the brain stem, basal ganglia and hippocampus. Clinically the same major neurological signs were seen. Although the cats were examined for several known infectious agents causing central nervous system (CNS) disturbances, no etiological cause of SD was determined.  相似文献   

5.
Borna disease virus infection impairs synaptic plasticity   总被引:2,自引:1,他引:1       下载免费PDF全文
The mechanisms whereby Borna disease virus (BDV) can impair neuronal function and lead to neurobehavioral disease are not well understood. To analyze the electrophysiological properties of neurons infected with BDV, we used cultures of neurons grown on multielectrode arrays, allowing a real-time monitoring of the electrical activity across the network shaped by synaptic transmission. Although infection did not affect spontaneous neuronal activity, it selectively blocked activity-dependent enhancement of neuronal network activity, one form of synaptic plasticity thought to be important for learning and memory. These findings highlight the original mechanism of the neuronal dysfunction caused by noncytolytic infection with BDV.  相似文献   

6.
Synaptic pathology in Borna disease virus persistent infection   总被引:7,自引:0,他引:7       下载免费PDF全文
Borna disease virus (BDV) infection of newborn rats leads to a persistent infection of the brain, which is associated with behavioral and neuroanatonomical abnormalities. These disorders occur in the absence of lymphoid cell infiltrates, and BDV-induced cell damage is restricted to defined brain areas. To investigate if damage to synaptic structures anteceded neuronal loss in BDV neonatally infected rats, we analyzed at different times postinfection the expression levels of growth-associated protein 43 and synaptophysin, two molecules involved in neuroplasticity processes. We found that BDV induced a progressive and marked decrease in the expression of these synaptic markers, which was followed by a significant loss of cortical neurons. Our findings suggest that BDV persistent infection interferes with neuroplasticity processes in specific cell populations. This, in turn, could affect the proper supply of growth factors and other molecules required for survival of selective neuronal populations within the cortex and limbic system structures.  相似文献   

7.
8.
9.
10.
11.
12.
Granule cells are major targets of entorhinal afferents terminating in a laminar fashion in the outer molecular layer of the dentate gyrus. Since Borna disease virus (BDV) infection of newborn rats causes a progressive loss of granule cells in the dentate gyrus, entorhinal fibres become disjoined from their main targets. We have investigated the extent to which entorhinal axons react to this loss of granule cells. Unexpectedly, anterograde DiI tracing has shown a prominent layered termination of the entorhinal projection, despite an almost complete loss of granule cells at 9 weeks after infection. Combined light- and electron-microscopic analysis of dendrites at the outer molecular layer of the dentate gyrus at 6 and 9 weeks post-infection has revealed a transient increase in the synaptic density of calbindin-positive granule cells and parvalbuminergic neurons after 6 weeks. In contrast, synaptic density reaches values similar to those of uninfected controls 9 weeks post-infection. These findings indicate that, after BDV infection, synaptic reorganization processes occur at peripheral dendrites of the remaining granule cells and parvalbuminergic neurons, including the unexpected persistence of entorhinal axons in the absence of their main targets.  相似文献   

13.
The maturation of Borna disease virus (BDV) glycoprotein GP was studied in regard to intracellular compartmentalization, compartmentalization signal-domains, proteolytic processing, and packaging into virus particles. Our data show that BDV-GP is (i) predominantly located in the endoplasmic reticulum (ER), (ii) partially exists in the ER already as cleaved subunits GP-N and GP-C, (iii) is directed to the ER/cis-Golgi region by its transmembrane and/or cytoplasmic domains in CD8-BDV-GP hybrid constructs and (iv) is incorporated in the virus particles as authentic BDV glycoprotein exclusively in the cleaved form decorated with N-glycans of the complex type. Downregulation of BDV-glycoproteins on the cell surface, their limited proteolytic processing, and protection of antigenic epitopes on the viral glycoproteins by host-identical N-glycans are different strategies for persistent virus infections.  相似文献   

14.
博尔纳病病毒(Borna Disease Virus,BDV)是一种具有高度嗜神经性的病毒。近年,有大量研究证实该病毒感染与人神经精神疾病的发生有关。但其确切机制仍未明了。一些研究认为BDV感染对中枢神经系统神经元可塑性的影响可能是其致病的重要基础。近年许多学者通过对沙鼠、小鼠、大鼠及转基因鼠等各种BDV感染模型的研究,进一步揭示了BDV感染对神经元可塑性影响的分子机制。结果发现BDV感染主要通过对星形胶质细胞功能的影响、干预HMGB 1蛋白以及神经营养因子信号转导等途径干预神经元的可塑性,影响脑内神经元的功能及其存活和发育,从而引起脑功能损害,导致宿主精神、行为异常。今后随着新的BDV转基因模型的成功建立将进一步揭示BDV感染对神经元可塑性影响的分子机制,给临床预防和治疗博尔纳病提供理论基础。  相似文献   

15.
16.
We developed a mouse model of Borna disease to facilitate immunopathogenesis research by adaptation of Borna disease virus to mice through serial passage in mouse brain tissue. Borna disease virus replication, antibody production, inflammation, and Borna disease expression in several different strains of mice were examined.  相似文献   

17.
A high rate of Borna disease virus (BDV) infection has been demonstrated in patients with chronic fatigue syndrome (CFS). Herein, we focused on BDV infection in two family clusters of patients with CFS: a father, mother, two sons and one daughter (family #1); and a father, mother, two daughters and one son (family #2). All members, except for the elder son in family #1 and the father and son in family #2, were diagnosed with CFS. The results supported that all the family members with CFS were infected with BDV, as evidenced by the presence of antibodies to viral p40, p24 and/or gp18 and BDV p24 RNA in peripheral blood mononuclear cells. The healthy members, except for the father of family #2 who was positive for antibody to p24, were all negative by both assays. Follow-up studies in family #1 continued to reveal BDV antibodies and BDV RNA, except in the mother, who lost the RNA upon slight recovery from the disease.  相似文献   

18.
Mechanism of Borna disease virus entry into cellsGonzalez-Dunia, D. et al. (1998)J. Virol. 72, 783–788  相似文献   

19.
20.
R Huang  H Gao  L Zhang  J Jia  X Liu  P Zheng  L Ma  W Li  J Deng  X Wang  L Yang  M Wang  P Xie 《PloS one》2012,7(9):e44665

Background

Borna disease virus is a neurotropic, non-cytolytic virus that has been widely employed in neuroscientific research. Previous studies have revealed that metabolic perturbations are associated with Borna disease viral infection. However, the pathophysiological mechanism underlying its mode of action remains unclear.

Methodology

Human oligodendroglia cells infected with the human strain Borna disease virus Hu-H1 and non-infected matched control cells were cultured in vitro. At day 14 post-infection, a proton nuclear magnetic resonance-based metabonomic approach was used to differentiate the metabonomic profiles of 28 independent intracellular samples from Borna disease virus-infected cells (n = 14) and matched control cells (n = 14). Partial least squares discriminant analysis was performed to demonstrate that the whole metabonomic patterns enabled discrimination between the two groups, and further statistical testing was applied to determine which individual metabolites displayed significant differences between the two groups.

Findings

Metabonomic profiling revealed perturbations in 23 metabolites, 19 of which were deemed individually significant: nine energy metabolites (α-glucose, acetate, choline, creatine, formate, myo-inositol, nicotinamide adenine dinucleotide, pyruvate, succinate) and ten amino acids (aspartate, glutamate, glutamine, glycine, histidine, isoleucine, phenylalanine, threonine, tyrosine, valine). Partial least squares discriminant analysis demonstrated that the whole metabolic patterns enabled statistical discrimination between the two groups.

Conclusion

Borna disease viral infection perturbs the metabonomic profiles of several metabolites in human oligodendroglia cells cultured in vitro. The findings suggest that Borna disease virus manipulates the host cell’s metabolic network to support viral replication and proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号