首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Three experiments were conducted to evaluate the role of endogenous opioid peptides (EOP) in modulating luteinizing hormone (LH) secretion in the prepubertal gilt. In Experiment I, 8 prepubertal (P) gilts, 160-170 days of age (puberty = 197 +/- 10 days), received either 1 (n = 2), 3 (n = 3), or 6 (n = 3) mg/kg BW of naloxone (NAL), an opiate antagonist, in saline i.v. Blood was collected by jugular vein cannula every 15 min for 2 h before and 2 h after NAL. All doses of NAL failed to alter serum LH concentrations. In Experiment II, 21 P gilts 160-170 days of age and 21 mature (M) gilts were ovariectomized (OVX). At the time of OVX, gilts were classified as prepubertal if their ovaries were devoid of corpora albicantia and corpora lutea. Three weeks after OVX, P and M gilts were injected twice daily for 10 days with either 0.85 mg/kg BW of progesterone (P4) or oil vehicle (V), resulting in the following groups: PP4 (n = 11), PV (n = 10), MP4 (n = 11), and MV (n = 10). All gilts received 1 mg/kg BW of NAL on the last day of treatment. Blood samples were collected via a jugular cannula every 15 min for 4 h before and 2 h after NAL treatment. NAL treatment resulted in an increase (p less than 0.05) in serum LH concentrations only in the MP4 gilts. In Experiment III, 15 OVX gilts 280 days of age were used. Ten of the 15 gilts were OVX prior to puberty at 160 days of age and were classified as chronologically mature (CM) at the time of treatment. The remaining 5 gilts were OVX after puberty, and were classified as sexually mature (SM) at the time of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
This study investigated whether the role of endogenous opioid peptides in the suppression of LH secretion during seasonal anestrus in the sheep changes with age. The experimental approach was to determine the effect of blockade of opioid receptors with naloxone on LH secretion at different times of year within the anestrous season, and to compare responses between seasonally anestrous sheep of different ages. Sheep, all past the normal age of puberty, were ovariectomized before the study and treated s.c. with estradiol implants to provide a fixed estradiol feedback signal. One-year-old females responded to naloxone with a rapid increase in LH pulse frequency in the early (April) and late (August) phases of their first anestrous season. This response was similar to that previously found in prepubertal female sheep. Only 5 of the 8 females responded to the same naloxone challenge in mid anestrus (June), suggesting that the contribution of opioid pathways to the inhibition of LH secretion at this time of year is not necessarily the same as that in early and late anestrus. None of the older anestrous sheep (greater than or equal to 2 yr) responded to naloxone in June, indicating age-related changes in the role of endogenous opioid mechanisms in the inhibition of LH secretion. Ovary-intact mature sheep did not respond to naloxone, in contrast to our previous observations in intact prepubertal females. We infer that the neural mechanisms underlying the superficially similar hypogonadotropic states that occur during the prepubertal period, first anestrous season, and later anestrous seasons are not identical.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Prostaglandins, produced from membrane phospholipids by the action of phospholipase A2, cyclooxygenase, and specific prostaglandin synthases, are important regulators of ovulation, luteolysis, implantation, and parturition in reproductive tissues. Destruction of the corpus luteum at the end of the estrous cycle in nonpregnant animals is brought about by the pulsatile secretion of prostaglandin F(2alpha) (PGF(2alpha)) from the endometrium. It has been known for many years that progesterone, estradiol, and oxytocin are the hormones responsible for luteolysis. To achieve luteolysis, two independent processes have to be coordinated; the first is an increase in the prostaglandin synthetic capability of the endometrium and the second is an increase in oxytocin receptor number. Although progesterone and estradiol can modulate the expression of the enzymes involved in prostaglandin synthesis, the primary reason for the initiation of luteolysis is the increase in oxytocin receptor on the endometrial epithelial cells. Results of many in vivo studies have shown that progesterone and estradiol are required for luteolysis, but it is still not fully understood exactly how these steroid hormones act. The purpose of this article is to review the recent data related to how progesterone and estradiol could regulate (initiate and then turn off) the uterine pulsatile secretion of PGF(2alpha) observed at luteolysis.  相似文献   

4.
Minced luteal tissue of bovine corpora lutea from Day 4, 5, and 6 of the estrous cycle (n = 4 corpora lutea each) was superfused for 9 h, and the progesterone secretion under the influence of 100 ng luteinizing hormone (LH)/ml and/or 1,000 ng prostaglandin F(2alpha) (PGF(2alpha))/ml was determined. In vivo, this period of the estrous cycle is characterized by a transition from PGF(2alpha) refractoriness to PGF(2alpha) sensitivity. The investigations were carried out in order to examine whether this transition is reflected by a change in the hormone secretion pattern in vitro. The basal secretion was higher on Day 6 than on Day 4 and 5 (P < 0.01). PGF(2alpha) slightly increased the progesterone secretion, but there was no statistically significant difference (P > 0.05). LH, however, stimulated the progesterone secretion by about 30% in luteal tissue collected from Day 4 and 5 (P < 0.01). In luteal tissue collected from Day 6, the LH-induced increase in hormone secretion was not statistically significant due to two corpora lutea that showed no response at all to LH. The progesterone secretion of the two other corpora lutea, however, was increased by 30% (P < 0.01). When PGF(2alpha) and LH were simultaneously added, the LH-induced progesterone secretion was not inhibited; PGF(2alpha) even seemed to intensify the action of LH. The difference between the hormone secretion under the influence of LH alone and that under the influence of a combination of LH and PGF(2alpha), however, was not statistically significant. It is concluded that in cattle the end of the refractoriness to PGF(2alpha) in vivo is not reflected by a corresponding change of the hormone secretion pattern in vitro.  相似文献   

5.
Mean concentrations of luteinizing hormone (LH) increase during the follicular phase of the estrous cycle in cows. The working hypotheses in the present study were (1) that increasing concentrations of 17 beta-estradiol (E2) during the follicular phase of the estrous cycle cause an increase in mean concentration of LH by increasing amplitude of pulses of LH, and (2) that increasing E2 concentrations during this stage of the estrous cycle decrease frequency of pulses of LH in bovine females. Day of estrus was synchronized in seventeen mature cows. Treatments were initiated on Day 16 of the experimental estrous cycle (Day 0 = estrus). At Hour 0 (on Day 16), 4 cows were lutectomized. Lutectomy of these cows (EE; n = 4) allowed for endogenous secretion of E2. The remaining cows were ovariectomized at Hour 0 and were assigned to one of three E2 treatments: luteal phase E2 (LE, n = 5), increasing then decreasing E2 (DE, n = 5), and no E2 (NE, n = 3). Cows in the group that received LE were administered one E2 implant at Hour 0, which provided low circulating concentrations of E2 similar to those observed during the luteal phase of the estrous cycle. Cows in the group that received DE were administered one E2 implant at Hour 0, and additional implants were administered at 8-h intervals through Hour 40; then, two implants were removed at Hours 48 and 56, and one implant was removed at Hour 64.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In the following experiments, the role of the preoptic-suprachiasmatic area (POA-SCN) in the control of luteinizing hormone-releasing (LHRH) release was examined by in vitro superfusion of either mediobasal hypothalamus (MBH) or MBH-POA-SCN fragments obtained from cycling rats killed on various days of the estrous cycle. The lowest level of LHRH output occurred during estrus, highest levels during diestrus, and intermediate levels on proestrus in the MBH-POA-SCN preparation. As expected, significant decreases in LHRH output from the MBH alone occurred during both days of diestrus and on proestrus, as compared to output from the MBH-POA-SCN tissue, since this structure contains most of the LHRH perikarya. However, similar LHRH secretion patterns were detected in estrus from both preparations. The average period of the LHRH pulses for the estrous cycle in the MBH-POA-SCN was 30.9 +/- 1.2 min compared to 97.7 +/- 25.1 min in the MBH, with significant differences occurring on diestrus 2. The increase and extreme variability of the period of LHRH pulses in the MBH region, compared to the MBH-POA-SCN region, suggests that it is the latter region that contains the neural circuits that control the LHRH pulse generator. The LHRH pulse amplitudes from both hypothalamic regions were similar during all phases of the estrous cycle, except diestrus 2, when the LHRH pulse amplitude from the MBH region was significantly lower than the LHRH pulse amplitude from MBH-POA-SCN. The percentage of LHRH released in the MBH did not vary with the estrous cycle, however, in the MBH-POA-SCN significant changes were observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
V Chandrashekar  A Bartke 《Steroids》1988,51(5-6):559-576
The role of endogenous prolactin (PRL) in the control of testosterone (T) secretion and T responses to LH treatment was evaluated in adult male rats. Rats were actively immunized three times against ovine PRL in Freund's adjuvant-saline mixture (PRL-IMM rats), and control rats were treated with adjuvant-saline mixture (ADJ-CON rats). On day 110 after initial immunization, rats in each of these two groups were divided into three subgroups. Rats in subgroups 1 and 2 were injected with saline while those in subgroup 3 received 200 micrograms ovine PRL in saline, twice a day for a total of 7 injections. On day 113, the seventh injection was given 3 h before the termination of the experiment. On the same day, 2.5 h before the rats were sacrificed, rats in subgroups 1 and 3 were treated with saline; animals in subgroup 2 received 25 micrograms ovine LH in saline. Blood samples were obtained throughout the study, and sera were used for measurement of PRL antibodies, gonadotropins, progesterone (P), and T. PRL antibodies were detected in the sera of all rats actively immunized with PRL. Administration of PRL increased serum T levels in ADJ-CON rats, and this effect was eliminated in rats actively immunized against PRL. LH treatment significantly increased serum T levels in ADJ-CON rats. In PRL-IMM rats, this increase was attenuated while circulating P concentrations were elevated. These data demonstrate that PRL treatment can increase T secretion and that endogenous PRL is required for the complete expression of the stimulatory action of LH on T secretion in adult male rats.  相似文献   

8.
9.
10.
Fifteen Suffolk ewes were used in three experiments to compare plasma follicle stimulating hormone (FSH) and luteinizing hormone (LH) patterns during the estrous cycle and to determine whether FSH levels undergo changes in pulse frequency. Luteinizing hormone changed inversely with progesterone levels whereas FSH and progesterone concentrations revealed no obvious relationship. Unlike LH, FSH levels did not pulsate during the follicular phase. Higher FSH levels were detected on days 1, 6 and 12 and lower levels on days 0, 4 and 16. Coincident preovulatory LH and FSH surges were observed and this was the only time FSH and LH levels appeared to be jointly controlled.  相似文献   

11.
Female Sprague-Dawley rats were decapitated at various stages of the estrous cycle, pregnancy, lactation and following ovariectomy. Anterior pituitary and ovarian tissues were collected and assayed to quantify luteinizing hormone releasing hormone (LHRH) receptors. No changes were noted in receptor affinity either between tissues or physiological stages studied. Pituitary LHRH receptor concentrations and content were greater (P less than 0.05) during diestrus II and proestrus than during estrus. Pituitary LHRH receptor concentrations and content during pregnancy were not different from those during estrus, however, a significant decrease was noted in pituitary LHRH receptor content and concentrations during lactation compared to estrus. Ovarian LHRH receptor content did not change with stage of reproduction (P less than 0.05). There was, however, a decrease (P less than 0.05) in ovarian LHRH receptor concentrations at Week 3 of pregnancy and Week 1 of lactation which was possibly due to the increase ovarian weight noted at both these physiological stages. There was no correlation (P less than 0.1) between ovarian and pituitary LHRH receptor numbers (r = 0.096). These findings suggest that the internal mechanisms which control changes in pituitary LHRH receptor numbers do not control ovarian LHRH receptor numbers.  相似文献   

12.
Serum levels of LH, total estrogen and progesterone were measured daily by radioimmunoassay during proestrus, estrus and early diestrus in five beagle bitches. Occurrence of the LH peak relative to the onset of estrus was quite variable ranging from 3 days before to 7 days after the onset of estrus. Serum LH levels were elevated for 3 days with a peak value of 25 ± 2 ng/ml reached 2.4 days after the start of estrus. LH levels were ≤ 2 ng/ml when measured at other times during the estrous cycle. Estrogen titers ranged from 84 ± 39 pg/ml at 9 days before the LH peak to 175 ± 15 pg/ml coincident with the LH peak. A broad estrogen peak was evident beginning 5 days before and continuing for 5 days after the LH peak. An estrogen surge was seen in 4 of 5 dogs immediately preceding or coincident with the LH peak suggesting that LH release in the bitch is triggered by a sharp elevation in estrogen levels. Serum progesterone levels rose from ≤ 5 ng/ml before the LH peak to 46 ± 6 ng/ml 6 days afterwards.  相似文献   

13.
This study examined the importance of pulsatile luteinizing hormone (LH) release on diestrus 1 (D1; metestrus) in the rat estrous cycle to ovarian follicular development and estradiol (E2) secretion. Single injections of a luteinizing hormone-releasing hormone (LHRH) antagonist given at -7.5 h prior to the onset of a 3-h blood sampling period on D1 reduced mean blood LH levels by decreasing LH pulse amplitude, while frequency was not altered. Sequential injections at -7.5 and -3.5 h completely eliminated pulsatile LH secretion. Neither treatment altered the total number of follicles/ovary greater than 150 mu in diameter, the number of follicles in any size group between 150 and 551 mu, or plasma E2, progesterone, or follicle-stimulating hormone (FSH) levels. However, both treatments with LHRH antagonist significantly increased the percentage of atretic follicles in the ovary. These data indicate that: 1) pulsatile LH release is an important factor in determining the rate at which follicles undergo atresia on D1; 2) reductions in LH pulse amplitude alone are sufficient to increase the rate of follicular atresia on D1; 3) an absence of pulsatile LH release for a period of up to 10 h on D1 is not sufficient to produce a decline in ovarian E2 secretion, most likely because the atretic process was in its early stages and had not yet affected a sufficient number of E2-secreting granulosa cells to reduce the follicle's capacity to secrete E2; and 4) suppression or elimination of pulsatile LH release on D1 is not associated with diminished FSH secretion.  相似文献   

14.
Folliculogenesis was studied by assessing development of the largest 10 follicles obtained from 10 sows 48 h after weaning and by analyzing changes in plasma luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin (PRL) for 24 h before weaning until 48 h after weaning. Follicular diameter, follicular fluid volume, and concentrations of estradiol and testosterone and granulosa cell numbers were determined in all follicles, and 125I-hCG binding to theca and granulosa and maximal aromatase activity in vitro was determined in five follicles/sow. Overall, a significant rise in LH, but not in FSH, occurred at weaning, although in individual sows an increase in LH was not necessarily related to subsequent estrogenic activity of follicles. In 9/10 sows, PRL fell precipitously after weaning. In lactation, LH was negatively, and after weaning, positively, correlated with FSH and PRL. Marked variability in follicular development existed within and between sows. Overall, most follicular characteristics were positively correlated to follicular diameter; however, in larger follicles the number of granulosa cells was variable and unrelated to estrogenic activity, which--together with theca and granulosa binding of hCG--increased abruptly at particular stages of follicular development. Differences in maturation of similarly sized follicles from different sows were related to estrogenic activity of the dominant follicles but not to consistent differences in LH, FSH or PRL secretion. Both the dynamics and the control of folliculogenesis in the sow, therefore, appear to be complex.  相似文献   

15.
It is known that opioids stimulate prolactin (PRL) secretion by an action on hypothalamic neurons, but in vitro studies have suggested a direct action on the lactotrophs. The present study was performed on male rats known to have little or no PRL response to TRH. A beta-endorphin (beta EP) injection in the third ventricle stimulated PRL secretion and induced furthermore a PRL secretory reaction to TRH injected intravenously 20 min later. Pretreatment with naloxone 10 min before beta EP injection abolished not only the PRL response to beta EP but also the conjugated effect of beta EP and TRH. Pretreatment with naloxone methyl bromide (Br-naloxone), a quaternary naloxone derivative, which does not cross the blood-brain barrier, had no effect on the PRL response to beta EP but prevented the conjugated effect of beta EP and TRH on PRL secretion. Pretreatment of the animals with -methyl-parathyrosine resulting in a dopamine depletion or with haloperidol, a dopamine antagonist, could not induce lactotroph responsiveness to TRH. These results suggest that beta EP in male rat sensitizes the PRL cell to TRH by a direct effect and not through an inhibition of the dopaminergic tone.  相似文献   

16.
The opioid antagonist WIN-44441-3 (WIN-3, Sterling-Winthrop) caused significant increases in LH secretion in ovariectomized ewes treated with progesterone but not in ovariectomized animals treated with oestradiol-17 beta. In the non-breeding season, plasma LH concentrations in ovariectomized ewes without steroid therapy, given oestradiol-17 beta or oestradiol-17 beta and progesterone together were not affected by treatment with WIN-3 on Day 6 after ovariectomy (there was a significant increase in LH as a result of WIN-3 treatment 13 days after ovariectomy in sheep given no steroid therapy). However, WIN-3 treatment of ovariectomized sheep given progesterone resulted in a significant increase in plasma LH. WIN-3 was ineffective when given to intact ewes treated with progesterone during the non-breeding season. With ovariectomized sheep during the breeding season there was again no response to WIN-3 at 6 days after ovariectomy in sheep given oestradiol-17 beta, but significant LH elevations in animals given no steroid, those given progesterone and those given progesterone + oestradiol-17 beta. The lack of an LH response to WIN-3 in ovariectomized sheep treated with oestradiol-17 beta did not result from a reduced pituitary response to GnRH since such animals responded normally to exogenous GnRH treatment. Overall, these results are consistent with the idea that, irrespective of the time of year, progesterone exerts negative feedback upon LH release at least in part through an opioidergic mechanism, whereas oestradiol-17 beta exerts negative feedback through steps unlikely to involve opioids. Progesterone can override the effect of oestradiol-17 beta during the breeding season only. Further, there appears to be a steroid-independent opioid involvement in LH suppression, operating at both times of year.  相似文献   

17.
The objectives of this study were to investigate whether estradiol treatment during lactation modifies 1) the patterns of endogenous LH, FSH, and prolactin (PRL) release; 2) the sensitivity of the pituitary to exogenous injections of LHRH; and 3) the responsiveness of the ovarian follicles to gonadotropin. Plasma LH, FSH, and PRL were determined in samples taken repeatedly from 18 sows on Days 24-27 of lactation. Ovaries were then recovered, and follicular development was assessed by measuring the follicular diameter (FFD) and follicular fluid estradiol-17 beta concentration (FFE) of the ten largest follicles dissected from each ovary. Sows were randomly allocated to one of four treatments: 1) Group C (4 sows) received no treatment; 2) Group LHRH (5 sows) received 800 ng of LHRH every 2 h throughout the sampling period; 3) Group E2 (4 sows) received subcutaneous implants containing estradiol-17 beta 24 h after start of sampling; 4) Group LHRH + E2 (5 sows) were administered a combination of LHRH and estradiol-17 beta implants. Between-animal variability for plasma LH, FSH, and PRL was considerable. LH concentration and LH pulse frequency increased (p less than 0.05) after LHRH treatment in the LHRH and LHRH + E2 groups; however, an acute inhibition of LH secretion was observed in the latter group immediately after estradiol implant application. In the absence of LHRH treatment, estradiol caused chronic inhibition of LH secretion. Follicular development was greater in the LHRH and LHRH + E2 groups compared to the C and E2 groups (p less than 0.05 for both FFD and FFE).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The effects of changes in pulse frequency of exogenously infused gonadotropin-releasing hormone (GnRH) were investigated in 6 adult surgically hypothalamo/pituitary-disconnected (HPD) gonadal-intact rams. Ten-minute sampling in 16 normal animals prior to HPD showed endogenous luteinizing hormone (LH) pulses occurring every 2.3 h with a mean pulse amplitude of 1.11 +/- 0.06 (SEM) ng/ml. Mean testosterone and follicle-stimulating hormone (FSH) concentrations were 3.0 +/- 0.14 ng/ml and 0.85 +/- 0.10 ng/ml, respectively. Before HPD, increasing single doses of GnRH (50-500 ng) elicited a dose-dependent rise of LH, 50 ng producing a response of similar amplitude to those of spontaneous LH pulses. The effects of varying the pulse frequency of a 100-ng GnRH dose weekly was investigated in 6 HPD animals; the pulse intervals explored were those at 1, 2, and 4 h. The pulsatile GnRH treatment was commenced 2-6 days after HPD when plasma testosterone concentrations were in the castrate range (less than 0.5 ng/ml) in all animals. Pulsatile LH and testosterone secretion was reestablished in all animals in the first 7 days by 2-h GnRH pulses, but the maximal pulse amplitudes of both hormones were only 50 and 62%, respectively, of endogenous pulses in the pre-HPD state. The plasma FSH pattern was nonpulsatile and FSH concentrations gradually increased in the first 7 days, although not to the pre-HPD range. Increasing GnRH pulse frequency from 2- to 1-hour immediately increased the LH baseline and pulse amplitude. As testosterone concentrations increased, the LH responses declined in a reciprocal fashion between Days 2 and 7. FSH concentration decreased gradually over the 7 days at the 1-h pulse frequency. Slowing the GnRH pulse to a 4-h frequency produced a progressive fall in testosterone concentrations, even though LH baselines were unchanged and LH pulse amplitudes increased transiently. FSH concentrations were unaltered during the 4-h regime. These results show that 1) the pulsatile pattern of LH and testosterone secretion in HPD rams can be reestablished by exogenous GnRH, 2) the magnitude of LH, FSH, and testosterone secretion were not fully restored to pre-HPD levels by the GnRH dose of 100 ng per pulse, and 3) changes in GnRH pulse frequency alone can influence both gonadotropin and testosterone secretion in the HPD model.  相似文献   

19.
P H Li 《Life sciences》1987,41(22):2493-2501
The effect of cortisol or adrenocorticotropic hormone (ACTH) on basal and gonadotropin-releasing hormone (GnRH)-induced secretion of luteinizing hormone (LH) was studied in vitro using dispersed pig pituitary cells. Pig pituitary cells were dispersed with collagenase and DNAase and then grown in McCoy's 5a medium containing 10% dextran charcoal-pretreated horse serum and 2.5% fetal calf serum for 3 days. Cells were preincubated with cortisol or ACTH before GnRH was added. When pituitary cells were incubated with 400 micrograms cortisol/ml medium for 6 h or longer, increase basal secretion of LH was observed. However, GnRH-induced LH release was reduced by cortisol. The degree of this reduction was dependent on cortisol, and a concentration of cortisol higher than 100 micrograms/ml was needed. Cortisol also inhibited the 17 beta-estradiol-induced increase in GnRH response. ACTH-(1-24), ACTH-(1-39), or porcine ACTH had no influence on GnRH-induced LH secretion. Our results show that cortisol can act directly on pig pituitary to inhibit both normal and estradiol-sensitized LH responsiveness to GnRH.  相似文献   

20.
The influence of LHRH, an analog of LHRH (hydroxy-PRO1) and inulin on prolactin (PRL) secretion was studied using a clonal strain of pituitary cells. At low concentrations, 0.08 ng to 8 ng/ml, LHRH stimulated PRL release while at higher concentrations the opposite effect was obtained. The analog of LHRH inhibited PRL secretion at all concentrations studied. No effect was measured with inulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号