首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subunit a of the vacuolar H(+)-ATPases plays an important role in proton transport. This membrane-integral 100-kDa subunit is thought to form or contribute to proton-conducting hemichannels that allow protons to gain access to and leave buried carboxyl groups on the proteolipid subunits (c, c', and c″) during proton translocation. We previously demonstrated that subunit a contains a large N-terminal cytoplasmic domain followed by a C-terminal domain containing eight transmembrane (TM) helices. TM7 contains a buried arginine residue (Arg-735) that is essential for proton transport and is located on a helical face that interacts with the proteolipid ring. To further define the topology of the C-terminal domain, the accessibility of 30 unique cysteine residues to the membrane-permeant reagent N-ethylmaleimide and the membrane-impermeant reagent polyethyleneglycol maleimide was determined. The results further define the borders of transmembrane segments in subunit a. To identify additional buried polar and charged residues important in proton transport, 25 sites were individually mutated to hydrophobic amino acids, and the effect on proton transport was determined. These and previous results identify a set of residues important for proton transport located on the cytoplasmic half of TM7 and TM8 and the lumenal half of TM3, TM4, and TM7. Based upon these data, we propose a tentative model in which the cytoplasmic hemichannel is located at the interface of TM7 and TM8 of subunit a and the proteolipid ring, whereas the lumenal hemichannel is located within subunit a at the interface of TM3, TM4, and TM7.  相似文献   

2.
Proton translocation by the vacuolar (H+)-ATPase (or V-ATPase) has been shown by mutagenesis to be dependent upon charged residues present within transmembrane segments of subunit a as well as the three proteolipid subunits (c, c', and c"). Interaction between R735 in TM7 of subunit a and the glutamic acid residue in the middle of TM4 of subunits c and c' or TM2 of subunit c" has been proposed to be essential for proton release to the luminal compartment. In order to determine whether the helical face of TM7 of subunit a containing R735 is capable of interacting with the helical face of TM4 of subunit c' containing the essential glutamic acid residue (Glu-145), cysteine-mediated cross-linking between these subunits in yeast has been performed. Cys-less forms of subunits a and c' as well as forms containing unique cysteine residues were constructed, introduced together into a strain disrupted in both endogenous subunits, and tested for growth at neutral pH, for assembly competence and for cross-linking in the presence of cupric-phenanthroline by SDS-PAGE and Western blot analysis. Four different cysteine mutants of subunit a were each tested pairwise with ten different unique cysteine mutants of subunit c'. Strong cross-linking was observed for the pairs aS728C/c'I142C, aA731C/c'E145C, aA738C/c'F143C, aA738C/c'L147C, and aL739C/c'L147C. Partial cross-linking was observed for an additional 13 of 40 pairs analyzed. When arrayed on a helical wheel diagram, the results suggest that the helical face of TM7 of subunit a containing Arg-735 interacts with the helical face of TM4 of subunit c' centered on Val-146 and bounded by Glu-145 and Leu-147. The results are consistent with a possible rotational flexibility of one or both of these transmembrane segments as well as some flexibility of movement perpendicular to the membrane.  相似文献   

3.
The yeast vacuolar ATPase (V-ATPase) contains three proteolipid subunits: c (Vma3p), c' (Vma11p), and c" (Vma16p). Each subunit contains a buried glutamate residue that is essential for function, and these subunits are not able to substitute for each other in supporting activity. Subunits c and c' each contain four putative transmembrane segments (TM1-4), whereas subunit c" is predicted to contain five. To determine whether TM1 of subunit c" serves an essential function, a deletion mutant of Vma16p was constructed lacking TM1 (Vma16p-Delta TM1). Although this construct does not complement the loss of Vma3p or Vma11p, it does complement the loss of full-length Vma16p. Vacuoles isolated from the strain expressing Vma16p-Delta TM1 showed V-ATPase activity and proton transport greater than 80% relative to wild type and displayed wild type levels of subunits A and a, suggesting normal assembly of the V-ATPase complex. These results suggest that TM1 of Vma16p is dispensable for both activity and assembly of the V-ATPase. To obtain information about the topology of Vma16p, labeling of single cysteine-containing mutants using the membrane-permeable reagent 3-(N-maleimidylpropionyl)biocytin (MPB) and the -impermeable reagent 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid (AMS) was tested. Both the Cys-less form of Vma16p and eight single cysteine-containing mutants retained greater than 80% of wild type levels of activity. Of the eight mutants tested, two (S5C and S178C) were labeled by MPB. MPB-labeling of S5C was blocked by AMS in intact vacuoles, whereas S178C was blocked by AMS only in the presence of permeabilizing concentrations of detergent. In addition, a hemagglutinin epitope tag introduced into the C terminus of Vma16p was recognized by an anti-hemagglutinin antibody in intact vacuolar membranes, suggesting a cytoplasmic orientation for the C terminus. These results suggest that subunit c" contains four rather than five transmembrane segments with both the N and C terminus on the cytoplasmic side of the membrane.  相似文献   

4.
Arrangement of subunits in the proteolipid ring of the V-ATPase   总被引:1,自引:0,他引:1  
The vacuolar ATPases (V-ATPases) are multisubunit complexes containing two domains. The V(1) domain (subunits A-H) is peripheral and carries out ATP hydrolysis. The V(0) domain (subunits a, c, c', c', d, and e) is membrane-integral and carries out proton transport. In yeast, there are three proteolipid subunits as follows: subunit c (Vma3p), subunit c' (Vma11p), and subunit c' (Vma16p). The proteolipid subunits form a six-membered ring containing single copies of subunits c' and c' and four copies of subunit c. To determine the possible arrangements of proteolipid subunits in V(0) that give rise to a functional V-ATPase complex, a series of gene fusions was constructed to constrain the arrangement of pairs of subunits in the ring. Fusions containing c' employed a truncated version of this protein lacking the first putative transmembrane helix (which we have shown previously to be functional), to ensure that the N and C termini of all subunits were located on the luminal side of the membrane. Fusion constructs were expressed in strains disrupted in c', c', or both but containing a wild copy of c to ensure the presence of the required number of copies of subunit c. The c-c'(DeltaTM1), c'(DeltaTM1)-c', and c'-c constructs all complemented the vma(-) phenotype and gave rise to complexes possessing greater than 25% of wild-type levels of activity. By contrast, neither the c-c', the c'-c'(DeltaTM1), nor the c'(DeltaTM1)-c constructs complemented the vma(-) phenotype. These results suggest that functionally assembled V-ATPase complexes contain the proteolipid subunits arranged in a unique order in the ring.  相似文献   

5.
Theoretical mechanisms of proton translocation by the vacuolar H(+)-ATPase require that a transmembrane acidic residue of the multicopy 16-kDa proteolipid subunit be exposed at the exterior surface of the membrane sector of the enzyme, contacting the lipid phase. However, structural support for this theoretical mechanism is lacking. To address this, we have used cysteine mutagenesis to produce a molecular model of the 16-kDa proteolipid complex. Transmembrane helical contacts were determined using oxidative cysteine cross-linking, and accessibility of cysteines to the lipid phase was determined by their reactivity to the lipid-soluble probe N-(1-pyrenyl)maleimide. A single model for organization of the four helices of each monomeric proteolipid was the best fit to the experimental data, with helix 1 lining a central pore and helix 2 and helix 3 immediately external to it and forming the principal intermolecular contacts. Helix 4, containing the crucial acidic residue, is peripheral to the complex. The model is consistent not only with theoretical proton transport mechanisms, but has structural similarity to the dodecameric ring complex formed by the related 8-kDa proteolipid of the F(1)F(0)-ATPase. This suggests some commonality between the proton translocating mechanisms of the vacuolar and F(1)F(0)-ATPases.  相似文献   

6.
7.
Proton translocation by the vacuolar H(+)-ATPase is mediated by a multicopy transmembrane protein, the 16-kDa proteolipid. It is proposed to assemble in the membrane as a hexameric complex, with each polypeptide comprising four transmembrane helices. The fourth helix of the proteolipid contains an intramembrane acidic residue (Glu140) which is essential for proton translocation and is reactive toward N,N'-dicyclohexylcarbodiimide (DCCD). Current theoretical models of proton translocation by the vacuolar ATPase require that Glu140 should be protonated and in contact with the membrane lipid. In this study we present direct support for this hypothesis. Modification with the fluorescent DCCD analogue N-(1-pyrenyl)cyclohexylcarbodiimide, coupled to fluorescence quenching studies and bilayer depth measurements using the parallax method, was used to probe the position of Glu140 with respect to the bilayer. Glutamate residues were also introduced mutagenically as targets for the fluorescent probe in order to map additional lipid-accessible sites on the 16-kDa proteolipid. These data are consistent with a structural model of the 16-kDa proteolipid oligomer in which the key functional residue Glu140 and discrete faces of the second and third transmembrane helices of the 16-kDa proteolipid are exposed at the lipid-protein interface.  相似文献   

8.
Peptides were designed that are based on candidate transmembrane sequences of the V o-sector from the vacuolar H (+)-ATPase of Saccharomyces cerevisiae. Spin-label EPR studies of lipid-protein interactions were used to characterize the state of oligomerization, and polarized IR spectroscopy was used to determine the secondary structure and orientation, of these peptides in lipid bilayer membranes. Peptides corresponding to the second and fourth transmembrane domains (TM2 and TM4) of proteolipid subunit c (Vma3p) and of the putative seventh transmembrane domain (TM7) of subunit a (Vph1p) are wholly, or predominantly, alpha-helical in membranes of dioleoyl phosphatidylcholine. All three peptides self-assemble into oligomers of different sizes, in which the helices are differently inclined with respect to the membrane normal. The coassembly of rotor (Vma3p TM4) and stator (Vph1p TM7) peptides, which respectively contain the glutamate and arginine residues essential to proton transport by the rotary ATPase mechanism, is demonstrated from changes in the lipid interaction stoichiometry and helix orientation. Concanamycin, a potent V-ATPase inhibitor, and a 5-(2-indolyl)-2,4-pentadienoyl inhibitor that exhibits selectivity for the osteoclast subtype, interact with the membrane-incorporated Vma3p TM4 peptide, as evidenced by changes in helix orientation; concanamycin additionally interacts with Vph1p TM7, suggesting that both stator and rotor elements contribute to the inhibitor site within the membrane. Comparison of the peptide behavior in lipid bilayers is made with membranous subunit c assemblies of the 16-kDa proteolipid from Nephrops norvegicus, which can substitute functionally for Vma3p in S. cerevisiae.  相似文献   

9.
Vacuolar (H+)-ATPase (V-ATPase) is a proton pump present in several compartments of eukaryotic cells to regulate physiological processes. From biochemical studies it is known that the interaction between arginine 735 present in the seventh transmembrane (TM7) segment from subunit a and specific glutamic acid residues in the subunit c assembly plays an essential role in proton translocation. To provide more detailed structural information about this protein domain, a peptide resembling TM7 (denoted peptide MTM7) from Saccharomyces cerevisiae (yeast) V-ATPase was synthesized and dissolved in two membrane-mimicking solvents: DMSO and SDS. For the first time the secondary structure of the putative TM7 segment from subunit a is obtained by the combined use of CD and NMR spectroscopy. SDS micelles reveal an alpha-helical conformation for peptide MTM7 and in DMSO three alpha-helical regions are identified by 2D 1H-NMR. Based on these conformational findings a new structural model is proposed for the putative TM7 in its natural environment. It is composed of 32 amino acid residues that span the membrane in an alpha-helical conformation. It starts at the cytoplasmic side at residue T719 and ends at the luminal side at residue W751. Both the luminal and cytoplasmatic regions of TM7 are stabilized by the neighboring hydrophobic transmembrane segments of subunit a and the subunit c assembly from V-ATPase.  相似文献   

10.
Relaxin family peptides perform a variety of biological functions by activating four G protein-coupled receptors, namely relaxin family peptide receptor 1-4 (RXFP1-4). We recently disclosed electrostatic interactions of the homologous RXFP3 and RXFP4 with some agonists based on activation complementation. However, this activation assay-based approach cannot be applied to antagonists that do not activate receptors. Herein, we propose a general approach suitable for both agonists and antagonists based on our newly-developed NanoBiT-based binding assay. We first validated the binding assay-based approach using the agonist relaxin-3, then applied it to the chimeric antagonist R3(ΔB23-27)R/I5. Three positively charged B-chain Arg residues of the agonist and antagonist were respectively replaced by a negatively charged Glu residue; meanwhile, the negatively charged Glu and Asp residue in the essential WxxExxxD motif of both receptors were respectively replaced by a positively charged Arg residue. Based on binding complementation of mutant ligands towards mutant receptors, we deduced possible electrostatic interactions of the agonist and antagonist with both RXFP3 and RXFP4: their B-chain C-terminal Arg residue interacts with the deeply buried Glu residue in the WxxExxxD motif of both receptors, and one or two of their B-chain central Arg residues interact with the shallowly buried Asp residue in the WxxExxxD motif of both receptors. Our present work shed new light on the interaction mechanism of RXFP3 and RXFP4 with agonists and antagonists, and also provided a novel approach for interaction studies of some plasma membrane receptors with their ligands.  相似文献   

11.
The V-ATPases are ATP-dependent proton pumps, found in virtually all cells, responsible for acidification of organelles and energizing of plasma membranes. Its role in diseases, such as osteoporosis and metastatic cancer, makes the V-ATPase a potential drug target. Short synthetic peptides that are presented here mimic the 7th transmembrane domain (TM7) of subunit a (Vph1p) of Saccharomyces cerevisiae V-ATPase, an essential part of the membrane-bound VO domain, where proton translocation takes place. The peptides adopt a transmembrane configuration only in membranes containing anionic lipids, stressing the importance of strong interfacial anchoring by the flanking lysines. Peptide P1, which contains the essential arginine R735, is monomeric, whereas peptide P2, which lacks this extra charge, tends to aggregate in the membrane. SB 242784, which is a highly potent inhibitor of V-ATPase, does not show any interaction with the peptides, indicating that TM7 alone is not sufficient for inhibitor binding.  相似文献   

12.
To address questions about the structure of the vacuolar ATPase, we have generated mutant strains of Neurospora crassa defective in six subunits, C, H, a, c, c', and c'. Except for strains lacking subunit c', the mutant strains were indistinguishable from each other in most phenotypic characteristics. They did not accumulate arginine in the vacuoles, grew poorly at pH 5.8 with altered morphology, and failed to grow at alkaline pH. Consistent with findings from Saccharomyces cerevisiae, the data indicate that subunits C and H are essential for generation of a functional enzyme. Unlike S. cerevisiae, N. crassa has a single isoform of the a subunit. Analysis of other fungal genomes indicates that only the budding yeasts have a two-gene family for subunit a. It has been unclear whether subunit c', a small proteolipid, is a component of all V-ATPases. Our data suggest that this subunit is present in all fungi, but not in other organisms. Mutation or deletion of the N. crassa gene encoding subunit c' did not completely eliminate V-ATPase function. Unlike other V-ATPase null strains, they grew, although slowly, at alkaline pH, were able to form conidia (asexual spores), and were inhibited by concanamycin, a specific inhibitor of the V-ATPase. The phenotypic character in which strains differed was the ability to go through the sexual cycle to generate mature spores and viable mutant progeny. Strains lacking the integral membrane subunits a, c, c', and c' had more severe defects than strains lacking subunits C or H.  相似文献   

13.
The nucleotide sequence of the yeast mitochondrial olil gene has been obtained in a series of mit- mutants with mutations in this gene, which codes for subunit 9 of of the mitochondrial ATPase complex. Subunit 9 is the proteolipid, 76 amino acids in length, necessary for the proton translocation function of the membrane Fo-sector. These mutants were classified on the basis of their rescue by a petite strain shown here to retain the entire wild-type olil gene. The mutation in one mit- strain removes a positively charged residue (Arg39----Met) which is likely to be located in a segment of subunit 9 that protrudes from the inner mitochondrial membrane. In a second mit- mutant, a negatively charged residue replaces a conserved glycine residue (Gly18----Asp) in a glycine-rich segment of the protein that is most likely embedded within the membrane. Other mit- mutations result in frameshifts with predicted products 7, 65 and 68 amino acid residues long. In each mit- mutant, there is the loss of one or more of the amino acid residues that are highly conserved among diverse species. The location and nature of specific changes pinpoint amino acid residues in subunit 9 essential to the activity of the mitochondrial ATPase complex.  相似文献   

14.
Vacuolar (H+)-ATPase (V-ATPase) is a proton pump present in several compartments of eukaryotic cells to regulate physiological processes. From biochemical studies it is known that the interaction between arginine 735 present in the seventh transmembrane (TM7) segment from subunit a and specific glutamic acid residues in the subunit c assembly plays an essential role in proton translocation. To provide more detailed structural information about this protein domain, a peptide resembling TM7 (denoted peptide MTM7) from Saccharomyces cerevisiae (yeast) V-ATPase was synthesized and dissolved in two membrane-mimicking solvents: DMSO and SDS. For the first time the secondary structure of the putative TM7 segment from subunit a is obtained by the combined use of CD and NMR spectroscopy. SDS micelles reveal an α-helical conformation for peptide MTM7 and in DMSO three α-helical regions are identified by 2D 1H-NMR. Based on these conformational findings a new structural model is proposed for the putative TM7 in its natural environment. It is composed of 32 amino acid residues that span the membrane in an α-helical conformation. It starts at the cytoplasmic side at residue T719 and ends at the luminal side at residue W751. Both the luminal and cytoplasmatic regions of TM7 are stabilized by the neighboring hydrophobic transmembrane segments of subunit a and the subunit c assembly from V-ATPase.  相似文献   

15.
Monocarboxylate transporters MCT1-MCT4 require basigin (CD147) or embigin (gp70), ancillary proteins with a glutamate residue in their single transmembrane (TM) domain, for plasma membrane (PM) expression and activity. Here we use site-directed mutagenesis and expression in COS cells or Xenopus oocytes to investigate whether this glutamate (Glu218 in basigin) may charge-pair with a positively charged TM-residue of MCT1. Such residues were predicted using a new molecular model of MCT1 based upon the published structure of the E. coli glycerol-3-phosphate transporter. No evidence was obtained for Arg306 (TM 8) of MCT1 and Glu218 of basigin forming a charge-pair; indeed E218Q-basigin could replace WT-basigin, although E218R-basigin was inactive. No PM expression of R306E-MCT1 or D302R-MCT1 was observed but D302R/R306D-MCT1 reached the PM, as did R306K-MCT1. However, both were catalytically inactive suggesting that Arg306 and Asp302 form a charge-pair in either orientation, but their precise geometry is essential for catalytic activity. Mutation of Arg86 to Glu or Gln within TM3 of MCT1 had no effect on plasma membrane expression or activity of MCT1. However, unlike WT-MCT1, these mutants enabled expression of E218R-basigin at the plasma membrane of COS cells. We propose that TM3 of MCT1 lies alongside the TM of basigin with Arg86 adjacent to Glu218 of basigin. Only when both these residues are positively charged (E218R-basigin with WT-MCT1) is this interaction prevented; all other residue pairings at these positions may be accommodated by charge-pairing or stabilization of unionized residues through hydrogen bonding or local distortion of the helical structure.  相似文献   

16.
FoF1 ATP synthase couples proton flow through the integral membrane portion Fo (ab2c10) to ATP-synthesis in the extrinsic F1-part ((alphabeta)3gammadeltaepsilon) (Escherichia coli nomenclature and stoichiometry). Coupling occurs by mechanical rotation of subunits c10gammaepsilon relative to (alphabeta)3deltaab2. Two residues were found to be essential for proton flow through ab2c10, namely Arg210 in subunit a (aR210) and Asp61 in subunits c (cD61). Their deletion abolishes proton flow, but "horizontal" repositioning, by anchoring them in adjacent transmembrane helices, restores function. Here, we investigated the effects of "vertical" repositioning aR210, cD61, or both by one helical turn towards the N- or C-termini of their original helices. Other than in the horizontal the vertical displacement changes the positions of the side chains within the depth of the membrane. Mutant aR210A/aN214R appeared to be short-circuited in that it supported proton conduction only through EF1-depleted EFo, but not in EFoEF1, nor ATP-driven proton pumping. Mutant cD61N/cM65D grew on succinate, retained the ability to synthesize ATP and supported passive proton conduction but apparently not ATP hydrolysis-driven proton pumping.  相似文献   

17.
Structure and regulation of the vacuolar ATPases   总被引:2,自引:0,他引:2  
The vacuolar (H(+))-ATPases (V-ATPases) are ATP-dependent proton pumps responsible for both acidification of intracellular compartments and, for certain cell types, proton transport across the plasma membrane. Intracellular V-ATPases function in both endocytic and intracellular membrane traffic, processing and degradation of macromolecules in secretory and digestive compartments, coupled transport of small molecules such as neurotransmitters and ATP and in the entry of pathogenic agents, including envelope viruses and bacterial toxins. V-ATPases are present in the plasma membrane of renal cells, osteoclasts, macrophages, epididymal cells and certain tumor cells where they are important for urinary acidification, bone resorption, pH homeostasis, sperm maturation and tumor cell invasion, respectively. The V-ATPases are composed of a peripheral domain (V(1)) that carries out ATP hydrolysis and an integral domain (V(0)) responsible for proton transport. V(1) contains eight subunits (A-H) while V(0) contains six subunits (a, c, c', c', d and e). V-ATPases operate by a rotary mechanism in which ATP hydrolysis within V(1) drives rotation of a central rotary domain, that includes a ring of proteolipid subunits (c, c' and c'), relative to the remainder of the complex. Rotation of the proteolipid ring relative to subunit a within V(0) drives active transport of protons across the membrane. Two important mechanisms of regulating V-ATPase activity in vivo are reversible dissociation of the V(1) and V(0) domains and changes in coupling efficiency of proton transport and ATP hydrolysis. This review focuses on recent advances in our lab in understanding the structure and regulation of the V-ATPases.  相似文献   

18.
19.
Whyteside G  Gibson L  Scott M  Finbow ME 《FEBS letters》2005,579(14):2981-2985
The V-ATPases are ubiquitous enzymes of eukaryotes. They are involved in many cellular processes via their ability to pump protons across biological membranes. They are two domain enzymes comprising an ATP hydrolysing sector and a proton translocating sector. Both sectors are functionally coupled. The proton tanslocating sector, V0, is comprised of five polypeptides in an as yet undetermined stoichiometry. In V0 three homologous proteins, subunit c, c' and c' have previously been reported to be essential for assembly of the enzyme. However, we report that subunit c' is not essential for assembly but is for functional coupling of the enzyme.  相似文献   

20.
Several members of the FXYD protein family are tissue-specific regulators of Na,K-ATPase that produce distinct effects on its apparent K(+) and Na(+) affinity. Little is known about the interaction sites between the Na,K-ATPase alpha subunit and FXYD proteins that mediate the efficient association and/or the functional effects of FXYD proteins. In this study, we have analyzed the role of the transmembrane segment TM9 of the Na,K-ATPase alpha subunit in the structural and functional interaction with FXYD2, FXYD4, and FXYD7. Mutational analysis combined with expression in Xenopus oocytes reveals that Phe(956), Glu(960), Leu(964), and Phe(967) in TM9 of the Na,K-ATPase alpha subunit represent one face interacting with the three FXYD proteins. Leu(964) and Phe(967) contribute to the efficient association of FXYD proteins with the Na,K-ATPase alpha subunit, whereas Phe(956) and Glu(960) are essential for the transmission of the functional effect of FXYD proteins on the apparent K(+) affinity of Na,K-ATPase. The relative contribution of Phe(956) and Glu(960) to the K(+) effect differs for different FXYD proteins, probably reflecting the intrinsic differences of FXYD proteins on the apparent K(+) affinity of Na,K-ATPase. In contrast to the effect on the apparent K(+) affinity, Phe(956) and Glu(960) are not involved in the effect of FXYD2 and FXYD4 on the apparent Na(+) affinity of Na,K-ATPase. The mutational analysis is in good agreement with a docking model of the Na,K-ATPase/FXYD7 complex, which also predicts the importance of Phe(956), Glu(960), Leu(964), and Phe(967) in subunit interaction. In conclusion, by using mutational analysis and modeling, we show that TM9 of the Na,K-ATPase alpha subunit exposes one face of the helix that interacts with FXYD proteins and contributes to the stable interaction with FXYD proteins, as well as mediating the effect of FXYD proteins on the apparent K(+) affinity of Na,K-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号