首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gastric peristaltic contractions are driven by electrical slow waves modulated by neural and humoral inputs. Excitatory neural input comes primarily from cholinergic motor neurons, but ACh causes depolarization and chronotropic effects that might disrupt the normal proximal-to-distal spread of gastric slow waves. We used intracellular electrical recording techniques to study cholinergic responses in stomach tissues from wild-type and W/W(V) mice. Electrical field stimulation (5 Hz) enhanced slow-wave frequency. These effects were abolished by atropine and the muscarinic M(3)-receptor antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide. ACh released from nerves did not depolarize antral muscles. At higher rates of stimulation (10 Hz), chronotropic effects were mediated by ACh and a noncholinergic transmitter and blocked by muscarinic antagonists and neurokinin (NK(1) and NK(2))-receptor antagonists. Neostigmine enhanced slow-wave frequency, suggesting that the frequency of antral pacemakers is kept low by efficient metabolism of ACh. Neostigmine had no effect on slow-wave frequency in muscles of W/W(v) mice, which lack intramuscular interstitial cells of Cajal (ICC-IM). These muscles also showed no significant chronotropic response to 5-Hz electrical field stimulation or the cholinergic agonist carbachol. The data suggest that the chronotropic effects of cholinergic nerve stimulation occur via ICC-IM in the murine stomach. The capacity of gastric muscles to metabolize ACh released from enteric motor neurons contributes to the maintenance of the proximal-to-distal slow-wave frequency gradient in the murine stomach. ICC-IM play a critical role in neural regulation of gastric motility, and ICC-IM become the dominant pacemaker cells during sustained cholinergic drive.  相似文献   

2.
The positive chronotropic response to stimulation of adrenergic nerve endings in the sinoatrial node was studied in isolated atria from the hearts of rats of different ages. Dimethylphenylpiperazinium (DMPP) was used for chemical stimulation and transmural stimulation of the sinoatrial node region as electrical stimulation; in both cases noradrenaline is released from the nerve endings. With both stimulation methods, postnatal development was recorded in two phases. In the first phase, positive chronotropic responses are markedly increased and attained the maximum at the age of 14 days on using DMPP and of 24 days on using electrical stimulation. In the second phase, positive chronotropic responses diminish and at the age of about 45 days, with both stimulation methods, they become reduced to adult level. The first developmental phase can be attributed to an increase in the noradrenaline content of the nerve endings and the release of a larger amount of the transmitter during stimulation, together with an increase in the noradrenaline sensitivity of the cells of the sinoatrial node. It is not clear why positive chronotropic responses decrease in the second phase, when the noradrenaline content of the myocardial tissue continues to rise and pacemaker sensitivity to noradrenaline is not reduced.  相似文献   

3.
In 20 anesthetized dogs the thoracic autonomic nerves were carefully exposed in order to determine which produced cardiovascular responses when the afferent or efferent component of each was stimulated. Efferent parasympathetic and sympathetic fibers arise from the caudal cervical ganglion regions bilaterally as well as from the vagus caudally to that ganglion. The majority of negative chromotropic, dromotropic and inotropic fibers arise from the vagus or near the recurrent laryngeal nerves; however, some small parasympathetic fibers also arise from the vagi down to the level of the pulmonary vessels. Efferent sympathetic nerves are relatively large with the exception of the stellate cardiac nerves, and produce specific positive chronotropic or inotropic responses. Afferent fibers are numerous in the recurrent cardiac, innominate, ventromedial and dorsal nerves and not very numerous in both stellate cardiac nerves as well as in the nerves at the level of the pulmonary vessels; thus there are numerous cholinergic and adrenergic efferent fibers which exhibit specific chronotropic or inotropic responses. The correlation between neural anatomy and specific physiological cardiodynamics illustrates beautifully the interrelationship of structure and function which exists within the autonomic nervous system.  相似文献   

4.
The responses of the circular muscle of canine colon to stimulation of intrinsic nerves and to the probable mediators of these nerves were studied in vivo. In vivo studies were carried out using close intra-arterial injections and local field stimulation of proximal, mid-, and distal colon while recording circumferential contractions. Our results suggest that acetylcholine is the major excitatory mediator, but another excitatory mediator could be released by high frequency field stimulation after atropine. Norepinephrine had mixed inhibitory and excitatory effects, but no evidence was obtained that it was released by field stimulation. Substance P had mainly excitatory effects partly by a mechanism involving nerves and partly by a direct effect on muscle; it in addition to norepinephrine deserves further evaluation as the mediator of noncholinergic excitation to high frequency field stimulation. There is no explanation of the inhibition it produced after initial excitation during field stimulation. Vasoactive intestinal peptide had inhibitory effects but these were incomplete and inconsistent. This may be related to our inability to demonstrate relaxation or inhibition to field stimulation after atropine. Further evaluation of the possible role of vasoactive intestinal peptide and other agents as nonadrenergic, noncholinergic inhibitory mediators is required.  相似文献   

5.
The role of the pituitary hormones in the development of neurally mediated gastric mucosal damage was examined in both normal and hypophysectomized urethane-anaesthetized male Sprague-Dawley rats. Gastric mucosal damage was elicited either by electrical stimulation of intact vagal nerves or by electrical stimulation in the paraventricular nucleus. Macroscopic damage was scored following the stimulation period and samples of the stomach were fixed for histological assessment. Damage scores were assigned based on a 0 (normal) to 3 (severe) scale. Control experiments in which the vagi were not stimulated did not result in any significant gastric damage in either normal (0.56) or sham surgery (0.14) animals, whereas hypophysectomized animals were observed to have significant damage (1.44, p < 0.05). Stimulation of the vagi in hypophysectomized animals resulted in damage that was not significantly different compared with the hypophysectomized control animals (1.25, p > 0.05). In normal animals, stimulation of vagal nerves resulted in mean damage scores of 2.00, values that were not significantly different from those observed in hypophysectomized animals (1.25, p > 0.05). Similarly, stimulation in the paraventricular nucleus of hypophysectomized animals resulted in gastric lesions (2.00) that were not significantly different from those observed in normal animals (1.91, p > 0.05). These data suggest that such neurally mediated gastric damage does not depend upon neurosecretory projections to the pituitary gland, but that the maintenance of an intact gastric mucosa under normal conditions requires the presence of pituitary hormones.  相似文献   

6.
In experiments on the heart of the cod Gadus morhua and frog Rana temporaria in situ, studies have been made of changes in the heart rate induced by stimulation of the vagal nerve by single brief bursts delivered at various intervals after P wave of the ECG. Certain differences were found in changes of the heart rate between these animals. In the cod, maximum chronotropic effect was equal to 65% of the duration of initial cardiac cycle, the latency of this effect being equal to 290 ms; in the frog, corresponding figures were 12-13% and approximately 940 ms. The duration of negative chronotropic effect in the heart of the cod was equal to 700 ms, that of the frog--to 2.700 ms. Functional role of these differences is discussed in relation to the problem of the development of parasympathetic regulation of the heart rate in phylogenesis of vertebrates.  相似文献   

7.
In rabbits the depressor nerves and cardiac vagal branches were stimulated. Their actions on heart rate, atrio-ventricular conduction time, myocardial action potential and mean central blood pressure were recorded. The frequency-effect characteristics of the chronotropic, dromotropic and electrotropic actions on the heart, resulting from afferent and efferent nerve stimulation, are compared. The participation of each of the depressor nerves in their total effects on heart rate and blood pressure is studied. Time courses of heart rate and blood pressure decrease by afferent and efferent nerve stimulation with sinusoidally modulated pulse rates are presented. The results are discussed with respect to the different dynamics of blood pressure and heart rate control. It is concluded that at least two mechanisms are involved in blood pressure control by the depressor nerves: 1. Decrease of vascular resistance by lowering the sympathetic tone. 2. Decrease of heart rate by enhancing the cardiac vagal activity. It is suggested that the parasympathetic control unit compensates rapid disturbances, whereas the slow-acting sympathetic vascular mechanism exerts a long-time pressure control of high efficiency.  相似文献   

8.
To further elucidate the functional anatomy of canine cardiac innervation as well as to assess the feasibility of producing regional left ventricular sympathetic denervation, the chronotropic and (or) regional left ventricular inotropic responses produced by stellate or middle cervical ganglion stimulation were investigated in 22 dogs before and after sectioning of individual major cardiopulmonary or cardiac nerves. Sectioning the right or left subclavian ansae abolished all cardiac responses produced by ipsilateral stellate ganglion stimulation. Sectioning a major sympathetic cardiopulmonary nerve, other than the right interganglionic nerve, usually reduced, but seldom abolished, regional inotropic responses elicited by ipsilateral middle cervical ganglion stimulation. Sectioning the dorsal mediastinal cardiac nerves consistently abolished the left ventricular inotropic responses elicited by right middle cervical ganglion stimulation but minimally affected those elicited by left middle cervical ganglion stimulation. In contrast, cutting the left lateral cardiac nerve decreased the inotropic responses in lateral and posterior left ventricular segments elicited by left middle cervical ganglion stimulation but had little effect on the inotropic responses produced by right middle cervical ganglion stimulation. In addition, the ventral mediastinal cardiac nerve was found to be a significant sympathetic efferent pathway from the left-sided ganglia to the left ventricle. These results indicate that the stellate ganglia project axons to the heart via the subclavian ansae and thus effective sympathetic decentralization can be produced by cutting the subclavian ansae; the right-sided cardiac sympathetic efferent innervation of the left ventricle converges intrapericardially in the dorsal mediastinal cardiac nerves; and the left-sided cardiac sympathetic efferent innervation of the left ventricle diverges to innervate the left ventricle by a number of nerves including the dorsal mediastinal, ventral mediastinal, and left lateral cardiac nerves. Thus consistent denervation of a region of the left ventricle can not be accomplished by sectioning an individual cardiopulmonary or cardiac nerve because of the functional and anatomical variability of the neural components in each nerve, as well as the fact that overlapping regions of the left ventricle are innervated by these different nerves.  相似文献   

9.
Electrical stimulation of the sinoatrial node region of isolated atria in medium containing physostigmine (0.1 micrograms/ml) produces a negative chronotropic effect whose intensity and duration depend mainly on the amount of acetylcholine released from postganglionic parasympathetic fibres endings. This technique was used to study functional maturation of the given neurones during postnatal development of albino rats. Preparations from animals of different ages were stimulated with 2-second bursts of rectangular pulses (frequency 50 Hz, pulse duration 0.02 ms, voltage 22.5--27.5 V) and frequency changes of the preparation were registered by recording extracellular action potentials. At 10 days the negative chronotropic effect is very weak and at 15 days it is only slightly stronger, but at 18 days it is almost the same as in adult animals. At 24 and 34 days the reaction is somewhat stronger than in adulthood. It can be concluded from these observations that functional maturation of the postganglionic parasympathetic neurones innervating the sinoatrial node in albino rats occurs between the 10th and 20th day of postnatal life.  相似文献   

10.
We have exploited the segregation of motor and sensory axons into peripheral nerve sub-compartments to examine spinal reflex interactions in anaesthetized stingrays. Single, supra-maximal electrical stimuli delivered to segmental sensory nerves elicited compound action potentials in the motor nerves of the stimulated segment and in rostral and caudal segmental motor nerves. Compound action potentials elicited in segmental motor nerves by single stimuli delivered to sensory nerves were increased severalfold by prior stimulation of adjacent sensory nerves. This facilitation of the segmental reflex produced by intense conditioning stimuli decreased as it was applied to more remote segments, to approximately the same degree in up to seven segments in the rostral and caudal direction. In contrast, an asymmetric response was revealed when test and conditioning stimuli were delivered to different nerves, neither of which was of the same segment as the recorded motor nerve: in this configuration, conditioning volleys generally inhibited the responses of motoneurons to stimuli delivered to more caudally located sensory nerves. This suggests that circuitry subserving trans-segmental interactions between spinal afferents is present in stingrays and that interneuronal connections attenuate the influence that subsequent activity in caudal primary afferents can have on the motor elements.  相似文献   

11.
Electrical stimulation of the phrenic nerve in an isolated nerve-diaphragm preparation resulted in the release of phosphatidylinositol phosphodiesterase into the organ bath. The released enzyme was Ca2+-dependent and exhibited two pH optima. The enzyme was released in response to nerve stimulation even in the presence of d-tubocurarine in concentrations that block neuromuscular transmission, and was not therefore released from the muscle as a consequence of its contractile activity. Phosphatidylinositol phosphodiesterase activity was determined in the soluble cytosol fractions prepared from different regions of skeletal muscles and from normal peripheral nerves and nerves that were degenerating after transection. The specific activity of the enzyme in the cytosol from the endplate-rich region of the diaphragm was significantly greater than that in cytosol from either the endplate-free region of the diaphragm or from the phrenic nerve. In degenerating nerve the activity of the enzyme was greater in the distal stump than in the proximal stump at 36 h after nerve section. Possible roles for released phosphatidylinositol phosphodiesterase at the neuromuscular junction are discussed.  相似文献   

12.
Abstract: Neuropeptide Y (NPY) appears to be involved in the sympathetic regulation of vascular tone. To assess the putative role of NPY in mesenteric circulation, the release and biological effect of NPY were examined after electrical stimulation of perimesenteric arterial nerves. Nerve stimulation with trains of 2–30 Hz increased the perfusion pressure of the arterially perfused rat mesenteric bed in a frequency- and time-dependent fashion. Trains of 15–30 Hz significantly displaced to the left, approximately threefold, the noradrenaline (NA)-induced pressor concentration-response curve, in addition to increasing significantly its efficacy. Perfusion with 10 nM exogenous NPY mimicked the electrical stimulation effect, causing a threefold leftward shift of the NA concentration-response curve and increasing the maximal NA response. These effects were antagonized by 100 nM BIBP 3226, indicating the activity of NPY-Y1 receptors. Electrical stimulation of the perimesenteric nerves released immunoreactive NPY (ir-NPY) in a frequency-dependent fashion; the ir-NPY coelutes with synthetic NPY as confirmed by HPLC. Both the electrically induced pressor response and the calcium-dependent release of NPY were obliterated in preparations perfused with 1 µM guanethidine or in rats pretreated intravenously for 48 h with 6-hydroxydopamine, thus revealing the sympathetic origin of these phenomena. Only a small proportion of the total NPY content in the perimesenteric arterial nerves is released after electrical stimulation. Chromatographic studies of the physiological sources of the ir-NPY support that NPY fragments are generated via peptidase degradation. The present findings demonstrate that NPY is released from the perimesenteric arterial sympathetic nerves and acts, via the activation of NPY-Y1 receptors, as the mediator responsible for the potentiation of NA's effect on perfusion pressure in the isolated rat mesenteric bed.  相似文献   

13.
我们自发现垂体后叶能因迷走神经反射刺激而分泌加压素后,复证实催产素亦可因同样机制分泌(张等,1937;1938)并在狗、猫、羊、猪(吕运明等1939)、猴等(唐正荣,1981)作迷走-加压反应以比较观察。切除垂体或两侧肾上腺再刺激迷走神经中枢端,血压仍升高(吕运明等1965;1977;1978)二者完全切除后,加压反应基本消失,但有时仍出现加压现象,这种加压物质起源于何处,其化学性质为何,还不清楚。 有人认为垂体后叶加压素对于高血压发病机制有关(Tayer等,1955;Sharpless等,1961;上田英雄等,1963;Croton等,1978),对休克具有保护作用,我们设想迷走、蓝  相似文献   

14.
The major canine cardiopulmonary nerves which arise from the middle cervical and stellate ganglia and the vagi course toward the heart in the dorsal mediastinum where they form, at the base of the heart dorsal to the pulmonary artery and aorta, the dorsal mediastinal cardiac nerves. In addition, the left caudal pole and interganglionic nerves project onto the left lateral side of the heart as the left lateral cardiac nerve. These nerves contain afferent and (or) efferent axons which, upon stimulation, modify specific cardiac regions and (or) systemic pressure. In addition, with the exception of the left lateral cardiac nerve, stimulation of each of these nerves produces compound action potentials in the cranial ends of the majority of the major cardiopulmonary nerves demonstrating that axons in each dorsal mediastinal cardiac nerve interconnect with axons in the majority of the cardiopulmonary nerves. Axons in the left lateral cardiac nerve connect primarily with axons in the left caudal pole and left interganglionic nerves. The dorsal mediastinal nerves project distally onto the heart as coronary nerves accompanying the right or left coronary arteries. These innervated the ventricular myocardium which is supplied by their respective vessels. The left lateral cardiac nerve projects directly onto the lateral epicardium of the left ventricle. The dorsal mediastinal and left lateral cardiac nerves are the major sympathetic cardiac nerves. Thus, the cardiac nerves located in the mediastinum at the base of the heart are not simple extensions of cardiopulmonary nerves, but rather have a unique anatomy and function of their own.  相似文献   

15.
Effects of intravenous isoproterenol (2-3 micrograms) on arterial pressure, end-tidal CO2 partial pressure (PCO2), medullary extracellular fluid (ECF) pH, and phrenic activity were studied in 13 anesthetized paralyzed cats whose vagi and carotid sinus nerves were cut. The cats were servo-ventilated to keep PCO2 relatively constant. Injections of Ringer solution were without effect. Isoproterenol caused arterial pressure to fall, a transient small (1 Torr) increase of PCO2, increased venous CO2 return to the lungs, a medullary ECF acidosis, and a stimulation of respiration that continued to be elevated after arterial pressure, PCO2, and medullary ECF pH had returned to control. We show that the ECF acidosis is minimally due to the hypotension and to the small transient rise of PCO2. We also show that the respiratory response cannot be explained solely by the ECF acidosis. We conclude that, in addition to its known stimulation of peripheral chemoreceptors, isoproterenol causes medullary ECF to become acidic probably due to metabolic effects on neural tissue and has a separate direct stimulating effect on neurons in the brain.  相似文献   

16.
In the isolated, blood-perfused, canine right atrium, intramural parasympathetic nerve stimulation and intra-arterial infusions of acetylcholine induced substantial negative chronotropic and inotropic responses. The responses to parasympathetic stimulation reached their maximum values quickly, and then usually faded back toward control levels over the next 1 or 2 min of stimulation. The fade of the responses at high stimulation frequencies (greater than or equal to 30 Hz) was significantly greater than that at lower frequencies. The inotropic responses to acetylcholine infusion (1 microgram/min) faded slightly but significantly, whereas the chronotropic responses did not fade at all. These results suggest that the fade of the cardiac responses to parasympathetic stimulation is mainly ascribable to a progressive reduction in the rate of acetylcholine release from the nerve endings, especially at higher stimulation frequencies. The fade of the inotropic responses was more pronounced and had a longer time course than that of the chronotropic responses. Furthermore, the fade of the inotropic responses diminished significantly as the response magnitude was augmented by an increase in stimulation voltage. Conversely, the fade of chronotropic responses was not significantly affected by this intervention. These differences in the inotropic and chronotropic responses to neural stimulation, and the occurrence of a slight fade of the inotropic response to acetylcholine infusion, suggest that in addition to the predominant prejunctional mechanism, a postjunctional phenomenon may also be partly responsible for the fade of the inotropic response to cholinergic interventions.  相似文献   

17.
Although chemical stimulation of abdominal visceral afferents has been shown to reflexly increase cardiovascular and ventilatory function, the effect of stimulating these afferents on airway smooth muscle is unknown. Therefore, we recorded transverse smooth muscle tension from an innervated segment of trachea in chloralose-anesthetized dogs while we topically applied capsaicin (200 micrograms/ml) and bradykinin (0.01-10 micrograms/ml) to the serosal surfaces of the stomach, small intestine, and gallbladder. Application of these irritant substances to the stomach and small intestine decreased tracheal tension and increased mean arterial pressure. However, application of capsaicin and bradykinin to the gallbladder had only small effects on both of these variables. Cutting the splanchnic nerves abolished or greatly attenuated the decreases in tension and increases in mean arterial pressure, whereas cutting the vagi had no effect on them. We conclude that stimulation of splanchnic afferent endings in the stomach and small intestine reflexly relaxes tracheal smooth muscle in dogs. This effect may be one component of the constellation of autonomic responses reflexly evoked by abdominal visceral pain and inflammation.  相似文献   

18.
The effects of electrical stimulation of the vagi on gas transport mediated by high-frequency, low tidal volume ventilation (HFV) was examined in 10 anesthetized, paralyzed, propranolol-treated dogs. Gas transport efficiency was estimated by measuring the rate of CO2 removed from the lungs (Vco2) achieved during 45-s bursts of HFV applied before (control 1), during, and after (control 2) electrical stimulation of the transected vagi. During vagal stimulation the heart rate was maintained by electrical pacing. During the 15-s phase of vagal stimulation pulmonary impedance increased from 3.6 +/- 0.7 to 6.2 +/- 2.2 cmH2O X l-1 X s, and Vco2 increased. When the electrical stimulation of the vagi was stopped, impedance and Vco2 returned to prestimulation values. Vco2 was always higher during electrical stimulation of the vagi when HFV of a fixed volume was applied over a range of frequencies or when a fixed oscillation frequency was used over a range of tidal volumes. The effects of vagal stimulation on HFV-mediated gas transport were quite similar to the effects of moving the locations of the bias flow inlet and outlet into the lung such that tracheal volume was decreased by 20 ml, an amount equivalent to estimated change in control airway volume thought to occur during vagal stimulation. We simulated the effects of vagal stimulation and decreased tracheal volume on Vco2 by using a previously described model of HFV-mediated gas transport.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
R. R. Aliev 《Biophysics》2008,53(6):645-647
The effect of periodic stimulation of the vagus nerve on the activity of the central cell of the sinoatrial node has been simulated. The regions of synchronization and desynchronization have been revealed, and the phase shift at different stimulation frequencies has been estimated. The positive chronotropic effect has been shown to occur at some frequencies of stimulation.  相似文献   

20.
Neuropeptide Y (NPY), a putative co-transmitter in noradrenergic sympathetic nerves of the cardiovascular system, inhibits the negative chronotropic action of the cardiac vagus. In the present study, peptides related to NPY were tested for potency in producing this effect. In bilaterally vagotomized, anaesthetised dogs, the increase in pulse interval caused by electrical stimulation of the peripheral stump of the right vagus was measured before and after intravenous administration of peptide. The effects of doses of NPY were compared with those of equimolar doses of peptide YY (PYY), and of avian and human pancreatic polypeptides (APP and HPP). PYY inhibited the vagal action more effectively than did NPY. APP and HPP, however, caused no change in strength of vagal action at the doses used. The response to a second injection of NPY, given soon after the injection of APP or HPP, was not significantly different from the original. Thus no evidence was obtained for a competitive inhibition of the action of NPY by either pancreatic polypeptide. A C-terminal hexapeptide fragment of human pancreatic polypeptide was also tested. Like APP and HPP, it neither inhibited the cardiac vagus nor blocked the action of NPY. The order of potency obtained here (PYY greater than NPY much greater than APP, HPP, CFPP) can be expected to be of use in efforts to distinguish the active site(s) of the NPY molecule, and to characterise the receptors involved in these modulatory effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号