首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The identity of the transmitter(s) involved in visual transduction in invertebrate microvillar photoreceptors remains unresolved. In this study, the role of inositol 1,4,5-trisphosphate (IP3) was examined in Limulus ventral photoreceptors by studying the effects on the light response of heparin and neomycin, agents that inhibit the production or action of IP3. Both heparin and neomycin reduce responses to brief flashes of light and the transient component of responses to steps of light, and also inhibit IP3-induced calcium release, indicating that IP3 plays a direct role in invertebrate visual excitation. The effects of BAPTA, a calcium buffer, were also examined and shown to be consistent with a role for IP3-mediated calcium release in visual excitation. However, all three agents fail to block the plateau component of the response to a step of light, indicating that a single pathway involving IP3 and calcium cannot solely be responsible for visual excitation in invertebrates. We suggest that the inositol phosphate cascade and a second parallel process that is not dependent on IP3 are involved in the production of the light response.  相似文献   

2.
Wang Y  Deshpande M  Payne R 《Cell calcium》2002,32(4):209-216
2-Aminoethoxydiphenyl borate (2-APB) is a membrane-permeable modulator that inhibits the activation of inositol (1,4,5) trisphosphate (InsP(3)) receptors, store operated channels (SOCs) and TRP channels in cells that utilize the phosphoinositide cascade for cellular signaling. In Limulus ventral photoreceptors, light-induced calcium release via the phosphoinositide cascade is thought to activate the photocurrent. Injection of either exogenous InsP(3) or calcium ions can therefore mimic excitation by light. One hundred micromolar 2-APB reversibly inhibited the photocurrent of ventral photoreceptors in a concentration-dependent manner, acting on at least two processes thought to mediate the visual cascade. 2-APB reversibly inhibited both light and InsP(3)-induced calcium release, consistent with its role as an inhibitor of the InsP(3) receptor. In addition, 2-APB reversibly inhibited the activation of depolarizing current flow through the plasma membrane caused by pulsed pressure injection of calcium ions into the light-sensitive lobe of the photoreceptor. We also found that 100 micro M 2-APB reversibly inhibited both transient and sustained voltage-activated potassium current during depolarizing steps. 2-APB has previously been shown to block phototransduction in Drosophila photoreceptors. The lack of specificity of the action of 2-APB in Limulus indicates that this blockade need not necessarily arise from inhibition of InsP(3)-induced calcium release.  相似文献   

3.
Single pressure injections of 1-10 pl of inositol 1,4,5 triphosphate (IP3) or inositol 4,5 bisphosphate [I(4,5)P2] excite Limulus ventral photoreceptors by inducing rapid bursts of inward current. After excitation by IP3, responses to subsequent injections of IP3 or light flashes are often reversibly diminished (adapted). Single injections of IP3 and I(4,5)P2 are effective at concentrations in the injecting pipette of 20 microM to 1 mM. Single injections of inositol 1,4 bisphosphate are ineffective at concentrations of 100-500 microM. Excitation by IP3 or I(4,5)P2 is accompanied by a rise in intracellular free calcium, as indicated by aequorin luminescence. Prior injection of calcium buffer solutions containing 100 mM EGTA greatly diminishes the total charge transferred across the plasma membrane during excitation by IP3 or I(4,5)P2, which suggests that a rise in Cai is necessary for excitation by the inositol polyphosphates. Adaptation of the response to light by IP3 is also abolished by prior injection of EGTA. In the same cells, the response to brief light flashes is slowed and diminished in amplitude by the injection of calcium buffer, but the charge transferred during the response is not significantly diminished. This suggests that light has access to a pathway of excitation in the presence of EGTA that is not accessible to intracellularly injected IP3.  相似文献   

4.
Microvillar photoreceptors of invertebrates exhibit a light-induced rise in the intracellular concentration of free calcium (Cai) that results in part from release of calcium from an intracellular compartment. This light-induced release of calcium appears to result from a cascade of reactions that involve rhodopsin, a GTP-binding protein and a phospholipase-C which releases inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) from the plasma membrane; the Ins(1,4,5)P3 acts to release calcium from smooth endoplasmic reticulum. In the ventral photoreceptor of the horseshoe crab Limulus polyphemus not all of the endoplasmic reticulum is subject to calcium release by Ins(1,4,5)P3. Only endoplasmic reticulum in the light-sensitive region of the cell is competent to release calcium in response to Ins(1,4,5)P3. The release of calcium by Ins(1,4,5)P3 in ventral photoreceptors appears to be subject to feedback inhibition through elevated Cai. We suggest that this feedback inhibition contributes to sensory adaptation in the photoreceptor and may account for oscillatory membrane responses sometimes observed with large injections of Ins(1,4,5)P3.  相似文献   

5.
Transient receptor potential (TRP) channels mediate light-induced Ca(2+) entry and the electrical response in Drosophila photoreceptors. The role of TRP channels in other invertebrate photoreceptors is unknown, particularly those, exemplified by Limulus ventral eye photoreceptors, in which calcium release from intracellular stores is prominent. We have amplified cDNA encoding three variants of a Limulus TRP channel. LptrpA and LptrpBencode proteins of 896 and 923 amino acids, differing by a 27 amino acid insert within the C-terminus. LptrpC encodes an alternative 63 amino acid sequence in the pore domain compared with LptrpB. LptrpB and LptrpC are present in ventral eye mRNA, while LptrpA is only present in brain mRNA. In situ hybridization indicates the presence of Lptrp in photoreceptors of the Limulus ventral eye. Some canonical TRP channels can be activated by diacylglycerol analogs. Injection of a diacylglycerol analog, 1-oleoyl-2-acetyl-sn-glycerol (OAG), into Limulus photoreceptors can activate an inward current with electrical characteristics similar to the light-activated current. However, simultaneous elevation of cytosolic calcium concentration appears to be necessary. Illumination attenuates the response to OAG injections and vice versa. These results provide molecular and pharmacological evidence for a TRP channel in Limulus ventral eye that may contribute to the light-sensitive conductance.  相似文献   

6.
Limulus ventral photoreceptors contain calcium stores sensitive to release by D-myo-inositol 1,4,5 trisphosphate (InsP3) and a calcium-activated conductance that depolarizes the cell. Mechanisms that terminate the response to InsP3 were investigated using nonmetabolizable DL-myo-inositol 1,4,5 trisphosphorothioate (InsPS3). An injection of 1 mM InsPS3 into a photoreceptor's light-sensitive lobe caused an initial elevation of cytosolic free calcium ion concentration (Cai) and a depolarization lasting only 1-2 s. A period of densensitization followed, during which injections of InsPS3 were ineffective. As sensitivity recovered, oscillations of membrane potential began, continuing for many minutes with a frequency of 0.07-0.3 Hz. The activity of InsPS3 probably results from the D-stereoisomer, since L-InsP3 was much less effective than InsP3. Injections of 1 mM InsP3 caused an initial depolarization and a period of densensitization similar to that caused by 1 mM InsPS3, but no sustained oscillations of membrane potential. The initial response to InsPS3 or InsP3 may therefore be terminated by densensitization, rather than by metabolism. Metabolism of InsP3 may prevent oscillations of membrane potential after sensitivity has recovered. The InsPS3-induced oscillations of membrane potential accompanied oscillations of Cai and were abolished by injection of ethyleneglycol-bis (beta-aminoethyl ether)-N,N'-tetraacetic acid. Removal of extracellular calcium reduced the frequency of oscillation but not its amplitude. Under voltage clamp, oscillations of inward current were observed. These results indicate that periodic bursts of calcium release underly the oscillations of membrane potential. After each burst, the sensitivity of the cell to injected InsP3 was greatly reduced, recovering during the interburst interval. The oscillations may, therefore, result in part from a periodic variation in sensitivity to a constant concentration of InsPS3. Prior injection of calcium inhibited depolarization by InsPS3, suggesting that feedback inhibition of InsPS3-induced calcium release by elevated Cai may mediate desensitization between bursts and after injections of InsPS3.  相似文献   

7.
Injection of inositol 1,4,5-trisphosphate and its metabolically resistant analogs InsP3S3 and L-chiro-2,3,5-InsP3 into the ventral photoreceptors of Limulus results in the release of calcium from internal stores and in a current flow into the cells. We show here that the dependence of the current response on the amount of analog injected is supralinear. The injections also facilitate the responses to subsequent injections. We analyze the kinetics of the responses either by very slow application of the analogs directly into the lobe that is sensitive to InsP3 and light or by delivering a pulse into the nonsensitive lobe of the cell, in both cases creating a ramp of rising concentration in the sensitive region. Typically, a long latent period was followed by a strong brief inward current. The ratio between the latency and the duration of the response, defined as twice the time from half-amplitude to the peak of the response, reaches values greater than 10. Our analysis shows that this value cannot be attained within realistic models whose only nonlinearity is the cooperative binding of the ligand to its receptor. The observed ratio, however, can be achieved with a positive feedback model. Treatments that lead to partial depletion of calcium stores reversibly increase the latency of the response. We conclude that the mechanisms of the response of Limulus ventral eye to the metabolically resistant analogs of InsP3 probably involves a positive feedback mechanism and that the carrier of the feedback is likely to be Ca2+.  相似文献   

8.
In addition to increasing the conductance to sodium, light reduces the maintained voltage-dependent potassium current (iK) in Limulus ventral photoreceptors. We have investigated the mechanism underlying this long-lasting decrease in ik. Intracellular injection of calcium produced a similar reduction of the voltage-dependent outward current. This reduction was not due to an activation of the voltage-dependent inward current (iin) because calcium injection reduced the outward current even under conditions where iin was blocked with Ni2+, and because calcium injection produced a decrease in conductance, as measured from the slope of the instantaneous i-V curve. The effect of light on ik could be blocked by injection of the calcium buffer EGTA (pCa 7.1) to an intracellular concentration of 50-70 mM. Even larger injections of the pH buffer MOPS (100-200 mM) did not reduce the effect of light on ik. These experiments show that intracellular free calcium (Cai2+) can reduce ik. Furthermore, since Cai2+ is known to increase in light, our results are consistent with the hypothesis that calcium is the internal transmitter for the light-induced decrease in ik.  相似文献   

9.
The possible role of Ca ions in mediating the drop in sensitivity associated with light adaptation in Limulus ventral photoreceptors was assessed by simultaneously measuring the sensitivity to light and the intracellular free Ca concentration (Cai); the latter was measured by using Ca-selective microelectrodes. In dark-adapted photoreceptors, the mean resting Cai was 3.5 +/- 2.5 microM SD (n = 31). No correlation was found between resting Cai and absolute sensitivity from cell to cell. Typically, photoreceptors are not uniformly sensitive to light; the Cai rise evoked by uniform illumination was 20-40 times larger and faster in the most sensitive region of the cell (the rhabdomeral lobe) than it was away from it. In response to a brief flash, the Cai rise was barely detectable when 10(2) photons were absorbed, and it was saturated when approximately 10(5) photons were absorbed. During maintained illumination, starting near the threshold of light adaptation, steady Cai increases were associated with steady desensitizations over several log units of light intensity: a 100-fold desensitization was associated with a 2.5-fold increase in Cai. After a bright flash, sensitivity and Cai recovered with different time courses: the cell was still desensitized by approximately 0.5 log units when Cai had already recovered to the prestimulus level, which suggests that under those conditions Cai is not the rate-limiting step of dark adaptation. Ionophoretic injection of EGTA markedly decreased the light-induced Cai rise and increased the time to peak of the light response, but did not alter the resting Cai, which suggests that the time to peak is affected by a change in the capacity to bind Ca2+ and not by resting Cai. Lowering the extracellular Ca2+ concentration (Cao) first decreased Cai and increased sensitivity. Longer exposure to low Cao resulted in a further decrease of Cai but decreased rather than increased sensitivity, which suggests that under certain conditions it is possible to uncouple Cai and sensitivity.  相似文献   

10.
Rapid concentration jumps of Ins(1,4,5)P3 or ATP were made inside Limulus ventral photoreceptors by flash photolysis of the parent caged compounds. In intact ventral photoreceptors, the photolysis flash evokes a maximum amplitude light-activated current; therefore, a procedure was developed for uncoupling phototransduction by blocking two of the initial reactions in the cascade, rhodopsin excitation and G protein activation. Rhodopsin was inactivated by exposure to hydroxylamine and bright light. This procedure abolished the early receptor potential and reduced the quantum efficiency by 325 +/- 90-fold (mean +/- SD). G protein activation was blocked by injection of guanosine-5'-O-(2-thiodiphosphate) (GDP beta S). GDP beta S injection reduced the quantum efficiency by 1,881 +/- 1,153-fold (mean +/- SD). Together hydroxylamine exposure and GDP beta S injection reduced the quantum efficiency by 870,000 +/- 650,000-fold (mean +/- SD). After the combined treatment, photoreceptors produced quantum bumps to light that was approximately 10(6) times brighter than the intensity that produced quantum bumps before treatment. Experiments were performed with caged compounds injected into photoreceptors in which phototransduction was largely uncoupled. Photolysis of one compound, myo-inositol 1,4,5-triphosphate P4(5)-1-(2-nitrophenyl)ethyl ester (caged IP3), increased the voltage clamp current in response to the flashlamp by more than twofold without changing the latency of the response. The effect was not seen with photolysis of either adenosine-5'-triphosphate P3-1-(2-nitrophenyl)ethyl ester (caged ATP) or caged IP3 in cells preloaded with either heparin or (1,2-bis-(o-amino-phenoxy)ethane-N-N-N'-N' tetraacetic acid tetrapotassium salt (BAPTA). The results suggest that photoreleased IP3 releases calcium ions from intracellular stores and the resulting increase in [Ca2+]i enhances the amplification of the phototransduction cascade.  相似文献   

11.
Several Ca-sensitive fluorescent dyes (fura-2, mag-fura-2 and Calcium Green-5N) were used to measure intracellular calcium ion concentration, Cai, accompanying light-induced excitation of Limulus ventral nerve photoreceptors. A ratiometric procedure was developed for quantification of Calcium Green-5N fluorescence. A mixture of Calcium Green-5N and a Ca-insensitive dye, ANTS, was injected in the cell and the fluorescence intensities of both dyes were used to calculate the spatial average of Cai within the light-sensitive R lobe of the photoreceptor. In dark-adapted photoreceptors, the initial Cai was 0.40 +/- 0.22 microM (SD, n = 7) as measured with fura-2. Cai peaked in the light-sensitive R lobe at 700-900 ms after the onset of an intense measuring light step, when the spatial average of Cai within the R lobe reached 68 +/- 14 and 62 +/- 37 microM (SD, n = 5) as measured with mag- fura-2 and Calcium Green-5N, respectively. The rate of Cai rise was calculated to be approximately 350 microM/s under the measuring conditions. The resting level of Mg2+ was estimated to be 1.9 +/- 0.9 mM, calculated from mag-fura-2 measurements. To investigate the effect of adapting light on the initial Cai level in the R lobe, a 1-min step of 420 nm background light was applied before each measurement. The first significant (P < 0.05) change in the initial level of Cai occurred even at the lowest adapting light intensity, which delivered approximately 3 x 10(3) effective photons/s. The relative sensitivity of the light-adapted photoreceptors was linearly related to the relative Cai on a double log plot with slope between -4.3 and -5.3. We were unable to detect a Cai rise preceding the light-activated receptor potential. The Cai rise, measured with Calcium Green-5N, lagged 14 +/- 5 ms (SD, n = 32) behind the onset of the receptor potential at room temperature in normal ASW. In the absence of extracellular Ca2+ and at 10 degrees C, this lag increased to 44 +/- 12 ms (SD, n = 17).  相似文献   

12.
R Payne  T M Flores  A Fein 《Neuron》1990,4(4):547-555
Injection of inositol 1,4,5 trisphosphate (InsP3) into Limulus ventral photoreceptors elevates the concentration of intracellular calcium ions and as a consequence depolarizes the photoreceptor. This InsP3-induced elevation can be inhibited by a prior injection of calcium or InsP3 delivered 1 s earlier. Recovery from this inhibition has a half-time of between 1.5 and 5 s at 20 degrees C. Calcium released by InsP3 therefore inhibits further release of calcium from InsP3-sensitive calcium stores. This feedback inhibition may protect the calcium stores from depletion during prolonged bright illumination. Feedback inhibition, rather than periodic depletion of calcium stores, may also underlie the oscillatory bursts of InsP3-induced calcium release that have been observed in many cell types.  相似文献   

13.
2-Aminoethoxydiphenyl borate (2APB) is a membrane-permeable blocker of the inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release in bi-directional Ca2+ -flux conditions. We have now studied the effects of 2APB on the 45Ca2+ uptake into, and on the basal and IP(3)-stimulated unidirectional 45Ca2+ efflux from the non-mitochondrial Ca2+ stores in permeabilized A7r5 smooth-muscle cells. 2APB inhibited the IP3 -induced Ca2+ release, with a half maximal inhibition at 36 microM 2APB, without affecting [3H]IP3 binding to the receptor. This inhibition did not depend on the IP3, ATP or free Ca2+ concentration. The Ca2+ pumps of the non-mitochondrial Ca2+ stores were half-maximally inhibited at 91microM 2APB. Higher concentrations of 2APB increased the non-specific leak of Ca2+ from the stores. We conclude that 2APB can not be considered as a selective blocker of the IP3 -induced Ca2+ release. Our results can explain the various effects of 2APB observed in intact cells.  相似文献   

14.
Light-induced release of Ca(2+) from stores in Limulus ventral photoreceptors was studied using confocal fluorescence microscopy and the Ca(2+) indicator dyes, Oregon green-5N and fluo-4. Fluorescence was collected from a spot within 4 microm of the microvillar membrane. A dual-flash protocol was used to reconstruct transient elevations of intracellular free calcium ion concentration (Ca(i)) after flashes delivering between 10 and 5 x 10(5) effective photons. Peak Ca(i) increased with flash intensity to 138 +/- 76 microM after flashes delivering approximately 10(4) effective photons, while the latent period of the elevation of Ca(i) fell from approximately 140 to 21 ms. The onset of the light-induced elevation of Ca(i) was always highly correlated with that of the receptor potential. The time for Ca(i) to exceed 2 microM was approximately equal to that for the receptor potential to exceed 8 mV (mean difference; 2.2 +/- 6.4 ms). Ca(i) was also measured during steps of light delivering approximately 10(5) effective photons/s to photoreceptors that had been bleached with hydroxylamine so as to reduce their quantum efficiency. Elevations of Ca(i) were detected at the earliest times of the electrical response to the steps of light, when a significant receptor potential had yet to develop. Successive responses exhibited stochastic variation in their latency of up to 20 ms, but the elevation of Ca(i) and the receptor potential still rose at approximately the same time, indicating a shared process generating the latent period. Light-induced elevations of Ca(i) resulted from Ca(2+) release from intracellular stores, being abolished by cyclopiazonic acid (CPA), an inhibitor of endoplasmic reticulum Ca(2+) pumps, but not by removal of extracellular Ca(2+) ions. CPA also greatly diminished and slowed the receptor potential elicited by dim flashes. The results demonstrate a rapid release of Ca(2+) ions that appears necessary for a highly amplified electrical response to dim flashes.  相似文献   

15.
V Henne  H D S?ling 《FEBS letters》1986,202(2):267-273
GTP releases calcium from rat liver microsomes and guinea pig parotid gland microsomal subfractions independently of the presence of inositol 1,4,5-trisphosphate (IP3). Non-hydrolyzable guanine nucleotide analogues have no effect and inhibit the effect of GTP. The mechanism of GTP-mediated calcium release differs from IP3-mediated calcium release as indicated by the following findings: GTP-induced calcium release depends on the presence of compounds which increase the viscosity of the medium (polyethylene glycol, polyvinylpyrrolidone, or bovine serum albumin); GTP-mediated calcium release is much slower; GTP-mediated calcium release is strongly temperature-dependent, whereas IP3-mediated calcium release is not; GTP-mediated calcium release is much more sensitive to a decrease of intravesicular free calcium than IP3-mediated calcium release.  相似文献   

16.
Inositol-trisphosphate was pressure-injected into Limulus ventral photoreceptors; these injections induced electrical responses that mimic several aspects of the electrical responses induced by light. Single cells were also injected with aequorin. Injections of inositol-trisphosphate into such cells induced an increase in luminescence from the intracellular aequorin, even in the absence of extracellular calcium ions. These aequorin responses show directly that inositol-trisphosphate induces an increase in ionized calcium concentration within intact and functioning cells that arises from release of calcium ions from intracellular stores.  相似文献   

17.
Inositol 1,4,5-trisphosphate-induced calcium release from canine aortic smooth muscle sarcoplasmic reticulum vesicles was examined using the calcium indicator antipyrylazo III. Calcium release was initiated by addition of inositol 1,4,5-trisphosphate (IP3) to aortic vesicles 7 min after initiation of ATP-supported calcium uptake. Half-maximal calcium release occurred at 1 microM IP3, with maximal calcium release amounting to 25 +/- 2% of the intravesicular calcium (n = 12, 9 preparations). Ruthenium red (10-20 microM), which has been reported to block IP3-induced calcium release from skeletal muscle sarcoplasmic reticulum, did not inhibit aortic IP3-induced calcium release. Elevation of Mg2+ concentration from 0.06 to 7.8 mM inhibited aortic IP3-induced calcium release 75%, which contrasts with the Mg2+-insensitive IP3-induced calcium release from platelet reticular membranes. The IP3-dependence of aortic calcium release suggested that Mg2+ acted as a noncompetitive inhibitor. Thus, aortic sarcoplasmic reticulum vesicles contain an IP3-sensitive calcium pathway which is inhibited by millimolar concentrations of Mg2+, but which is not inhibited by Ruthenium red and so differs from the previously described IP3-sensitive calcium pathways in skeletal muscle and platelet reticular membranes.  相似文献   

18.
Neomycin, known to inhibit phospholipase C-mediated IP3 formation, was applied in the bath or injected into cells and its effects on electrical light responses were analyzed. Neomycin effects on inositol 1,4,5-trisphosphate- and Ca2+-induced Ca2+ release from the endoplasmic reticulum and/or the light-induced Ca2+ elevation were also studied. Neomycin (0.5 mmol x l(-1)) blocked inositol 1,4,5-trisphosphate-, caffeine-, and Ca2+-induced Ca2+ release. Bath application of neomycin decreased the sensitivity to 20-ms light flashes by a factor of up to 100 and slowed the kinetics of dim flash responses. Intracellularly injected neomycin desensitized the photoreceptors more than 1 log unit, increased the latency, and slowed the rate of rise of the light response. Neomycin (0.5 mmol x l(-1)) in the bath delayed and reduced the transient component of responses to 1-s steps of light at intermediate intensities. It also decreased and slowed the light-induced, and it blocked the caffeine-induced intracellular Ca2+ elevation. The combined pharmacological effects of neomycin are suggested to decrease the Ca2+-mediated amplification of the phototransduction cascade and the Ca2+-mediated acceleration of processes determining the kinetics of light responses.  相似文献   

19.
Activation of T cells by lectins or mAb directed at components of the Ag-specific TCR results in hydrolysis of phosphorylated derivatives of phosphatidylinositol and an increase in intracellular free calcium concentration (Cai). We report that cholera toxin, which activates adenylate cyclase by ADP ribosylation of a G protein, also reduces both inositol phosphate (IP) production and the rise in Cai in Con A-stimulated murine T cells. We find that similar dose-dependent inhibitory effects can be induced by each of four other agents that raise cAMP levels in such cells: forskolin, PGE2, 2-chloroadenosine, and isoproterenol. The effects of these agents on IP production are reversible and therefore do not simply reflect cytotoxicity. Activation by PHA and by antibody to the T3-epsilon-chain of the TCR complex are also inhibited by agents that increase intracellular cAMP. Thus, changes in cAMP concentration seem to regulate both IP production and the Ca2+ response, two early components of the mitogen-induced activation process.  相似文献   

20.
Injection of inositol 1,4,5 trisphosphate (InsP3) into Limulus ventral photoreceptors causes an elevation of intracellular free Ca concentration (Cai) and depolarizes the photoreceptors. When measured with the photoprotein aequorin, the InsP3-induced Cai increase follows the time course of depolarization and declines within 1-2 s. However, sensitivity to further injections of InsP3 remains suppressed for several tens of seconds. The possibility that the suppression of Ca release (feedback inhibition) is due to a small lingering elevation of Cai, below the existing detection limit of aequorin, was investigated by measuring Cai with Ca-sensitive electrodes. Double-barreled, Ca- selective microelectrodes were used to pressure inject InsP3 and measure Cai at the same point. Light or InsP3 injections into the light- sensitive compartment depolarized the photoreceptors and induced an elevation of Cai that persisted for tens of seconds. Injections of InsP3 during the decay of Cai showed that sensitivity to InsP3 recovered as resting Cai approached the prestimulus level. The relationship between elevated Cai and feedback inhibition was very steep. An elevation of Cai of 1 microM or more was associated with inhibitions of 79 +/- 12.4% (SEM; n = 7) for the InsP3-induced Cai increase and of 76 +/- 8% for depolarizations. With a residual Cai elevation of 0.01 microM or less, the mean inhibition was 10 +/- 7.4% for InsP3-induced Cai increase and 6.6 +/- 4% for InsP3-induced depolarization. Injections of InsP3 into a light-insensitive compartment within the cell induced elevations of Cai with no associated depolarizations or feedback inhibition. To verify that a sustained elevation of Cai is necessary for inhibition of InsP3-induced Cai increase and depolarization, we injected ethyleneglycol-bis-(beta- aminoethylether)-N,N'-tetraacetic acid (EGTA) between two injections of InsP3. Injection of 1 mM EGTA or the related Ca chelator BAPTA, delivered 750 ms after the first injection of InsP3, restored the peak depolarization caused by the second injection of InsP3 to > 80 +/- 3% of control, compared with 13 +/- 8% without an intervening injection of EGTA. Measurement of Cai with aequorin showed that an intervening injection of EGTA partially restored the InsP3-induced Cai increase. The results suggest that feedback inhibition of InsP3-induced Cai increase and depolarization is mediated by a lingering elevation of Cai and not by depletion of intracellular Ca stores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号