首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aggregation and fusion of unilamellar vesicles by poly(ethylene glycol)   总被引:5,自引:0,他引:5  
Various aspects of the interaction between the fusogen, poly(ethylene glycol) and phospholipids were examined. The aggregation and fusion of small unilamellar vesicles of egg phosphatidylcholine (PC), bovine brain phosphatidylserine (PS) and dimyristoylphosphatidylcholine (DMPC) were studied by dynamic light scattering, electron microscopy and NMR. The fusion efficiency of Dextran, glycerol, sucrose and poly(ethylene glycol) of different molecular weights were compared. Lower molecular weight poly(ethylene glycol) are less efficient with respect to both aggregation and fusion. The purity of poly(ethylene glycol) does not affect its fusion efficiency. Dehydrating agents, such as Dextran, glycerol and sucrose, do not induce fusion. 31P-NMR results revealed a restriction in the phospholipid motion by poly(ethylene glycol) greater than that by glycerol and Dextran of similar viscosity and dehydrating capacity. This may be associated with the binding of poly(ethylene glycol) to egg PC, with a binding capacity of 1 mol of poly(ethylene glycol) to 12 mol of lipid. Fusion is greatly enhanced below the phase transition for DMPC, with extensive fusion occurring below 6% poly(ethylene glycol). Fusion of PS small unilamellar vesicles depends critically on the presence of cations. Large unilamellar vesicles were found to fuse less readily than small unilamellar vesicles. The results suggest that defects in the bilayer plays an important role in membrane fusion, and the 'rigidization' of the phospholipid molecules facilitates fusion possibly through the creation of defects along domain boundaries. Vesicle aggregation caused by dehydration and surface charge neutralization is a necessary but not a sufficient condition for fusion.  相似文献   

2.
The fusion of small unilamellar vesicles of phosphatidylcholines during freeze-thawing and freeze-drying/rehydration, and the suppression of fusion under these conditions by various saccharides, was investigated by gel filtration on Sepharose 4B, quasielastic light scattering, high-resolution 1H-NMR, ESR spin labeling, and differential scanning calorimetry. Freeze-thawing and freeze-drying of aqueous small unilamellar vesicle suspensions in the presence of sufficient sucrose had no significant effect on the average size and size distribution of small unilamellar vesicles. In the presence of sucrose the structural integrity and the permeability properties of the phosphatidylcholine bilayers were retained during freeze-thawing and freeze-drying. A comparison of the stabilizing effect of sucrose with that of trehalose and glucose showed that the stabilization is not sugar-specific but is a general property of saccharides. The fraction of small unilamellar vesicles recovered after freeze-thawing depended on the saccharide/phosphatidylcholine molar ratio. The mechanism of the cryoprotective effect involves binding of the sugar to the phospholipid polar group, probably through hydrogen bonding.  相似文献   

3.
Cholesterol absorption by small intestinal brush border membrane vesicles from taurocholate mixed micelles is a second-order reaction. From a comparison of reaction rates and order before and after proteinase K treatment of brush-border membrane vesicles, it is concluded that cholesterol absorption is protein-mediated. It is shown that the desorption of cholesterol from taurocholate mixed micelles is by a factor of about 10(4) faster than that from egg phosphatidylcholine bilayers. When brush border membrane vesicles are stored at room temperature, intrinsic proteinases are activated and proteins are liberated from the brush border membrane. These proteins collected in the supernatant catalyze cholesterol and phosphatidylcholine exchange between two populations of small unilamellar phospholipid vesicles. One of the active proteins present in the supernatant is purified by a two-step procedure involving gel filtration on Sephadex G-75 SF and affinity chromatography on a Nucleosil-phosphatidylcholine column. The protein thus obtained is pure by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. It has an apparent molecular weight of slightly less than 14,000 as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis and a value of 11,500 determined by gel filtration on Sephadex G-75 SF.  相似文献   

4.
We report the purification of a phospholipid transfer protein from human platelets. This protein preferentially transfers phosphatidylinositol, with phosphatidylcholine and phosphatidylglycerol being transferred to a lesser extent. Phosphatidylethanolamine is not transferred. Transfer activity is detected by measuring the transfer of radiolabeled phospholipids between two populations of small unilamellar vesicles. The protein was purified approximately 1000-fold over the platelet cytosol by chromatography on Sephadex G-75, sulfooxyethyl cellulose, and hydroxylapatite. The molecular weight of this protein appears to be 28 000 as determined by gel filtration chromatography. When the purified protein is analyzed on sodium dodecyl sulfate-polyacrylamide gels, two major components and several minor ones are observed. The molecular weight of the two major bands are 28 600 and 29 200. Isoelectric focusing of the platelet cytosol yielded phosphatidylinositol and phosphatidylcholine transfer activity at pH 5.6 and 5.9. The platelet phospholipid transfer protein is able to catalyze the transfer of phosphatidylinositol and phosphatidylcholine between vesicles and human platelet plasma membranes. One possible physiological role for this transfer protein is an involvement in the rapid turnover of inositol-containing lipids which occurs upon exposure of platelets to various stimuli.  相似文献   

5.
Large unilamellar vesicles, prepared by a petroleum ether vaporization method, were compared to multilamellar vesicles with respect to a number of physical and functional properties. Rotational correlation time approximations, derived from ESR spectra of both hydrophilic (3-doxyl cholestane) and hydrophobic (3-doxyl androstanol) steroid spin probes, indicated similar molecular packing of lipids in bilayers of multilamellar and large unilamellar liposomes. Light scattering measurements demonstrated a reduction in apparent absorbance of large unilamellar vesicles, suggesting loss of multilamellar structure which was confirmed by electron microscopy. Furthermore, large unilamellar vesicles exhibited enhanced passive diffusion rates of small solutes, releasing a greater percentage of their contents within 90 min than multilamellar vesicles, and reflecting the less restricted diffusion of a unilamellar system. The volume trapping capacity of large unilamellar vesicles far exceeded that of multilamellar liposomes, except in the presence of a trapped protein, soy bean trypsin inhibitor, which reduced the volume of the aqueous compartments of large unilamellar vesicles. Finally, measurement of vesicle diameters from electron micrographs of large unilamellar vesicles showed a vesicle size distribution predominantly in the range of 0.1--0.4 micron with a mean diameter of 0.21 micron.  相似文献   

6.
Structural proteins of active 60-S and 40-S subunits of rat liver ribosomes were analysed by two-dimensional polyacrylamide gel electrophoresis. 35 and 29 spots were shown on two-dimensional gel electrophoresis of proteins from large and small subunits, respectively. It was noted that the migration distances of stained proteins with Amido black 10B remained unchanged in the following sodium dodecyl sulfate-acrylamide gel electrophoresis, although some minor degradation and/or aggregation products were observed in the case of several ribosomal proteins, especially of those with high molecular weights. This finding made it possible to measure the molecular weight of each ribosomal protein in the spot on two-dimensional gel electrophoresis by following sodium dodecyl sulfate-acrylamide gel electrophoresis. The molecular weights of the protein components of two liver ribosomal subunits were determined by this 'three-dimensional' polyacrylamide gel electrophoresis. The molecular weights of proteins of 40-S subunits ranged from 10 000 to 38 000 and the number average molecular weight was 23 000. The molecular weights of proteins of 60-S subunits ranged from 10 000 to 60 000 and the number average molecular weight was 23 900.  相似文献   

7.
A highly purified membrane preparation derived from the microsomal fraction of rat hepatocytes has been chemically characterized and fractionated by means of gel filtration. The preparation has been freed of ribosomes and intravesicular protein and has a composition on a w/w basis of 52.1% protein, 45.0% phospholipid, 2.9% carbohydrate and no RNA. 97 ± 2% of the total membrane phosphorus is accounted for as phospholipid phosphorus.Determination of the molecular weight distribution of the constituent polypeptides by sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave values ranging from 171 000 to 16 000 for the major classes of proteins. Although several membrane glycoproteins have been identified, the most prominent species has an apparent molecular weight of 171 000, 40% of the total microsomal protein is present' in the 49 000–60 000 molecular weight region. Examination of the intrinsic polypeptide composition of membranes obtained from smooth and degranulated rough endoplasmic reticulum revealed no detectable qualitative differences.Sodium dodecyl sulfate-solubilized microsomal membrane proteins were separated by gel filtration into much simplified molecular weight classes, some of which showed predominantly a single electrophoretic component. Amino acid analysis of individual fractions showed a noticeable trend toward a decreasing ratio of acidic to basic residues with decreasing molecular weight.Membrane phosphorus was distributed between two chromatographic fractions: one containing the membrane phospholipid (97% of the total) as well as essentially all the cholesterol, the other, at the inclusion volume of the gel filtration system, containing small molecular weight species (3% of the total phosphorus). The absence of a ribonuclease-resistant RNA component eluting near the void volume clearly distinguishes the microsomal membrane from the nuclear envelope.  相似文献   

8.
Large unilamellar vesicles, prepared by a petroleum ether vaporization method, were compared to multilamellar vesicles with respect to a number of physical and functional properties. Rotational correlation time approximations, derived from ESR spectra of both hydrophilic (3-doxyl cholestane) and hydrophobic (3-doxyl androstanol) steroid spin probes, indicated similar molecular packing of lipids in bilayers of multilamellar and large unilamellar liposomes. Light scattering measurements demonstrated a reduction in apparent absorbance of large unilamellar vesicles, suggesting loss of multilamellar structure which was confirmed by electron microscopy. Furthermore, large unilamellar vesicles exhibited enhanced passive diffusion rates of small solutes, releasing a greater percentage of their contents within 90 min than multilamellar vesicles, and reflecting the less restricted diffusion of a unilamellar system. The volume trapping capacity of large unilamellar vesicles far exceeded that of multilamellar liposomes, except in the presence of a trapped protein, soy bean trypsin inhibitor, which reduced the volume of the aqueous compartments of large unilamellar vesicles. Finally, measurement of vesicle diameters from electron micrographs of large unilamellar vesicles showed a vesicle size distribution predominantly in the range of 0.1–0.4 μm with a mean diameter of 0.21 μm.  相似文献   

9.
Outer membranes of Haemophilus influenzae type b were fractionated to yield Triton X-100-insoluble material and lipopolysaccharide and phospholipids. Liposomes reconstituted from lipopolysaccharide and phospholipids were impermeable to sucrose (Mr, 342) and to a high-molecular-weight dextran (average Mr, 6,600). When the Triton X-100-insoluble material was introduced into the reconstituted liposomes, the vesicles became permeable to sucrose, raffinose (Mr, 504), and stachyose (Mr, 666) and fully retained dextrans of Mr greater than 1,500. Inulin (average Mr, 1,400) was tested for its efflux from the reconstituted outer membrane vesicles; 62% of the added inulin was trapped. The molecular weight exclusion limit for the outer membrane of H. influenzae type b was therefore estimated at approximately 1,400. A protein responsible for the transmembrane diffusion of solutes was purified from H. influenzae type b by extraction of whole cells with cetyl trimethyl ammonium bromide. When this extract was passed over DEAE-Sepharose, three protein-containing peaks (I, II, and III) were eluted. Peaks I and II contained mixtures of proteins as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; when tested for their pore-forming properties, these proteins were unable to render liposomes of lipopolysaccharide and phospholipid permeable to sucrose. Peak III contained only one molecular species of protein of molecular weight 40,000; this protein acted as a porin in reconstituted vesicles. The molecular weight exclusion limit for 40,000-molecular-weight protein matched the estimate of approximately 1,400 which was determined for outer membranes. A series of homologous saccharides of increasing degree of polymerization was prepared from agarose by hydrolysis with beta-agarase and fractionation on gel filtration chromatography. These oligosaccharides of Mr, 936, 1,242, 1,548, and 1,854 were assayed for retention by the complete vesicles containing 40-kilodalton protein and lipopolysaccharide and phospholipids. All of these oligosaccharides were lost by efflux through the porin. Since the molecular conformation of the largest oligosaccharide is an elongated semirigid helix, it is suggested that the pore formed by the 40-kilodalton protein does not act as a barrier to the diffusion of this compound.  相似文献   

10.
The protein moiety of duck globin messenger ribonucleoprotein complexes isolated by oligo(dT)-cellulose chromatography or by sucrose gradient centrifugation was analysed by two-dimensional polyacrylamide gel electrophoresis under conditions where the separation in the first dimension occurs according to charge and in the second according to molecular weight. By comparing the pattern of protein from the mRNA - protein complex with that of ribosomal subunits we found that two acidic proteins with an identical molecular weight of about 49 000 and three basic proteins of about Mr 56 000, 64 000 and 73 000 were associated with the duck globin mRNA but were absent from either puromycin/high-salt-derived or 'run-off' ribosomal subunits. The comparison of the proteins from the complex with mRNA with those found in the 0.5 M KCl wash, commonly used as the source of initiation factors, showed also that only the 49 000-Mr protein from the complex could possibly be present in the 0.5 M KCl wash of polyribosomes; proteins with mobilities similar to the other three proteins complexed with mRNA were not detected in the salt wash of polyribosomes.  相似文献   

11.
S H Lee  N S Cohen  A J Jacobs  A F Brodie 《Biochemistry》1979,18(11):2232-2239
Membrane vesicles from Mycobacterium phlei contain carrier proteins for proline, glutamine, and glutamic acid. The transport of proline is Na+ dependent and required substrate oxidation. A proline carrier protein was solubilized from the membrane vesicles by treatment with cholate and Triton X-100. Electron microscopic observation of the detergent-treated membrane vesicles showed that they are closed structures. The detergent-extracted proteins were purified by means of sucrose density gradient centrifugation, followed by gel filtration and isoelectric focusing. A single protein with a molecular weight of 20,000 +/- 1000 was found on polyacrylamide gel electrophoresis. Reconstitution of proline transport was demonstrated when the purified protein was incubated with the detergent-extracted membrane vesicles. This reconstituted transport system was specific for proline and required substrate oxidation and Na+. The purified protein was also incorporated into liposomes, and proline uptake was demonstrated when energy was supplied as a membrane potential introduced by K+ diffusion via valinomycin. The uptake of proline was Na+ dependent and was inhibited by uncoupler or by sulfhydryl reagents.  相似文献   

12.
The spontaneous reconstitution of lipid-protein complexes was examined by mixing bacteriorhodopsin or UDP-glucuronosyltransferase with preformed, unilamellar bilayers of pure dimyristoylphosphatidylcholine. Spontaneous insertion of these proteins into vesicles of dimyristoylphosphatidylcholine was facilitated by resonicating the vesicles at 4 degrees C. The property of resonicated vesicles that led to spontaneous reconstitution could be annealed by melting the bilayers, which slowed down reconstitution. The overall process of reconstitution consisted, however, of two steps. There was an initial insertion of proteins into a small portion of vesicles followed by subsequent fusion between protein-free vesicles and vesicles containing lipid-protein complexes. The first step appeared to proceed rapidly in all vesicles in a gel phase, whether or not they were resonicated or whether or not resonicated vesicles were annealed. The rate of the second step was sensitive to these treatments. The membrane proteins also inserted into preformed vesicles in a liquid crystalline phase, but this step was slower than for vesicles in a gel phase. Fusion between protein-free and protein-containing vesicles in a liquid crystalline phase was extremely slow. The data show that the spontaneous insertion of pure membrane proteins into preformed vesicles can be a facile event and that the overall reconstitution of membrane proteins into preformed unilamellar vesicles may be simpler to achieve than has been appreciated.  相似文献   

13.
K Prasad  R E Lippoldt  H Edelhoch 《Biochemistry》1985,24(23):6421-6427
The proteins of Mr 100 000-110 000 present in the protein coat of coated vesicles have been shown to facilitate formation of a homogeneous small-size basket (coat) when added to clathrin [Zaremba, S., & Keen, J.H. (1983) J. Cell Biol. 97, 1339]. We have prepared this protein of coat proteins by two different methods and shown that they are very important for the binding of clathrin to uncoated vesicles to form coated vesicles. By labeling the three components (clathrin, 100 000-110 000 proteins, and uncoated vesicles) with different fluorescent markers and analyzing their distribution on sucrose gradients, we have been able to determine the composition of the products formed. In the presence of the 100 000-100 000 fraction of coat proteins, not only does the size distribution of the clathrin basket become uniform but also the rate of polymerization is strongly increased.  相似文献   

14.
Pigeon heart microsomes contain three minor size protein kinase substrates of minimal molecular weights of 22 000, 15 000, and 11500, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When the microsomes were partially loaded with calcium oxalate and subjected to rate zonal and isopycnic centrifugations in sucrose density gradient columns, the 22 000 and the 15 000 dalton proteins settled in the heaviest fraction, which was composed mainly of vesicles of sarcoplasmic reticular membranes; the 11 500 dalton protein was concentrated in the lightest fractions, which consisted chiefly of vesicles of sarcolemmal origin. During incubation of the membrane fractions with Mg [gamma-32P]ATP significant amounts of 32P were incorporated into all these proteins. Incorporation of 32P into the 15 000 dalton protein was moderately and 32P incorporation into the 22 000 dalton protein was markedly enhanced in the presence of exogenous soluble cyclic AMP-dependent protein kinase and cyclic AMP. The phosphorylation of the three proteins was virtually unaffected by Ca2+ concentrations up to 0.1 mM and by ethyleneglycol-bis-(beta-aminoethyl-ether)-N,N'-tetraacetic acid in the absence of added Ca2+. Phosphorylation of the 22 000 and the 11 500 dalton proteins occurred mainly at serine residues. In the 15 000 dalton protein threonine residues were the main site of endogenous phosphorylation. Nearly equal amounts of [32P]-phosphate were incorporated into threonine and serine residues of this protein, when phosphorylation was supported by exogenous cyclic AMP-dependent protein kinase and cyclic AMP. The 15 000 dalton protein could be removed from its membrane attachment by extraction with an acidic chloroform/methanol mixture. This step opens the way for the purification of this membrane-bound protein kinase substrate.  相似文献   

15.
A general method has been developed for the covalent attachment of immunoglobulin molecules to the outer layer of liposomal membranes. Aldehyde groups are generated by the mild oxidation with periodate or galactose oxidase of the carbohydrate groups on the constant region of the heavy chain. The oxidized protein is then reacted with a hydrazide group linked to a membrane component. Detailed studies were carried out with monomers of a monoclonal human IgM and two monoclonal murine IgM antibodies specific for the 1-dimethylaminonaphthalene-5-sulfonyl (Dns) group. Two hydrazide-containing hydrophobic reagents were used: Nα-lauroyl, N-Dns-lysine hydrazide and lauric acid hydrazide. The number of protein aldehyde groups formed was assayed by reaction with N-(2,4-dinitrophenyl)-β-alanylglycylglycine hydrazide. Measurement of the intrinsic affinity for Dns-lysine of the processed anti-Dns IgMs demonstrated no substantial impairment of the specific reactivity of the antibody either from the oxidation step or the subsequent attachment to small unilamellar vesicles. The extent of attachment of antibody to small unilamellar vesicles was evaluated with respect to the mol% of hydrazide in the membrane, the duration of the incubation period for the aldehyde-hydrazide reaction and the ratio of protein to hydrazide. The yield of attached protein was significantly dependent on each of these experimental parameters over the ranges tested. Under the most favorable conditions the extent of covalent attachment of IgMs to small unilamellar vesicles was 535 μg of protein per μ mol of phospholipid, corresponding to 0.3 mol% of protein. Under these conditions, 61% of the total protein was associated with the small unilamellar vesicle fraction after fractionation by gel filtration. The attachment of the antibody to small unilamellar vesicles did not destroy the integrity of the vesicles, as demonstrated by the retention of carboxyfluorescein following initial encapsulation during the formation of small unilamellar vesicles.  相似文献   

16.
M Yamada  M Mori  T Sugimura 《Biochemistry》1981,20(4):766-771
Human myeloperoxidase was purified to homogeneity from human promyelocytic leukemia HL-60 cells. A small molecular weight myeloperoxidase was found in these cells and was separated from three other forms of myeloperoxidase of large molecular weight by carboxymethyl-Sepharose CL-6B column chromatography and Sephacryl S-200 gel filtration. The S20,w values of the molecular weights of the small and large myeloperoxidases were found to be 5.2 and 8.07 S, respectively, by sucrose density gradient centrifugation. From these S20,w values, the molecular weights of the small and large myeloperoxidases were estimated to be 79 000 and 153 000, respectively. On electrophoresis in sodium dodecyl sulfate--polyacrylamide gel, the small and large myeloperoxidases each gave two bands of protein corresponding to molecular weights of 59 300 and 10 150. The small myeloperoxidase could not be distinguished from the large enzymes by the Ouchterlony double immunodiffusion test, but it could be distinguished from them by the microcomplement fixation text. One of the three large molecular weight myeloperoxidases was eluted at a lower concentration of methyl alpha-D-mannoside than the other two on concanavalin A--Sepharose chromatography. This suggested that the heterogeneity of the myeloperoxidases with large molecular weight may be partly due to differences in their sugar moieties.  相似文献   

17.
Injection of DNA into liposomes by bacteriophage lambda   总被引:4,自引:0,他引:4  
Small unilamellar vesicles (75-100 nm diameter) and large liposomes (greater than 1 micron in diameter) were prepared containing the lamB protein, an outer membrane protein of Escherichia coli and Shigella which serves as the receptor for bacteriophage lambda. Bacteriophage were observed to bind to these liposomes and vesicles by their tails and in most cases the heads of the bound bacteriophage appeared empty or partially empty of DNA. The lambda DNA was usually only partially ejected from the bacteriophage head when small unilamellar liposomes were used, presumably because the vesicles are too small to contain all the DNA. The partially ejected DNA was not susceptible to DNase unless the vesicle bilayer was first disrupted suggesting that DNA injection of phage DNA into the vesicle had occurred. After disruption of these vesicles on electron microscope grids, the bacteriophage are seen to have partially empty heads and a small mass of DNA associated with their tails. Using larger liposomes prepared by the fusion of lamB bearing vesicles with polyethylene glycol and n-hexyl bromide, the heads of most of the bound bacteriophage appeared to be completely empty of DNA. Disruption of these preparations on electron microscope grids revealed circular arrays of empty-headed bacteriophage surrounding DNA which had apparently been contained within the intact liposomes. These results indicate that high molecular weight DNA can be entrapped within liposomes with high efficiency by ejection from bacteriophage lambda. The possible use of these DNA-containing liposomes to facilitate gene transfer in eukaryotic cells is discussed.  相似文献   

18.
B M Denker  E J Neer 《FEBS letters》1991,279(1):98-100
Guanine nucleotide binding proteins (G proteins) mediate a variety of cellular responses to external stimuli. Pure G protein, receptor, and effector are sufficient to reconstitute hormonal activation of an effector in phospholipid vesicles, but other components may be important for specificity or localization in vivo. If another protein associates with GO, the molecular weight of GO solubilized from membranes would be larger than the molecular weight of GO after purification. We find that GO solubilized from bovine brain membranes by Triton X-100 behaves as a single population of molecules on sucrose density gradients and gel filtration columns. Its molecular mass is about 40 kDa larger than pure GO. Association of GO with the other protein is fragile as the proteins dissociate on further purification. There was no difference in ADP-ribosylation or tryptic cleavage of GO in larger and smaller form. These studies provide a basis for future experiments to stabilize the interaction and identify the protein.  相似文献   

19.
Summary A cyclic nucleotide-independent protein kinase which phoshorylates preferentially acidic proteins such as casein or phosvitin was isolated from cytosol of chick duodenal mucosa. The enzyme was purified more than 633 fold to apparent homogeneity by ammonium sulfate fractionation, column chromatography on DEAE-cellulose, phosphocellulose, hydroxylapatite and by sucrose density gradient centrifugation. The native enzyme has a molecular weight of 131000 as measured by gel filtration. The enzyme is a complex protein containing three polypeptides of molecular weight of 39 000, 36 000 and 27 000. It behaves as a complex throughout its purification and gel filtration but its components are readily separated by electrophoresis in denaturing buffer. The 27 000 molecular weight band was selectively autophosphorylated when the enzyme was incubated in the presence of [-32P]ATP.When casein was used as substrate, physiological concentrations of naturally occurring polyamines such as spermine and spermidine markedly stimulated enzyme activity. However with phosvitin as substrate polyamines were strong inhibitors of the enzyme activity. This contrasting effect on intestinal kinase activity was also apparent using cytoplasmic proteins as endogenous phosphate acceptors. A characterization of this differential effect is presented and some possible physiological implications are discussed.  相似文献   

20.
Characterization of the apolipoproteins of rat plasma lipoproteins.   总被引:3,自引:0,他引:3  
Purified fractions of three major rat high-density lipoproteins (HDL) and one rat very low-density lipoprotein (VLDL) were isolated by Sephadex gel chromatography or preparative sodium dodecyl sulfate gel electrophoresis. These proteins were characterized by amino acid analysis, end-group analysis, molecular-weight determination, polyacrylamide gel electrophoresis, and circular dichroism. One of these rat proteins, of molecular weight 27 000, appears to be homologous with the human A-I protein. However, rat HDL possesses two additional major components not reported in human HDL - an arginine-rich protein of molecular weight 35 000 and a protein of molecular weight 46 000. The arginine-rich protein of the rat is similar in size and amino acid analysis to the arginine-rich protein reported in human VLDL. A major component of rat VLDL of 35 000 molecular weight appears similar or identical to the arginine-rich protein in rat HDL by every criterion employed for their characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号