首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas aeruginosa OprM is a protein involved in multiple-antibiotic resistance as the outer membrane component for the MexA-MexB-OprM efflux system. Planar lipid bilayer experiments showed that OprM had channel-forming activity with an average single-channel conductance of only about 80 pS in 1 M KCl. The gene encoding OprM was subjected to insertion mutagenesis by cloning of a foreign epitope from the circumsporozoite form of the malarial parasite Plasmodium falciparum into 11 sites. In Escherichia coli, 8 of the 11 insertion mutant genes expressed proteins at levels comparable to those obtained with the wild-type gene and the inserted malarial epitopes were surface accessible as assessed by indirect immunofluorescence. When moved to a P. aeruginosa OprM-deficient strain, seven of the insertion mutant genes expressed proteins at variable levels comparable to that of wild-type OprM and three of these reconstituted MIC profiles resembling those of the wild-type protein, while the other mutant forms showed variable MIC results. Utilizing the data from these experiments, in conjunction with multiple sequence alignments and structure predictions, an OprM topology model with 16 beta strands was proposed.  相似文献   

2.
Spacer-mediated display of active lipase on the yeast cell surface   总被引:5,自引:0,他引:5  
We have constructed a Saccharomyces cerevisiae strain displaying an active lipase on the cell surface by cell surface engineering. The gene encoding Rhizopus oryzae lipase (ROL) was fused with the genes encoding the pre-alpha-factor leader sequence and the C-terminal half of alpha-agglutinin including the glycosylphosphatidylinositol-anchor attachment signal. The constructed gene was overexpressed under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter. Linker peptides (spacers) consisting of the Gly/Ser repeat sequence were inserted at the C-terminal portion of ROL to enhance lipase activity by preserving the conformation of the active site near the C-terminal portion. Localization of the expressed ROL on the cell surface was confirmed by immunofluorescence microscopy. The ROL displayed on the yeast cell wall exhibited activity toward soluble 2,3-dimercaptopropan-1-ol tributyl ester (BALB) and insoluble triolein. The insertion of linker peptides effected the activity towards BALB, thereby demonstrating that the optimal length of linker peptides was present. The activity towards triolein was higher in lipases with longer linker peptides. ROL displayed on the cell wall exhibited a comparable and/or higher activity towards triolein than the secreted form of the enzyme. This is the first report of an active lipase displayed on the cell surface. Furthermore, insertion of a linker peptide of the appropriate length as a spacer may be an improved method to effectively display enzymes, especially those having the active region at the C-terminal portion, on the cell surface.  相似文献   

3.
The folC gene of Escherichia coli, cloned in a pUC19 vector, was mutagenized by progressive deletions from both the 5' and the 3' ends and by TAB linker insertion. A number of 5'-deleted genes, which had the initiator ATG codon removed, produced a truncated gene product, in reduced amounts, from a secondary initiation site. The most likely position of this site at a GTG codon located 35 codons downstream of the normal start site. This product could complement the folC mutation in E. coli strain SF4 as well as a strain deleted in the folC gene. The specific activity of extracts of the mutant enzyme are 4-16% that of the wild type enzyme for the folylpolyglutamate synthetase activity and 6-19% for the dihydrofolate synthetase activity. The relative amount of protein expressed by the mutant, compared to the wild type, in maxicells was comparable to the relative specific activity, suggesting that the kcat of the mutant enzyme is similar to that of the wild type. Mutants with up to 14 amino acids deleted from the carboxy terminal could still complement the folC deletion mutant. Seven out of ten linker insertions dispersed through the coding region of the gene showed complementation of the folC mutation in strain SF4 but none of these insertion mutants were able to complement the strain containing a deleted folC gene. None of the carboxy terminal or linker insertion mutants had a specific activity greater than 0.5% that of the wild type enzyme. The dihydrofolate synthetase and folylpolyglutamate synthetase activities behaved similarly in all mutants, both retaining a large fraction of the wild type activity in the amino terminal deletions and both being very low in the carboxy terminal deletions and linker insertion mutants. These studies are consistent with a single catalytic site for the two activities catalyzed by this enzyme.  相似文献   

4.
Two point mutations were introduced by oligonucleotide-directed mutagenesis into the region of the Rous sarcoma virus envelope gene that encodes the hydrophobic transmembrane anchor of the receptor glycoprotein. Single-nucleotide substitutions ultimately converted a hydrophobic leucine, located centrally within the membrane-spanning domain, to either a similarly hydrophobic methionine or a positively charged arginine. The altered coding region was reinserted into an intact copy of the envelope gene, cloned into simian virus 40 late-replacement vector and expressed in primate cells. Analysis of envelope gene expression in CV-1 monkey cells revealed normal levels of synthesis of a membrane-spanning precursor for both the mutants; however, the arginine-containing mutant [mu 26(arg)] exhibited greatly reduced cell surface expression of mature protein, as determined by indirect immunofluorescence and 125I labeling of surface proteins. In experiments in which cells producing the mu 26(arg) polypeptide were pulsed with radioactive leucine and then chased for 5 h, no intracellular accumulation or extracellular secretion of mature products (gp85 and gp37) could be detected. Treatment of mu 26(arg)-infected cells with lysosomal enzyme inhibitors (chloroquine and leupeptin) resulted in the accumulation of gp85 and gp37, indicating that they were being degraded rapidly in lysosomes. The fact that terminally glycosylated and proteolytically cleaved env gene products were observed under these conditions showed that modifications associated with passage through the trans compartment of the Golgi apparatus occurred normally on the mutant polypeptide; thus insertion of a highly charged amino acid into the transmembrane hydrophobic region of gp37 results in the postGolgi transport to lysosomes. It is proposed that the insertion of this mutation into the transmembrane anchor of the envelope glycoprotein does not affect membrane association, orientation with respect to the membrane, or intracellular transport at early stages during maturation. At a step late in the transport pathway, however, the presence of the charged side chain alters the protein in such a manner that the molecules are transported to the lysosomes and degraded. It seems likely that transport of the protein from the trans-Golgi to the cell surface is either directly blocked, or that after expression on the cell surface the mature glycoprotein complex is unstable and rapidly endocytosed.  相似文献   

5.
The oprF gene, expressing Pseudomonas aeruginosa major outer membrane protein OprF, was subjected to semi-random linker mutagenesis by insertion of a 1.3 kb Hincll kanamycin-resistance fragment from plasmid pUC4KAPA into multiple blunt-ended restriction sites in the oprF gene. The kanamycin-resistance gene was then removed by Pstl digestion, which left a 12 nucleotide pair linker residue. Nine unique clones were identified that contained such linkers at different locations within the oprF gene and were permissive for the production of full-length OprF variants. In addition, one permissive site-directed insertion, one non-permissive insertion and one carboxy-terminal insertion leading to proteolytic truncation were also identified. These mutants were characterized by DNA sequencing and reactivity of the OprF variants with a bank of 10 OprF-specific monoclonal antibodies. Permissive clones produced OprF variants that were shown to be reactive with the majority of these monoclonal antibodies, except where the insertion was suspected of interrupting the epitope for the specific monoclonal antibody. In addition, these variants were shown to be 2-mercaptoethanol modifiable, to be resistant to trypsin cleavage in intact cells and partly cleaved to a high-molecular-weight core fragment in outer membranes and, where studied, to be accessible to indirect immunofluorescenee labelling in intact cells by monoclonal antibodies specific for surface epitopes. Based on these data, a revised structural model for OprF is proposed.  相似文献   

6.
The src gene of Rous sarcoma virus (v-src) and its cellular homolog, the c-src gene, share extensive sequence homology. The most notable differences between these genes reside in the region encoding the carboxy terminus of the src proteins. We constructed mutations within the 3' end of the v-src gene to determine the significance of this region to the transforming potential of the v-src protein, pp60v-src. The mutants CHdl300 and CHis1511 contain mutations that alter the last 23 amino acids of pp60v-src, whereas the mutant CHis1545-C contains a linker insertion that alters the last 11 amino acids of pp60v-src, and the mutant CHis1545-H contains a linker insertion that results in a 9-amino-acid insertion at position 415. Plasmids bearing each of these mutations were unable to transform chicken cells when introduced into these cells by DNA transfection. In addition, the structurally altered src proteins encoded by the mutants had much-reduced levels of tyrosine protein kinase activity in vivo, as measured by autophosphorylation and phosphorylation of the 34,000-Mr cellular protein, and in vitro, as determined by measuring the level of pp60src autophosphorylation. These data indicate that the carboxy-terminal amino acid sequences play an important role in maintaining the structure of the catalytic domain of pp60v-src. In contrast, the transfection of chicken cells with plasmid DNA containing a chimeric v-c-src gene resulted in morphological cell transformation and the synthesis of an enzymatically active hybrid protein. Therefore, the carboxy-terminal sequence alterations observed in the c-src protein do not alone serve to alter the functional activity of a hybrid v-c-src protein appreciably.  相似文献   

7.
M R Lentz  R G Webster  G M Air 《Biochemistry》1987,26(17):5351-5358
Different isolates of influenza virus show a high degree of amino acid sequence variation in their surface glycoproteins. Conserved residues located in the substrate-binding pocket of the influenza virus neuraminidase are therefore likely to be involved in substrate binding or enzyme catalysis. In order to study the structure and function of the active site of this protein, a full-length cDNA clone of the neuraminidase gene from influenza A/Tokyo/3/67 was subcloned into aN M13 vector and amino acid substitutions were made in selected residues by using the oligonucleotide mismatch technique. The mutant neuraminidase genes were expressed from a recombinant SV40 vector, and the proteins were analyzed for synthesis, transport to the cell surface, and proper three-dimensional folding by internal and surface immunofluorescence. The mutant neuraminidase proteins were then assayed to determine the effect of the amino acid substitution on enzyme activity. Twelve of the 14 mutant proteins were correctly folded and were transported to the cell surface in a manner identical with that of the wild type. Two of these have full enzyme activity, but seven mutants, despite correct three-dimensional structure, have completely lost neuraminidase activity. Two mutants were active at low pH. The properties of the mutant enzymes suggest a possible mechanism of neuraminidase action.  相似文献   

8.
To identify the major antigenic determinant of native Salmonella flagella of antigenic type d, we constructed a series of mutated fliCd genes with deletions and amino acid alterations in hypervariable region IV and in region of putative epitopes as suggested by epitope mapping with synthetic octameric peptides (T.M. Joys and F. Schödel, Infect. Immun. 59:3330-3332, 1991). The expressed product of most of the mutant genes, with deletions of up to 92 amino acids in region IV, assembled into functional flagella and conferred motility on flagellin-deficient hosts. Serological analysis of these flagella with different anti-d antibodies revealed that the peptide sequence centered at amino acids 229 to 230 of flagellin was a dominant B-cell epitope at the surface of d flagella, because replacement of these two amino acids alone or together with their flanking sequence by a tripeptide specified by a linker sequence eliminated most reactivity with antisera against wild-type d flagella as tested by enzyme-linked immunosorbent assay or by Western immunoblot. Functional analysis of the mutated flagellin genes with or without an insert suggested that amino acids 180 to 214 in the 5' part of hypervariable region IV (residues 181 to 307 of the total of 505) is important to the function of flagella. The hybrid proteins formed by insertion of peptide sequence pre-S1 12-47 of hepatitis B virus surface antigen into the deleted flagellins assembled into functional flagella, and antibody to the pre-S1 sequence was detected after immunization of mice with the hybrid protein. This suggests that such mutant flagellins containing heterologous epitopes have potential as vaccines.  相似文献   

9.
Three mutants of the maltose- or maltodextrin-binding protein encoded by the malE gene of Escherichia coli, with extensive genetic changes, have been purified and crystallized in different crystal forms. Two of these mutant proteins, MalE178 and MalE341, carry net deletions of seven and 13 residues, respectively, near the surface of the molecule. These mutations have very little effect on either the transport activity of the mutant strains or the sugar-binding activity of the purified mutant proteins. The third mutant protein involves the insertion of an 11-residue peptide of the C3 epitope from type 1 poliovirus VP1 protein into the MalE178 deletion mutant, with retention of essentially all the biological properties of the wild-type and the immunological properties of the C3 epitope. We are undertaking three-dimensional structure analysis in order to understand how the protein accommodates these large changes in its surface structure and how the C3 epitope retains its immunological properties in this new environment. The same system could be used to determine easily the structures of other peptide epitopes, especially those in proteins with unknown structures.  相似文献   

10.
11.
The ferrichrome-iron receptor of Escherichia coli K-12 encoded by the fhuA gene is a multifunctional outer membrane receptor with an Mr of 78,000. It is required for the binding and uptake of ferrichrome and is the receptor for bacteriophages T5, T1, phi 80, and UC-1 as well as for colicin M. The fhuA gene was cloned into pBR322, and the recombinant plasmid pGC01 was mutagenized by the insertion of 6-base-pair TAB (two amino acid Barany) linkers into CfoI and HpaII restriction sites distributed throughout the coding region. A library of 18 TAB linker insertions in fhuA was generated; 8 of the mutations were at CfoI sites and 10 were at HpaII sites. All mutations inserted a hexamer that encoded a unique SacI site. A large deletion in fhuA was also isolated by TAB linker mutagenesis. Except for the deletion mutant, all of the linker insertion mutant FhuA proteins were found in the outer membrane in amounts similar to those found in the wild type. Five of the linker insertion mutants were susceptible to cleavage by endogenous proteolytic activity: a second FhuA-related band that migrated at approximately 72 kilodaltons could be detected on Coomassie blue-stained gels and on Western blots (immunoblots) by using a carboxy terminus-specific anti-peptide antibody. Receptor functions were measured with the mutated genes present in a single copy on the chromosome. Some of the receptors conferred wild-type phenotypes: they demonstrated growth promotion by ferrichrome and the same efficiency of plating as that of wild-type FhuA; killing by colicin M was also unaffected. Several mutants were altered in their sensitivities to the lethal agents. TAB linker insertions after amino acids 69 and 128 abolished all receptor functions. Phage T5 id not bind to these mutant FhuA proteins in detergent extracts. The deletion mutant was also defective in all FhuA functions. Sensitivity to the lethal agents of cellsl that expressed mutant FhuAs with insertions after amino acids 59 and 135 was reduced by several orders of magnitude. Insertion at other selected sites decreased some or all receptor functions only slightly. An insertion after amino acid 321 selectively eliminated ferrichrome growth promotion. Finally, a strain carrying a mutant fhuA gene on the chromosome in which the linker insertion occurred after amino acid 82 showed a tonB phenotype. These subtle perturbations that were introduced into the FhuA protein resulted in changes in its stability and in the binding and uptake of its cognate ligands.  相似文献   

12.
We developed a rational approach to identify a site in the vesicular stomatitis virus (VSV) glycoprotein (G) that is exposed on the protein surface and tolerant of foreign epitope insertion. The foreign epitope inserted was the six-amino-acid sequence ELDKWA, a sequence in a neutralizing epitope from human immunodeficiency virus type 1. This sequence was inserted into six sites within the VSV G protein (Indiana serotype). Four sites were selected based on hydrophilicity and high sequence variability identified by sequence comparison with other vesiculovirus G proteins. The site showing the highest variability was fully tolerant of the foreign peptide insertion. G protein containing the insertion at this site folded correctly, was transported normally to the cell surface, had normal membrane fusion activity, and could reconstitute fully infectious VSV. The virus was neutralized by the human 2F5 monoclonal antibody that binds the ELDKWA epitope. Additional studies showed that this site in G protein tolerated insertion of at least 16 amino acids while retaining full infectivity. The three other insertions in somewhat less variable sequences interfered with VSV G folding and transport to the cell surface. Two additional insertions were made in a conserved sequence adjacent to a glycosylation site and near the transmembrane domain. The former blocked G-protein transport, while the latter allowed transport to the cell surface but blocked membrane fusion activity of G protein. Identification of an insertion-tolerant site in VSV G could be important in future vaccine and targeting studies, and the general principle might also be useful in other systems.  相似文献   

13.
The TraT protein is a surface-exposed lipoprotein, specified by plasmids of the IncF group, that mediates serum resistance and surface exclusion. The structure and function of the TraT protein determined by plasmid R6-5 was probed by genetic insertion of a foreign antigenic determinant, the C3 epitope of polio virus, at residues 61, 125, 180, 200 or 216 of the protein. The chimaeric proteins were transported to the outer membrane and, in three cases, immunoassays with an anti-C3 monoclonal antibody indicated that the C3 epitope was exposed on the cell surface. Three of the hybrids, with insertions at residues 125, 180 and 200, assembled into the trypsin-resistant oligomeric form characteristic of the wild-type protein, which suggested that these regions are not involved in TraT subunit:subunit interactions. Additionally, the hybrid protein carrying the C3 epitope at position 180 functioned in a genetic suppression assay and retained partial surface-exclusion activity. Thus, its localization, folding and organization does not appear to be grossly altered from that of the wild-type protein. Applications of the protein for the transport of foreign antigenic determinants to the cell surface are discussed.  相似文献   

14.
15.
The Susan McDonough strain of feline sarcoma virus contains an oncogene, v-fms, which is capable of transforming fibroblasts in vitro. The mature protein product of the v-fms gene (gp140fms) is found on the surface of transformed cells; this glycoprotein has external, transmembrane, and cytoplasmic domains. To assess the functional role of these domains in transformation, we constructed a series of nine linker insertion mutations throughout the v-fms gene by using a dodecameric BamHI linker. The biological effects of these mutations on the function and intracellular localization of v-fms-encoded proteins were determined by transfecting the mutated DNA into Rat-2 cells. Most of the mutations within the external domain of the v-fms-encoded protein eliminated focus formation on Rat-2 cells; three of these mutations interfered with the glycosylation of the v-fms protein and interfered with formation of the mature gp140fms. One mutation in the external domain led to cell surface expression of v-fms protein even in the absence of complete glycosylational processing. Cell surface expression of mutated v-fms protein is probably necessary, but is not sufficient, for cell transformation since mutant v-fms protein was found on the surface of several nontransformed cell lines. Mutations that were introduced within the external domain had little effect on in vitro kinase activity, whereas mutations within the cytoplasmic domain all had strong inhibitory effects on this activity.  相似文献   

16.
A two-plasmid Escherichia coli system for expression of Dr adhesins   总被引:1,自引:1,他引:0  
This paper presents a very efficient expression system for production of Dr adhesins. The system consists of two plasmids. One is the pACYCpBAD-DraC-C-His, which contains the draC gene under the control of the arabinose promoter (pBAD), encoding the DraC usher. The second is the pET30b-syg-DraBE, which contains the draB and draE genes under the control of the T7lac promoter, encoding the DraB chaperone and the DraE adhesin, respectively. Those plasmids have different origin of replication and can therefore coexist in one cell. Since different promoters are present, the protein expression can be controlled. The Dr adhesion expression system constructed opens up a lot of possibilities, and could be very useful in experiments focusing on understanding the biogenesis of Gram-negative bacteria adhesins. For this purpose we showed that the AfaE-III adhesin (98.1% identity between the DraE and the AfaE-III adhesins, with three divergent amino acids within the sequences) was able to pass through the DraC channel in the Escherichia coli BL21(DE3) strain. Immunoblotting analysis and immunofluorescence microscopy showed the presence of AfaE-III on the bacterial cell surface. In addition, the system described can be useful for displaying the immune-relevant sectors of foreign proteins on the bacterial cell. The heterologous epitope sequence of the HSV1 glycoprotein D was inserted into the draE gene in place of the N-terminal region of surface exposed domain 2. Chimeric proteins were exposed on the bacterial surface as evidenced by immunoblotting and immunofluorescence microscopy. The effective display of peptide segments on Dr fimbriae expressed at the bacterial cell surface, can be used for the development of a fimbrial vaccine.  相似文献   

17.
18.
An expression vector utilizing the enhancer and promoter region of the simian virus 40 (SV40) DNA regulating a murine p53 cDNA clone was constructed. The vector produced murine p53 protein in monkey cells identified by five different monoclonal antibodies, three of which were specific for the murine form of p53. The murine p53 produced in monkey cells formed an oligomeric protein complex with the SV40 large tumor antigen. A large number of deletion mutations, in-frame linker insertion mutations, and linker insertion mutations resulting in a frameshift mutation were constructed in the cDNA coding portion of the p53 protein expression vector. The wild-type and mutant p53 cDNA vectors were expressed in monkey cells producing the SV40 large T antigen. The conformation and levels of p53 protein and its ability to form protein complexes with the SV40 T antigen were determined by using five different monoclonal antibodies with quite distinct epitope recognition sites. Insertion mutations between amino acid residues 123 and 215 (of a total of 390 amino acids) eliminated the ability of murine p53 to bind to the SV40 large T antigen. Deletion (at amino acids 11 through 33) and insertion mutations (amino acids 222 through 344) located on either side of this T-antigen-binding protein domain produced a murine p53 protein that bound to the SV40 large T antigen. The same five insertion mutations that failed to bind with the SV40 large T antigen also failed to react with a specific monoclonal antibody, PAb246. In contrast, six additional deletion and insertion mutations that produced p53 protein that did bind with T antigen were each recognized by PAb246. The proposed epitope for PAb246 has been mapped adjacent (amino acids 88 through 109) to the T-antigen-binding domain (amino acids 123 through 215) localized by the mutations mapped in this study. Finally, some insertion mutations that produced a protein that failed to bind to the SV40 T antigen appeared to have an enhanced ability to complex with a 68-kilodalton cellular protein in monkey cells.  相似文献   

19.
20.
The core shell of hepatitis B virus is a potent immune stimulator, giving a strong neutralizing immune response to foreign epitopes inserted at the immunodominant region, located at the tips of spikes on the exterior of the shell. Here, we analyze structures of core shells with a model epitope inserted at two alternative positions in the immunodominant region. Recombinantly expressed core protein assembles into T=3 and T=4 icosahedral shells, and atomic coordinates are available for the T=4 shell. Since the modified protein assembles predominantly into T=3 shells, a quasi-atomic model of the native T=3 shell was made. The spikes in this T=3 structure resemble those in T=4 shells crystallized from expressed protein. However, the spikes in the modified shells exhibit an altered conformation, similar to the DNA containing shells in virions. Both constructs allow full access of antibodies to the foreign epitope, DPAFR from the preS1 region of hepatitis B virus surface antigen. However, one induces a 10-fold weaker immune response when injected into mice. In this construct, the epitope is less constrained by the flanking linker regions and is positioned so that the symmetry of the shell causes pairs of epitopes to come close enough to interfere with one another. In the other construct, the epitope mimics the native epitope conformation and position. The interaction of native core shells with an antibody specific to the immunodominant epitope is compared to the constructs with an antibody against the foreign epitope. Our findings have implications for the design of vaccines based on virus-like particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号