首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The effects of secretin and pancreozymin-C-octapeptide and phosphodiesterase inhibitors on the concentration of adenosine 3',5'-cyclic monophosphate (cyclic AMP) and on the release of enzymes from rat pancreas have been studied. 2. In determininging cyclic AMP by means of the saturation assay of Brown et al. ((1971) Biochem. J. 121, 561-563) it is found essential to purify the pancreatic tissue extract by ion-exchange chromatography prior to the assay. 3. Injection of synthetic secretin or pancreozymin-C-octapeptide in anaesthetized rats in a secretory active dose (0.1 nmol) has no effect on the pancreatic cyclic AMP level. 4. Incubation for up to 10 min of pancreatic slices in Krebs-Ringer bicarbonate glucose medium containing 10(-2) M theophylline as phosphodiesterase inhibitor does not result in an increase of the cyclic AMP level. With 10(-2) M 1-methyl-3-isobutylxanthine as phosphodiesterase inhibitor the level is more than doubled after the first min of incubation and remains constant thereafter. 5. Addition of 3-10(-7) M secretin to slices incubated in the presence of 10(-2) M theophylline causes 84% increase of the cyclic AMP level above control, whereas the addition of 3-10(-7) M pancreozymin-C-octapeptide has no significant effect. In the presence of 10(-2) M 1-methyl-3-isobutylxanthine the latter hormone causes significant increases of up to 34% above control during 10 min of incubation. Secretin in this condition augments the cyclic AMP level by up to 296% above control during a 10 min incubation period. Addition of secretin and pancreozymin-C-octapeptide together has no greater effect than of secretin alone. 6. A broken cell fraction of rat pancreas contains adenylate cyclase activity which can be stimulated to 457 and 600% above the basal activity by 3-10(-7) M pancreozymin-C-octapeptide and secretin, respectively. Incubation of pancreatic slices with either hormone has no effect on the cyclic AMP phosphodiesterase activity in the homogenate of these slices. 7. Pancreozymin-C-octapeptide, dibutyryl cyclic AMP, 1-methyl-3-isobutylxanthine and carbamylcholine cause an elevated release of chymotrypsin from pancreatic slices incubated for 2 h in Krebs-Ringer bicarbonate medium, containing 10 mM glucose, while secretin, cyclic AMP and butyric acid have no significant effect. The release of the cytoplasmic enzyme lactate dehydrogenase is also elevated by dibutyryl cyclic AMP, 1-methyl-3-isobutylxanthine and carbamylcholine, but not significantly by pancreozymin-C-octapeptide. 8. The results support the role of cyclic AMP in the action of secretin, and do not exclude a mediating function of this nucleotide in the actions of pancreozymin in rat pancreas.  相似文献   

2.
The effects of imidazole on the hydrolysis of cyclic AMP and cyclic GMP by crude and partially purified phosphodiesterases obtained from bovine heart and rat liver were studied in order to determine if imidazole has an activity on cyclic nucleotide hydrolysis under conditions which might explain its ability to antagonize the effects of several hormones. Imidazole-Cl (40 mm, pH 7.4) had no effect on the hydrolysis of cyclic AMP or cyclic GMP at substrate levels below 10 μm by the crude enzymes but increasing stimulation was observed with increasing substrate concentrations reaching a twofold stimulation at 1 mm cyclic nucleotide. Three phosphodiesterases with varying substrate specificities were partially purified from bovine heart by ammonium sulfate precipitation and diethyl aminoethyl cellulose chromatography. With these enzymes imidazole had less stimulatory activity and some inhibitory effect on the hydrolysis of 10?4m cyclic AMP and cyclic GMP but was without significant effect on the hydrolysis of 10?6m cyclic AMP or cyclic GMP. The stimulatory activity of imidazole on the hydrolysis of high levels of cyclic nucleotide was dependent on the presence of phosphodiesterase activator. The stimulatory effect of the activator and imidazole plus activator on the hydrolysis of 10?4m cyclic GMP by the rather cyclic GMP-specific enzyme could be eliminated by the addition of ethylene glycol-bis-(β-aminoethyl ether)N,N′-tetraacetate (EGTA) and restored by Ca2+. Imidazole was without effect on the binding of cyclic AMP to a cyclic AMP-dependent protein kinase from bovine heart. The lack of effect of imidazole on the hydrolysis of physiological levels of cyclic AMP or cyclic GMP suggests that the activity of imidazole to antagonize the effects of various hormones is probably not due to a direct action of imidazole on the hydrolysis of cyclic AMP or cyclic GMP.  相似文献   

3.
Feeding rats in diet high in glucose has been demonstrated to inhibit the induction of many enzymes, block the action of glucocorticoids, and, in general, appears to result in decreased cyclic AMP activity. We found that glucose feeding depresses both messenger RNA (mRNA) and non-mRNA synthesis. Electron microscopic examination of the nucleus revealed that glucose feeding decreases the granular component of liver cell nucleoli. It only slightly decreases liver cyclic AMP levels, but produces a sixfold elevation in levels of the cyclic AMP antagonist, cyclic GMP. Administration of bromocyclic GMP, like glucose feeding, depresses mRNA synthesis, but does not simulate the effect of the carbohydrate on nuclear morphology. In addition, glucose feeding halves liver inorganic phosphate and triples ATP levels. Phosphorylation of nuclear proteins, however, remains unaltered. Despite the antagonism between glucose feeding and glucocorticoid activity, the former compound did not change the binding of dexamethasone to liver nuclei.  相似文献   

4.
The possible interaction of l-3,3′,-5-triiodthyronine (T3) and cycli AMP on hepatic gluconeogenesis was investigated in perfused livers isolated from hypothyroid rats starved for 24 h. T3 (1·10?6) and cyclic AMP (2·10?4 M) increased hepatic gluconeogenesis from alanine within 30–60 min perfusion time (+85%/ + 90%), both were additive in their action (+191%). Concomitantly, α-amino[14C]isobutyric acid as well as net alanine uptake and urea production were elevated by T3 and by cyclic AMP. T3 increased the oligomycin-sensitive O2 consumption and the tissue ‘overall’ ATP/ADP ratio, whereas cyclic AMP showed only a minor effect on cellular energy metabolism. As was observed recently for cyclic AMP, the stimulating action of T3 on hepatic gluconeogenesis was independent of exogenous Ca2+ concentration. T3 by itself affected neither the total nor the protein-bound hepatic cyclic AMP contents, pyruvate kinese (v:0.15 mM) activation nor the tissue levels of gluconeogenic intermediates. In contrast, cyclic AMP itself — although less effective than in euthyroid livers — decreased pyruvate kinase activity in hypothyroid livers with a concomitant increase in hepatic phosphoenolpyruvate concentration. This resulted in a ‘crossover’ between pyruvate and phosphoenolpyruvate. Cyclic AMP action was not affected by the further addition of T3. Glucagon (1·10?8 M) was less effective in hypo-than in euthyroid livers in increasing endogenous cyclic AMP content, deactivating pyruvate kinase and stimualting glucose production; this is normalized by the further addition of 1-methyl-3-isobutylxanthine (50 μM). It is concluded that T3 stimulats hepatic gluconeogenesis by a cyclic-AMP-independent mechanism. In addition, the stimulatory action of cyclic AMP and glucagon with respect to hepatic gluconeogenesis is reduced in hypothyroidism. This may be explained by an increase in hepatic phosphodiesterase activity.  相似文献   

5.
Thyroidectomy is known to enhance fat cell phosphodiesterase activity; as a result, the response to lipolytic hormones is markedly reduced. Thyroidectomy also stimulates overall lipogenesis and the uptake of glucose: the present experiments investigated whether there was a correlation between cyclic AMP and glucose uptake. The parameter measured was the transport and phosphorylation (uptake) of deoxy-D-glucose in the presence of two modifiers of the cyclic AMP pool: phosphodiesterase inhibitors and the analogue, dibutyryl cyclic AMP. The inhibition by methylxanthines and dibutyryl cyclic AMP of deoxy-D-glucose uptake observed, was the same in fat cells from normal and thyroidectomized rats: the latter nonetheless still maintained their enhanced glucose uptake. It was therefore concluded that thyroid hormones and cyclic AMP control this step by different, separate pathways. Insulin, well known for its lipogenic effect, enhanced deoxy-D-glucose uptake in fat cells from both normal and thyroidectomized rats to the same extent (about 40%). An additive effect of thyroidectomy and insulin on glucose uptake was thus demonstrated. These results imply that glucose uptake in the adipocyte is controlled by at least three factors: thyroid hormones, cyclic AMP and insulin, each of which can act independently. Maximum glucose uptake is achieved in the presence of a combination of low concentrations of cyclic AMP, of insulin, and in the absence of thyroid hormones.  相似文献   

6.
Two enzymes displaying cyclic GMP-stimulated cyclic AMP phosphodiesterase activity were purified from rat liver to apparent homogeneity: a 'particulate enzyme' found as an integral membrane protein associated with the plasma membrane, and a 'soluble' enzyme found in the cytosol. The physical properties of these enzymes were very similar, being dimers of Mr 134,000, composed in each instance of two subunits of Mr = 66,000-67,000. Both enzymes showed similar kinetics for cyclic AMP hydrolysis. They are both high-affinity enzymes, with kinetic constants for the particulate enzyme of Km = 34 microM and Vmax. = 4.0 units/mg of protein and for the cytosolic enzyme Km = 40 microM and Vmax. = 4.8 units/mg of protein. In both instances hydrolysis of cyclic AMP appeared to show apparent positive co-operativity, with Hill coefficients (happ.) of 1.5 and 1.6 for the particulate and cytosolic enzymes respectively. However, in the presence of 2 microM-cyclic GMP, the hydrolysis of cyclic AMP obeyed Michaelis kinetics (happ. = 1) for both enzymes. The addition of micromolar concentrations of cyclic GMP had little effect on the Vmax. for cyclic AMP hydrolysis, but lowered the Km for cyclic AMP hydrolysis to around 20 microM in both cases. However, at low cyclic AMP substrate concentrations, cyclic GMP was a more potent activator of the particulate enzyme than was the soluble enzyme. The activity of these enzymes could be selectively inhibited by cis-16-palmitoleic acid and by arachidonic acid. In each instance, however, the hydrolysis of cyclic AMP became markedly more sensitive to such inhibition when low concentrations of cyclic GMP were present. Tryptic peptide maps of iodinated preparations of these two purified enzyme species showed that there was considerable homology between these two enzyme forms.  相似文献   

7.
The process of cyclic AMP efflux from rat islets of Langerhans has been studied. The dynamics of glucose-induced cyclic AMP efflux closely resembled the pattern of glucose-induced insulin release. Thus, both processes were dose-dependent for glucose having the same threshold concentrations (4–8 mmol/l glucose), with the time course of cyclic AMP efflux and insulin release from 0–60 min being very similar. Galactose did not affect insulin release, cyclic AMP efflux and intra-islet cyclic AMP accumulation. On the other hand, inosine, N-acetylglucosamine, α-ketoisocaproic acid, L-leucine and xylitol all promoted insulin release and cyclic AMP efflux. Except for L-leucine, all these substances enhanced the intracellular accumulation of cyclic AMP. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine, greatly augmented all these parameters in the presence of glucose whereas in the absence of glucose, insulin release was not enhanced, while both cyclic AMP efflux and cyclic AMP accumulation were elevated. The drug, probenecid, did not alter either insulin release or intra-islet cyclic AMP levels, while cyclic AMP efflux was markedly reduced (though not abolished). Papaverine inhibited both insulin release and cyclic AMP efflux, but was found to augment the intra-islet cyclic AMP levels. The efflux of cyclic AMP correlates more closely with insulin release than with the cyclic AMP accumulation in most instances. The efflux is independent of either insulin secretory granule extrusion or intracellular fluctuations of the nucleotide, though it is not yet known whether cyclic AMP efflux may have some regulatory significance in insulin release.  相似文献   

8.
A microsomal fraction from rat liver was subfractionated into three rough endoplasmic reticulum fractions RIII, RII and RI, together with a smooth endoplasmic reticulum plus Golgi fraction. Cyclic nucleotide phosphodiesterase activity was found in all fractions. Subsequently it was shown that Golgi fractions were essentially devoid of cyclic AMP phosphodiesterase activity and the activity resided in the smooth endoplasmic reticulum fraction. The activity of the endoplasmic reticulum constituted some 20% of the homogenate activity, with the major fraction of this being associated with the RII fraction and the least with the RI fraction. With the exception of the activity of the RI fraction, which was a peripheral enzyme, all of the other enzyme activities were integral, requiring detergent or repeated freeze-thawing to effect solubilization. All of the activities appeared to be exposed at the external surface of the endoplasmic reticulum, as they were inactivated by trypsin under conditions where glucose 6-phosphatase was not. All of these activities displayed distinct sensitivities to both thermal and trypsin inactivation, yielding activity decays consistent with a single enzyme species being present in each case. The freeze-thaw-solubilized enzymes yielded single symmetrical peaks on sucrose-density-gradient centrifugation and polyacrylamide-gel electrophoresis. The sedimentation coefficients for the enzymes in the smooth-endoplasmic-reticulum-plus-Golgi, RIII, RII and RI fractions were 3.2S, 4.2S, 4.5S and 4.5S respectively. Whereas the activity in the smooth-endoplasmic-reticulum-plus-Golgi fraction exhibited normal Michaelis kinetics, those in the other fractions yielded kinetics indicative of apparent negative co-operativity. All of the enzymes exhibited low Km values towards cyclic AMP. The enzymes did not appear to be regulated by Ca2+ or calmodulin. ZnCl2 was found to be a potent non-competitive inhibitor of the enzyme in all fractions. NaF was a weak non-competitive inhibitor. The bilayer fluidizing agent benzyl alcohol exerted dissimilar effects on the enzyme activities. It is concluded that the endoplasmic reticulum displays lateral heterogeneity, with single, rather distinct, cyclic AMP phosphodiesterases being found in the different fractions.  相似文献   

9.
Epinephrine-induced changes in insulin release and cyclic AMP levels were measured simultaneously in isolated rat islets. Forskolin was used to enhance islet cyclic AMP levels. Forskolin (30 microM) stimulated adenylate cyclase activity 10-fold in islet homogenates and raised cyclic AMP levels 5-fold in intact islets (both at low and high glucose). Insulin release was enhanced by forskolin only at high glucose. Epinephrine (0.1 microM) inhibited glucose- and forskolin-induced insulin release to basal rates. At the same time epinephrine potentiated forskolin-elevated cyclic AMP levels. In contrast epinephrine attenuated forskolin-stimulated adenylate cyclase activity in islet homogenates. At low glucose, both alpha 2- and beta-adrenergic blockade counteracted the epinephrine potentiation, each by 50%. At high glucose the effect was mainly beta-adrenergic in nature. The actions of epinephrine in the presence of a beta-blocker were mimicked by the alpha 2-agonist clonidine. Despite the variations in cyclic AMP levels stimulated insulin release was always inhibited by activation of alpha 2-receptors. Finally, insulin release stimulated by exogenous cyclic AMP was abolished by epinephrine. These results suggest that epinephrine inhibits insulin release at a step distal to the generation of cyclic AMP.  相似文献   

10.
Changes in dilution rate did not elicit large and systematic changes in cellular cyclic AMP levels in Escherichia coli grown in a chemostat under carbon or phosphate limitation. However, the technical difficulties of measuring low levels of cellular cyclic AMP in the presence of a large background of extracellular cyclic AMP precluded firm conclusions in this point. The net rate of cyclic AMP synthesis increased exponentially with increasing dilution rate through either the entire range of dilution rates examined (phosphate limitation) or a substantial part of the range (lactose and glucose limitations). Thus, it is probable that growth rate regulates the synthesis of adenylate cyclase. The maximum rate of net cyclic AMP synthesis was greater under lactose than under glucose limitation, which is consistent with the notion that the uptake of phosphotransferase sugars is more inhibitory to adenylate cyclase than the uptake of other carbon substrates. Phosphate-limited cultures exhibited the lowest rate of net cyclic AMP synthesis, which could be due to the role of phosphorylated metabolites in the regulation of adenylate cyclase activity. Under all growth conditions examined, greater than 99.9% of the cyclic AMP synthesized was found in the culture medium. The function of this excretion, which consumed up to 9% of the total energy available to the cell and which evidently resulted from elaborate regulatory mechanisms, remains entirely unknown.  相似文献   

11.
In view of the recently proposed hypothesis of biologic regulation through opposing influences of cyclic AMP and cyclic GMP, and since cyclic AMP is a well-known allosteric activator of phosphofructokinase (ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11), the effect of cyclic GMP on the activity of this enzyme from several rat tissues was investigated. It was found that cyclic GMP exerted an inhibitory effect on the activity of rat heart and skeletal muscle phosphofructokinase. This effect was most pronounced under conditions in which the enzyme was partially inhibited by ATP or by citrate. Cyclic GMP also antagonized the deinhibitory action of cyclic AMP and other allosteric activators, such as glucose 1,6-bisphosphate or AMP, on the ATP or citrate-inhibited heart or muscle phosphofructokinase. In contrast to the heart and skeletal muscle phosphofructokinase, the adipose-tissue enzyme was not affected by cyclic GMP to any significant degree. The antagonistic action of cyclic GMP to the activation of heart-phosphofructokinase, may suggest a mechanism by which the activity of phosphofructokinase is synchronized with the activity of glycogen phosphorylase, as a result of acetylcholine action in heart, to achieve a decrease in total glycogenolysis and glycolysis.  相似文献   

12.
Buffalo sperm heads contain more than 50% of the total cyclic AMP-phosphodiesterase activity (EC 3.1.4.17) present in spermatozoa. Its distribution in sperm heads revealed no activity in acrosome and other membrane structures present in the head. All the cyclic AMP-phosphodiesterase activity was found firmly bound to sperm chromatin which could not be solubilized. In addition to cyclic AMP, cyclic GMP was also hydrolysed by chromatin preparation. The rate of hydrolysis was 2.5-times more rapid with cyclic AMP than with cyclic GMP at their optimum pH of 7.5 and 8.0, respectively. The pH and heat stability profiles, inhibition studies and the effect of divalent metal ions indicated that the two activities are not associated with the same protein. Mixed substrate analysis showed two sites at which the hydrolysis of cyclic AMP and cyclic GMP is catalysed. Chromatin cyclic nucleotide phosphodiesterases exhibited kinetics typical of one enzyme species both for cyclic AMP (K m = 100 microM; V = 1.0 nmol/min per mg protein) and cyclic GMP (Km = 23 microM; V = 0.4 nmol/min per mg protein). Each cyclic nucleotide was found to be a competitive inhibitor of the hydrolysis of the other with a Ki value of 30.18 microM for cyclic AMP hydrolysis and 256 microM for cyclic GMP hydrolysis. Hill coefficients of 1.0 obtained in the presence of cyclic AMP for cyclic GMP hydrolysis and vice-versa indicated no allosteric interactions. It is suggested that chromatin cyclic nucleotide phosphodiesterase may have a role post fertilization in cell growth and differentiation with no role in sperm motility which is regulated by similar enzymes present in sperm flagella.  相似文献   

13.
In fat cells isolated from the parametrial adipose tissue of rats, the addition of purified adenosine deaminase increased lipolysis and cyclic adenosine 3':5'-monophosphate (cyclic AMP) accumulation. Adenosine deaminase markedly potentiated cyclic AMP accumulation due to norepinephrine. The increase in cyclic AMP due to adenosine deaminase was as rapid as that of theophylline with near maximal effects seen after only a 20-sec incubation. The increases in cyclic AMP due to crystalline adenosine deaminase from intestinal mucosa were seen at concentrations as low as 0.05 mug per ml. Further purification of the crystalline enzyme preparation by Sephadex G-100 chromatography increased both adenosine deaminase activity and cyclic AMP accumulation by fat cells. The effects of adenosine deaminase on fat cell metabolism were reversed by the addition of low concentrations of N6-(phenylisopropyl)adenosine, an analog of adenosine which is not deaminated. The effects of adenosine deaminase on cyclic AMP accumulation were blocked by coformycin which is a potent inhibitor of the enzyme. These findings suggest that deamination of adenosine is responsible for the observed effects of adenosine deaminase preparations. Protein kinase activity of fat cell homogenates was unaffected by adenosine or N6-(phenylisopropyl)adenosine. Norepinephrine-activated adenylate cyclase activity of fat cell ghosts was not inhibited by N6-(phenylisopropyl)adenosine. Adenosine deaminase did not alter basal or norepinephrine-activated adenylate cyclase activity. Cyclic AMP phosphodiesterase activity of fat cell ghosts was also unaffected by adenosine deaminase. Basal and insulin-stimulated glucose oxidation were little affected by adenosine deaminase. However, the addition of adenosine deaminase to fat cells incubated with 1.5 muM norepinephrine abolished the antilipolytic action of insulin and markedly reduced the increase in glucose oxidation due to insulin. These effects were reversed by N6-(phenylisopropyl)adenosine. Phenylisopropyl adenosine did not affect insulin action during a 1-hour incubation. If fat cells were incubated for 2 hours with phenylisopropyl adenosine prior to the addition of insulin for 1 hour there was a marked potentiation of insulin action. The potentiation of insulin action by prior incubation with phenylisopropyl adenosine was not unique as prostaglandin E1, and nicotinic acid had similar effects.  相似文献   

14.
The relationship between cyclic adenosine 3',5'-monophosphate (cyclic AMP) metabolism and the induction of tryptophanase and beta-galactosidase was studied in several strains of Escherichia coli grown with succinate, acetate, glycerol, or glucose as the carbon source. No consistent relationship between the intracellular concentration of cyclic AMP in the several strains cultured and the various carbon sources was discerned. In E. coli K-12-1 the induction of tryptophanase was found to vary in the order: succinate greater than acetate greater than glycerol greater than glucose, and that of beta-galactosidase was found in the order: glycerol greater than acetate greater than succinate greater than glucose. Rate of accumulation of cyclic AMP in the culture filtrate was in the order: succinate greater than acetate greater than glycerol greater than glucose. The addition of glycerol to E. coli K-12-1 grown in acetate caused inhibition of tryptophanase and slight inhibition of accumulation of extracellular cyclic AMP. These same conditions caused beta-galactosidase induction to be stimulated. The addition of exogenous cyclic AMP to cultures grown with four different carbon sources had an effect characteristic for each of the two enzymes studied as well as each individual carbon source. The results suggest that there are control elements distinct from cyclic AMP and its receptor protein which respond to the catabolic situation of the cell.  相似文献   

15.
In the presence of 7 mM glucose, dibutyryl cyclic AMP induced electrical activity in otherwise silent mouse pancreatic B cells. This activity was blocked by cobalt or D600, two inhibitors of Ca2+ influx. Under similar conditions, dibutyryl cyclic AMP stimulated 45Ca2+ influx (5-min uptake) in islet cells; this effect was abolished by cobalt and partially inhibited by D600. The nucleotide also accelerated 86Rb+ efflux from preloaded islets, did not modify glucose utilization and markedly increased insulin release. Its effects on release were inhibited by cobalt, but not by D600. These results show that insulin release can occur without electrical activity in B cells and suggest that cyclic AMP not only mobilizes intracellular Ca, but also facilitates Ca2+ influx in insulin secreting cells.  相似文献   

16.
—Guanosine 3′,5’cyclic monophosphate (cyclic GMP) levels in incubated slices of mouse cerebellum are increased 10-fold by glutamate and two-to three-fold by glycine or γ-aminobutyric acid (GABA). Glutamate also produces a 10-fold increase in adenosine 3′,5’cyclic monophosphate (cyclic AMP) in the same tissue. However, GABA decreases cyclic AMP levels 30-40 per cent, and glycine produces only a transient 50 per cent accumulation of this cyclic nucleotide. Theophylline slightly augments the accumulation of cyclic GMP produced by all three amino acids but markedly attenuates the accumulation of cyclic AMP produced by glutamate. In the absence of Ca2+, none of the three amino acids has any effect on cyclic GMP levels, and glutamate produces only a 50 per cent rise in cyclic AMP levels. The decrease of cyclic AMP levels produced by GABA is not affected by theophylline or by the absence of Ca2+. These data suggest an involvement of both cyclic GMP and cyclic AMP in the neurochemical actions of glutamate, GABA and glycine.  相似文献   

17.
Dibutyryl cyclic AMP markedly increases the ability of progesterone to prevent the expression of collagenase activity in cultures of post-partum rat uterus. Dibutyryl cyclic AMP itself and, to a lesser extent, native cyclic AMP, are capable of producing a partial decrease in enzyme activity, but complete abolition is not observed at high cyclic nucleotide concentrations (5 mM) in the culture medium. Theophylline, when added to cultures, mimics the effect of dibutyryl cyclic AMP. Other cyclic nucleotides were without effect on levels of collagenase activity in the uterine cultures.When non-inhibitory concentrations of either dibutyryl cyclic AMP (1 · 10?4 M) or theophylline (1 · 10?4 M) are added to cultures together with a non-inhibitory concentration of either progesterone (5 · 10?6 M) or the potent progesterone analogue Provera (1 · 10?8 M) the ability of the tissue to produce collagenase is decreased by 40–70%. Collagenase activity is consistently diminished more than additively by combinations of steroid and cyclic nucleotide. Theophylline mimics the effect of dibutyryl cyclic AMP on steroid activity in culture. In the presence of dibutyryl cyclic AMP, diminution of collagenase activity can be observed at concentrations of steroid more than two orders of magnitude lower than the normal minimally inhibitory dose. Reduction of collagenase activity is reflected in all experiments by a concomitant decrease in the normal proteolytic degradation of collagen in the tissue ex-plants. The possibility that progesterone acts in the uterus to raise cyclic AMP levels is suggested by the fact that uterine tissue, when cultured in the presence of progesterone, contains reduced levels of cyclic nucleotide phosphodiesterase.These data suggest that, in some way a cyclic AMP-mediated system is critically involved in the control of collagenase activity by progesterone in the rat uterus.  相似文献   

18.
19.
Abstract— In mouse cerebellum, in vivo. cyclic GMP levels are 7 pmol/mg protein in the vermis and 40% lower in the hemispheres, whereas cyclic AMP levels are 7 9 pmol/mg protein in both regions. In the vermis. most of the cyclic GMP is contained in the molecular layer; cyclic AMP levels are highest in the granular layer. Amphetamine, harmaline. pentylenetetrazol and physical shaking elevate, and diazepam and reserpine depress levels of cyclic GMP in both vermis and hemispheres. Oxotremorine and atropine, respectively, increase and decrease cyclic GMP levels only in vermis. Regardless of the agent used, most of the change (67 89%) in cyclic GMP levels occurs in the molecular layer of the vermis; the remainder occurs in the granular layer. Of the drugs tested, only pentylenetetrazol affects cyclic AMP levels, and this drug increases cyclic AMP levels in both vermis and hemispheres and causes equal elevations in the molecular and granular layers of the vermis. In incubated slices of mouse cerebellum, none of the drugs produces changes in cyclic nucleotide levels which are similar to those in vivo. These data indicate that many drugs and conditions that alter cyclic GMP levels in cerebellum act via a common, but indirect, process. We suggest that cyclic GMP levels in cerebellum are regulated by the activity of both the climbing fiber and mossy fiber cerebellar afferent systems. Increased activity in these afferent pathways causes elevation of cyclic GMP levels in Purkinje cells and perhaps in other cells; decreased activity leads to depressed cyclic GMP levels.  相似文献   

20.
Extracts of rat tissues contain kinases which catalyze the conversion of glycogen synthease from the glucose 6-phosphate-independent (I) form to the glucose 6-phosphatate-dependent (D) form. These kinases were stimulated by adenosine 3':5' monophosphate (cyclic AMP). The glycogen synthase kinase activity ratio (activity in the absence of cyclic AMP divided by activity in the presence of cyclic AMP) varied from 0.28 to 0.97. The activity ratio for histone kinase in the same extracts ranged from 0.11 to 0.29. The levels of glycogen synthase kinase varied by a factor of 80 in the following rat tissues (given in order of decreasing enzyme activity): kidney, liver, stomach mucosa, lung, brain, heart, skeletal muscle, and adipose tissue. In the same tissues the levels of histone kinase varied by only a factor of 6 and did not correlate with the levels of glycogen synthase kinase. A modification of the method of Walsh et al. ((1971) J. Biol. Chem. 246, 1977-1985) was developed for purification of the heat-stable inhibitor of cyclic AMP-dependent protein kinases (inhibitor). The modified procedure resulted in good yields of highly purified inhibitor and was much simpler than the previously described procedure. This inhibitor completely inhibited cyclic AMP-dependent histone kinase activity of the extracts but much of the glycogen synthase kinase activity was not inhibited. The portion of glycogen synthase kinase that was insensitive to the inhibitor was: stomach mucosa, 95%; brain, 90%; liver, 82%; kidney, 81%; lung, 68%; adipose tissue, 65%; skeletal muscle, 63%; and heart, 54%. This histone kinase activity in the extracts and hte ratio of glycogen synthase kinase to histone kinase activity of purified catalytic subunit of the cyclic AMP-dependent protein kinase was used to calculate for each extract the glycogen synthase kinase activity contributed by the cyclic AMP-dependent protein kinase. Based on these calculations, the portion of the glycogen synthase kinase which was due to kinases independent of cyclic AMP was: kidney, 97%; liver, 91%; lung, 89%; brain, 87%, heart, 85%; stomach mucosa, 84%; adipose tissue, 38%; and skeletal muscle, 33%. A significant portion of the glycogen synthase kinase activity, but virtually none of the cyclic AMP-dependent histone kinase activity, of these extracts could be adsorbed to phosphocellulose columns. Liver extracts contained, in addition, a form of glycogen synthase kinase which was not adsorbed to phosphocellulose and which could be separated from the cyclic AMP-dependent protein kinase by additional chromatography. These studies demonstrate that kinases independent of cyclic AMP account for most of the glycogen synthase kinase activity of many tissues. The widespread distribution and high concentrations of these enzymes suggest that they are of physiological importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号