首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the structure relationship of different Tat domains, the full-length Tat protein Tat1-86, the gene product of the first exon Tat1-72 which retains full activity of the protein, and a panel of shorter peptides mimicking different regions of the primary structure of the Tat protein were chemically synthesized by the solid-phase method, using an efficient protocol. Synthetic Tat1-86 and Tat1-72 transactivated beta-galactosidase activity in HeLa cells containing the lacZ gene under the control of the human immunodeficiency virus type 1 long terminal repeat. Analyses of the activity of Tat1-86 and Tat1-72 with the sulfhydryl of cysteine residues free or protected by the acetamidomethyl group showed that only the Tat fragments with deprotected cysteine residues retain transactivation ability. In contrast, peptide Tat1-48 was inactive, with cysteine residues either free or protected. Similarly, other shorter synthetic peptides covering the different Tat domains were inactive. Interestingly, when peptides Tat1-48 and Tat38-60 were used simultaneously, a significant transactivation was obtained. This result suggests that both peptide domains are implicated in transactivation, probably by acting at two different sites. This permits us to propose a fundamentally new step in the understanding of the molecular mechanism of Tat transactivation.  相似文献   

2.
The human immunodeficiency virus type 1 (HIV-1) Tat protein has been reported to transactivate several cellular genes, including the potent chemotactic factor interleukin-8 (IL-8). Consistent with these in vitro assays, elevated levels of IL-8 protein are found in the serum of HIV-infected individuals. We now extend these observations by demonstrating that Tat induction of IL-8 is linked to the cell cycle. Cells that constitutively express the Tat(1-86) protein (eTat) and control cells (pCEP) were reversibly blocked at the G(1)/S border with hydroxyurea or thymidine. The cells were subsequently released, and IL-8 expression was monitored by RNase protection assays and enzyme-linked immunosorbent assay (ELISA). RNase protection assays demonstrated that IL-8 mRNA expression is transiently induced, approximately fourfold, as the Tat-expressing cells enter S phase. Consistent with the RNase protection assay, an increase in IL-8 protein was observed in the cell supernatant using an IL-8 ELISA. Similar experiments were performed following a reversible block at the G(2)/M border with nocodazole and release into G(1). Using the RNase protection assay and ELISA, little or no increase in IL-8 expression was observed during G(1). Using gel shift as well as an immobilized DNA binding assay, we demonstrate that the increase in IL-8 gene expression correlates with a specific increase in p65 NF-kappa B binding activity only in the nucleus of the Tat-expressing cells. Moreover, the CREB-binding protein coactivator is present in the complex in the Tat cell line. Finally, we demonstrate that the presence of the proteasome inhibitor MG-132 inhibits the induction of NF-kappa B binding, as well as IL-8 expression, supporting the role of NF-kappa B.  相似文献   

3.
4.
5.
The Tat transactivator protein of human immunodeficiency virus type 1 contains a highly conserved cysteine-rich region, containing seven cysteines from residues 22 through 37. To investigate the importance of noncysteine residues in this region of the Tat protein, we have carried out a mutational analysis, in most cases substituting a single alanine for the wild-type noncysteine residue. Alanine substitution of residue 23, 24, 46, or 47 had no effect on Tat activity in plasmid transfection assays. In contrast, alanine substitutions of all eight noncysteines analyzed, from residues 26 through 41, significantly reduced the activity of the Tat protein, in some cases as drastically as mutations in cysteine residues. The results demonstrate that the precise sequence of the cysteine-rich region is crucial for a fully functional Tat protein.  相似文献   

6.
7.
8.
9.
Human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) is correlated with increased monocyte migration to the brain, and the incidence of HAD among otherwise asymptomatic subjects appears to be lower in India than in the United States and Europe (1 to 2% versus 15 to 30%). Because of the genetic differences between HIV-1 strains circulating in these regions, we sought to identify viral determinants associated with this difference. We targeted Tat protein for these studies in view of its association with monocyte chemotactic function. Analyses of Tat sequences representing nine subtypes revealed that at least six amino acid residues are differentially conserved in subtype C Tat (C-Tat). Of these, cysteine (at position 31) was highly (>99%) conserved in non-subtype C viruses and more than 90% of subtype C viruses encoded a serine. We hypothesized a compromised chemotactic function of C-Tat due to the disruption of CC motif and tested it with the wild type C-Tat (CS) and its two isogenic variants (CC and SC) derived by site-directed mutagenesis. We found that the CS natural variant was defective for monocyte chemotactic activity without a loss in the transactivation property. While the CC mutant is functionally competent for both the functions, in contrast, the SC mutant was defective in both. Therefore, the loss of the C-Tat chemotactic property may underlie the reduced incidence of HAD; although not presenting conclusive evidence, this study provides the first evidence for a potential epidemiologic phenomenon associated with biological differences in the subtype C viruses.  相似文献   

10.
We introduced various mutations into the activation and RNA binding domains of human immunodeficiency virus type 1 (HIV-1) Tat in order to develop a novel and potent transdominant Tat protein and to characterize its mechanism of action. The different mutant Tat proteins were characterized for their abilities to activate the HIV LTR and inhibit the function of wild-type Tat in trans. A Tat protein containing a deletion of the basic domain (Tat(delta)49-57) localized exclusively to the cytoplasm of transfected human cells was nonfunctional and inhibited both HIV-1 and HIV-2 Tat function in a transdominant manner. Tat proteins containing mutations in the cysteine-rich and core domains were nonfunctional but failed to inhibit Tat function in trans. When Tat nuclear or nucleolar localization signals were fused to the carboxy terminus of Tat(delta)49-57, the chimeric proteins localized to the nucleus or nucleolus, respectively, and remained capable of acting in a transdominant manner. Introduction of secondary mutations in the cysteine-rich and core domains of the various transdominant Tat proteins completely eliminated their abilities to act in a transdominant fashion. Our data best support a mechanism in which these transdominant Tat proteins squelch a cellular factor or factors that interact with the Tat activation domain and are required for Tat to function.  相似文献   

11.
12.
Rev is an essential regulatory protein of the human immunodeficiency virus type 1 (HIV-1) that affects the transport and half-life of certain viral mRNAs. Rev exerts its function via a unique element, the Rev-responsive element (RRE), located within the env region of HIV-1. It has been previously demonstrated that Rev affects the relative levels of RRE-containing and RRE-lacking mRNAs. We have studied the effects of Rev on the expression of the three different groups of small, multiply spliced mRNAs that lack the RRE sequence and encode the regulatory proteins Tat, Rev, and Nef. To monitor the tat, rev, and nef mRNAs we generated specific S1 nuclease mapping probes that distinguish among them. Analysis of all the mRNA species producing Tat, Rev, and Nef revealed that their levels are coordinately regulated by Rev. They are increased in the absence of Rev protein and are down regulated in the presence of Rev. The corresponding proteins were measured by immunoprecipitations, and their levels are in agreement with the RNA levels. These results verify the model proposing that Rev is a general regulator indirectly affecting all the multiply spliced mRNAs to a similar extent. Therefore, Rev down regulates its own expression and the expression of Tat and Nef.  相似文献   

13.
本研究采用PCR方法从人类免疫缺陷病毒1型(Human immunodeficiency virus 1,HIV-1)HXB2株tat基因中扩增编码Tat蛋白N末端1-21位氨基酸缺失的突变体Tat22-101基因片段,构建其原核表达质粒pET32a-Tat22-101,经双酶切及测序验证后,转化大肠埃希菌BL21(DE3),进行IPTG诱导表达及Ni2+-NTA柱亲和层析纯化。纯化后的突变体融合蛋白PET32a-Tat22-101经SDS-PAGE及Western blotting鉴定,其相对分子质量约为26.9kD。该融合蛋白免疫BALB/c小鼠,经ELISA检测结果表明,pET32a-Tat22-101融合蛋白不仅较好地保留其免疫原性,而且能诱导产生高滴度的针对Tat N末端区之外的Tat其他功能区表位的抗体,为进一步研究Tat生物学功能和研制新型HIV Tat疫苗奠定试验基础。  相似文献   

14.
M Ma  A Nath 《Journal of virology》1997,71(3):2495-2499
We measured the cellular uptake of 125I-labeled full-length Tat (amino acids 1 to 86) (125I-Tat(1-86)) and 125I-Tat(1-72) (first exon) in human fetal astrocytes, neuroblastoma cells, and human fetal neurons and demonstrated that the uptake of 125I-Tat(1-72) without the second exon was much lower than that of 125I-Tat(1-86) (P < 0.01). This suggests an important role for the C-terminal region of Tat for its cellular uptake. 125I-Tat uptake could be inhibited by dextran sulfate and competitively inhibited by unlabeled Tat but not by overlapping 15-mer peptides, suggesting that Tat internalization is charge and conformationally dependent. Interestingly, one of 15-mer peptides, Tat(28-42), greatly enhanced 125I-Tat uptake. These findings are important for understanding the neuropathogenesis of human immunodeficiency virus type 1 infection and in the potential application of Tat for drug delivery to cells.  相似文献   

15.
We expressed the human immunodeficiency virus type 1 transactivator protein, Tat, in the wheat germ cell-free translation system and found it to exist as a monomer. The first coding exon (residues 1 to 72) of wheat germ-expressed Tat was resistant to trypsin digestion, indicating that it is a highly folded, independently structured protein domain. Several mutant Tat proteins were dramatically more sensitive to trypsin than the wild type was, suggesting that their reduced transactivation activities are the result of destabilized structures. Mutant proteins with single-amino-acid substitutions were also identified that had reduced transactivation activities but wild-type structures in the trypsin assay. These mutants clustered in two regions of Tat, at acidic residues 2 and 5 in the amino terminus and between residues 18 and 32. These mutants, wild type in structure but reduced in activity, identify residues in the wild-type protein that may directly contact other molecules during Tat function.  相似文献   

16.
17.
Plasmacytoid dendritic cells (pDCs), not only inhibit viral replication, but also play an essential role in linking the innate and adaptive immune system. In this study, we explored the effects of human immunodeficiency virus (HIV) gp120 and tat on CpG-A-induced inflammatory cytokines in pDCs. The results provided fundamental insights into HIV pathogenesis that may hold promise for preventative and even curative strategies. pDCs were isolated using blood DC antigen 4 (BDCA-4) DC isolation kit, and the purity was analyzed using BDCA-2 antibody by flow cytometry. pDCs and peripheral blood mononuclear cells (PBMCs) were stimulated by either CpG-A (5 μg/ml), gp120 (0.5 μg/ml), tat (0.5 μg/ml), or CpG-A treatment combined with gp120 or tat. The production of type I interferons (IFNs) and other inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interlukine-6 (IL-6), and interferon-gamma-inducible protein-10 (IP-10) in the culture supernatant, was determined by enzyme-linked immunosorbent assay. The results showed that CpG-A induced high levels of type I IFNs and other inflammatory cytokines, including TNF-α, IL-6, and IP-10, in pDCs. Concomitant treatment with gp120 reduced the levels of IFN-α, IFN-β, TNF-α, IL-6, and IP-10 induced by CpG-A in pDCs by 79%, 53%, 60%, 50%, and 34%, respectively, while tat suppressed them by 88%, 66%, 71%, 64%, and 53%, respectively. Similar results were demonstrated in CpG-A-treated PBMCs. In conclusion, gp120 and tat are effective inhibitors of the CpG-A-mediated induction of type I IFNs and other inflammatory cytokines from pDCs and PBMCs.  相似文献   

18.
H Siomi  H Shida  M Maki    M Hatanaka 《Journal of virology》1990,64(4):1803-1807
Human immunodeficiency virus type 1 encodes a positive trans-activator protein, Tat, which is located predominantly in the cell nucleolus. To study the role of the basic region of Tat in nucleolar localization, we constructed fusion genes encoding serially deleted segments of Tat joined to the amino-terminal end of the Escherichia coli beta-galactosidase molecule. We show that the basic region of Tat was sufficient for nuclear localization but not for nucleolar localization. Addition of three amino acids (59, 60, and 61) of the Tat sequence at the C-terminal end of the basic region was necessary for the chimeric beta-galactosidase to localize in the nucleus as well as in the nucleolus. We demonstrate that a short amino acid sequence (G-48 RKKRRQRRRA HQ N-61), when fused to the amino terminus of beta-galactosidase, can act as a nucleolar localization signal.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号