首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We examined the effects of hypotension and fluid depletion on water and sodium ingestion in rats in response to intracerebroventricular infusions of ANG II. Hypotension was produced by intravenous infusion of the vasodilator drug minoxidil (25 microg x kg(-1) x min(-1)) concurrently with the angiotensin-converting enzyme inhibitor captopril (0.33 mg/min) to prevent endogenous ANG II formation. Hypotension increased water intake in response to intracerebroventricular ANG II (30 ng/h) but not intake of 0.3 M NaCl solution and caused significant urinary retention of water and sodium. Acute fluid depletion was produced by subcutaneous injections of furosemide (10 mg/kg body wt) either alone or with captopril (100 mg/kg body wt sc) before intracerebroventricular ANG II (15 or 30 ng/h) administration. Fluid depletion increased water intake in response to the highest dose of intracerebroventricular ANG II but did not affect saline intake. In the presence of captopril, fluid depletion increased intakes of both water and saline in response to both doses of intracerebroventricular ANG II. Because captopril administration causes hypotension in fluid-depleted animals, the results of the two experiments suggest that hypotension in fluid-replete animals preferentially increases water intake in response to intracerebroventricular ANG II and in fluid-depleted animals increases both salt and water intake in response to intracerebroventricular ANG II.  相似文献   

2.
Na and water intakes of Na-depleted sheep are influenced by changes in cerebral Na concentration. The effect of intracerebroventricular infusion of somatostatin or losartan, the ANG II type 1 receptor antagonist, on the Na appetite and thirst of Na-depleted sheep during infusions that decrease (intracerebroventricular hypertonic mannitol) or increase (intracerebroventricular or systemic hypertonic NaCl) cerebral Na concentration was investigated. Na intake was increased but water intake was unchanged during intracerebroventricular infusion of hypertonic mannitol. The increased Na appetite caused by intracerebroventricular infusion of hypertonic mannitol was decreased by concurrent intracerebroventricular infusion of either somatostatin or losartan, with somatostatin being most effective. Water intake was increased during intracerebroventricular infusion of hypertonic mannitol and somatostatin. Na intake was decreased and water intake was increased during systemic or intracerebroventricular infusion of hypertonic NaCl. Intracerebroventricular infusion of losartan blocked both (Na and water intake), whereas somatostatin did not influence either of these changes in intake. The results further consolidate a role for somatostatin and ANG II in the central mechanisms controlling Na appetite and thirst of sheep.  相似文献   

3.
Prolactin-releasing peptide (PrRP) reduces food intake and body weight and modifies body temperature when administered centrally in rats, suggesting a role in energy homeostasis. However, the mediators of PrRP's actions are unknown. The present study, therefore, first examined the possible involvement of the anorectic neuropeptides corticotropin-releasing hormone (CRH) and the melanocortins (e.g., alpha-melanocyte-stimulating hormone) in PrRP's effects on food intake and core body temperature and, second, determined if PrRP affects energy expenditure by measuring oxygen consumption (Vo2). Intracerebroventricular injection of PrRP (4 nmol) to 24-h-fasted male Sprague-Dawley rats decreased food intake and modified body temperature. Blockade of central CRH receptors by intracerebroventricular coadministration of the CRH receptor antagonist astressin (20 microg) reversed the PrRP-induced reduction in feeding. However, astressin's effect on PrRP-induced changes in body temperature was complicated because the antagonist itself caused a slight rise in body temperature. In contrast, intracerebroventricular coadministration of the melanocortin receptor-3/4 antagonist SHU-9119 (0.1 nmol) had no effect on any of PrRP's actions. Finally, intracerebroventricular injection of PrRP (4 nmol) caused a significantly greater Vo2 over a 3-h test period compared with vehicle-treated rats. These results show that the anorectic actions of PrRP are mediated by central CRH receptors but not by melanocortin receptors-3/4 and that PrRP can modify Vo2.  相似文献   

4.
Considerable evidence implicates the renin-angiotensin system (RAS) in the regulation of energy balance. To evaluate the role of the RAS in the central nervous system regulation of energy balance, we used osmotic minipumps to chronically administer angiotensin II (Ang II; icv; 0.7 ng/min for 24 days) to adult male Long-Evans rats, resulting in reduced food intake, body weight gain, and adiposity. The decrease in body weight and adiposity occurred relative to both ad libitum- and pair-fed controls, implying that reduced food intake in and of itself does not underlie all of these effects. Consistent with this, rats administered Ang II had increased whole body heat production and oxygen consumption. Additionally, chronic icv Ang II increased uncoupling protein-1 and β(3)-adrenergic receptor expression in brown adipose tissue and β3-adrenergic receptor expression in white adipose tissue, which is suggestive of enhanced sympathetic activation and thermogenesis. Chronic icv Ang II also increased hypothalamic agouti-related peptide and decreased hypothalamic proopiomelanocortin expression, consistent with a state of energy deficit. Moreover, chronic icv Ang II increased the anorectic corticotrophin- and thyroid-releasing hormones within the hypothalamus. These results suggest that Ang II acts in the brain to promote negative energy balance and that contributing mechanisms include an alteration in the hypothalamic circuits regulating energy balance, a decrease in food intake, an increase in energy expenditure, and an increase in sympathetic activation of brown and white adipose tissue.  相似文献   

5.
The synergy between ANG II and aldosterone (Aldo) in the induction of salt appetite, extensively studied in rats, has been tested in baboons. ANG II was infused intracerebroventricularly at 0.5 or 1.0 microg/h; Aldo was infused subcutaneously at 20 microg/h. Separate infusions over 7 days had no significant effect on the daily intake of 300 mM NaCl. Concurrent infusions, however, increased daily NaCl intake approximately 10-fold and daily water intake approximately 2.5-fold. In addition, the combined infusions caused 1) a reduction in daily food intake, 2) changes in blood composition indicative of increased vasopressin release, and 3) changes of urinary excretion rates of cortisol and Aldo indicative of increased ACTH release. Arterial blood pressure, measured in two baboons, rose during concurrent ANG II and Aldo treatment. These results indicate a potent synergy between central ANG II and peripheral Aldo in stimulating salt appetite in baboons. At the same time, other ANG II-specific brain mechanisms concerned with water intake, food intake, vasopressin release, ACTH release, and blood pressure regulation appear to have been activated by the same type of synergy. These central enhancement processes have never been previously demonstrated in primates.  相似文献   

6.
Glitazones are efficient insulin sensitizers that blunt the effects of angiotensin II (ANG II) in the rat. Sodium chloride is another important modulator of the systemic and renal effects of ANG II. Whether glitazones interfere with the interaction between sodium and the response to ANG II is not known. Therefore, we investigated the effects of pioglitazone on the relationship between sodium and the systemic and renal effects of ANG II in rats. Pioglitazone, or vehicle, was administered for 4 wk to 8-wk-old obese Zucker rats. Animals were fed a normal-sodium (NS) or a high-sodium (HS) diet. Intravenous glucose tolerance tests, systemic and renal hemodynamic responses to ANG II, and the renal ANG II binding and expression of ANG II type 1 (AT(1)) receptors were measured. The results of our study were that food intake and body weight increased, whereas blood pressure, heart rate, filtration fraction, and insulin levels decreased significantly with pioglitazone in obese rats on both diets. Pioglitazone blunted the systemic response to ANG II and abolished the increased responsiveness to ANG II induced by a HS diet. Pioglitazone modified the renal hemodynamic response to changes in salt intake while maintaining a lower filtration fraction with ANG II perfusion. These effects were associated with a decrease in the number and expression of the AT(1) receptor in the kidney. In conclusion, these data demonstrate that the peroxisome proliferator-activated receptor-gamma agonist pioglitazone modifies the physiological relationship between sodium chloride and the response to ANG II in insulin-resistant rats.  相似文献   

7.
This is the first study to examine the effect of subchronic olanzapine (OLZ) on energy homeostasis in rats, covering all aspects of energy balance, including energy intake as metabolizable energy, storage, and expenditure. We further analyzed whether, and by which mechanism, the CB1‐antagonist AVE1625 might attenuate OLZ‐induced body weight gain. For this purpose, we selected juvenile female Hanover Wistar rats that robustly and reproducibly demonstrated weight gain on OLZ treatment, accepting limitations to model the aberrations on lipid and carbohydrate metabolism. Rats received 2 mg/kg OLZ orally twice daily for 12 days. Body weight and body composition were analyzed. Moreover daily food intake, energy expenditure, and substrate oxidation were determined in parallel to motility and body core temperature. OLZ treatment resulted in substantial body weight gain, in which lean and fat mass increased significantly. OLZ‐treated rats showed hyperphagia that manifested in increased carbohydrate oxidation and lowered fat oxidation (FO). Energy expenditure was increased, motility decreased, but there was no indication for hypothermia in OLZ‐treated rats. Coadministration of OLZ and AVE1625 (10 mg/kg orally once daily) attenuated body weight gain, diminishing the enhanced food intake while maintaining increased energy expenditure and decreased motility. Our data reveal that energy expenditure was enhanced in OLZ‐treated rats, an effect not critically influenced by motility. Energy uptake, however, exceeded energy expenditure and led to a positive energy balance, confirming hyperphagia as the major driving factor for OLZ‐induced weight gain. Combination of OLZ treatment with the CB1‐antagonist AVE1625 attenuated body weight gain in rats.  相似文献   

8.
Intestinal nutrient infusions result in variable decreases in food intake and body weight based on the nutrient type and the specific intestinal infusion site. Only intrajejunal infusions of fatty acids decrease food intake beyond the calories infused. To test whether this extra‐compensatory decrease in food intake is specific to fatty acids, small volume intrajejunal infusions of glucose (Glu) and casein hydrolysate (Cas), as well as linoleic acid (LA) were administered to male Sprague–Dawley rats. Equal kilocalorie (kcal) loads of these nutrients (11.4) or vehicle were infused into the jejunum over 7 h/day for five consecutive days. Food intake was continuously monitored and body weight was measured daily. After the infusion on the final day, rats were killed and plasma collected. Intrajejunal infusions of LA and Glu, but not Cas, suppressed food intake beyond the caloric load of the infusate with no compensatory increase in food intake after the infusion period. Rats receiving LA and Glu infusions also lost significant body weight across the infusion days. Plasma glucagon‐like peptide‐1 (GLP‐1) was increased in both the LA and Glu rats compared with control animals, with no significant change in the Cas‐infused animals. Peptide YY (PYY) levels increased in response to LA and Cas infusions. These results suggest that intrajejunal infusions of LA and Glu may decrease food intake and body weight via alterations in GLP‐1 signaling. Thus, particular nutrients are more effective at producing decreases in food intake, body weight, and inducing changes in peptide levels and could lead to a novel therapy for obesity.  相似文献   

9.
Central infusion of an angiotensin type 1 (AT(1)) receptor blocker prevents sympathetic hyperactivity and hypertension in Dahl salt-sensitive (S) rats on high salt. In the present study, we examined whether central infusion of a direct renin inhibitor exerts similar effects. Intracerebroventricular infusion of aliskiren at the rate of 0.05 mg/day markedly inhibited the increase in ANG II levels in the cerebrospinal fluid and in blood pressure (BP) caused by intracerebroventricular infusion of rat renin. In Dahl S rats on high salt, intracerebroventricular infusion of aliskiren at 0.05 and 0.25 mg/day for 2 wk similarly decreased resting BP in Dahl S rats on high salt. In other groups of Dahl S rats, high salt intake for 2 wk increased resting BP by ~25 mmHg, enhanced pressor and sympathoexcitatory responses to air-stress, and desensitized arterial baroreflex function. All of these effects were largely prevented by intracerebroventricular infusion of aliskiren at 0.05 mg/day. Aliskiren had no effects in rats on regular salt. Neither high salt nor aliskiren affected hypothalamic ANG II content. These results indicate that intracerebroventricular infusions of aliskiren and an AT(1) receptor blocker are similarly effective in preventing salt-induced sympathetic hyperactivity and hypertension in Dahl S rats, suggesting that renin in the brain plays an essential role in the salt-induced hypertension. The absence of an obvious increase in hypothalamic ANG II by high salt, or decrease in ANG II by aliskiren, suggests that tissue levels do not reflect renin-dependent ANG II production in sympathoexcitatory angiotensinergic neurons.  相似文献   

10.
11.
Glutamate acts in the hypothalamus promoting region-, and cell-dependent effects on feeding. Part of these effects are mediated by NMDA receptors, which are up regulated in conditions known to promote increased food intake and thermogenesis, such as exposure to cold and consumption of highly caloric diets. Here, we hypothesized that at least part of the effect of glutamate on hypothalamic control of energy homeostasis would depend on the control of neurotransmitter expression and JAK2 signaling. The expression of NMDA receptors was co-localized to NPY/AgRP, POMC, CRH, and MCH but not to TRH and orexin neurons of the hypothalamus. The acute intracerebroventricular injection of glutamate promoted a dose-dependent increase in JAK2 tyrosine phosphorylation. In obese rats, 5 days intracerebroventricular treatment with glutamate resulted in the reduction of food intake, accompanied by a reduction of spontaneous motility and reduction of body mass, without affecting oxygen consumption. The reduction of food intake and body mass were partially restrained by the inhibition of JAK2. In addition, glutamate produced an increased hypothalamic expression of NPY, POMC, CART, MCH, orexin, CRH, and TRH, and the reduction of AgRP. All these effects on neurotransmitters were hindered by the inhibition of JAK2. Thus, the intracerebroventricular injection of glutamate results in the reduction of body mass through a mechanism, at least in part, dependent on JAK2, and on the broad regulation of neurotransmitter expression. These effects are not impaired by obesity, which suggest that glutamate actions in the hypothalamus may be pharmacologically explored to treat this disease.  相似文献   

12.
Objective: To determine the effect of acute and chronic administration of a new food intake‐reducing compound (HMR1426) with novel mode of action (retardation of gastric emptying) on body weight development, food intake, and energy metabolism in rats. Research Methods and Procedures: Adult male Shoe‐Wistar rats were implanted with transponders allowing registration of body temperature (Tb) and locomotor activity. HMR1426 (10 or 50 mg/kg) was given orally, and acute (8 hours) and chronic (15 days) effects were measured on food intake, Tb, activity, total energy expenditure (indirect calorimetry), and epididymal adipose tissue mass. The effect of chronic treatment was compared with the effect of sibutramine (10 mg/kg). Results: HMR1426 (50 mg/kg) caused an acute and chronic decrease of food intake. There was no effect on the level and daily pattern of total energy expenditure, Tb, and locomotor activity. Respiratory quotient was acutely decreased by HMR1426 due to reduced food intake. Chronic treatment with HMR1426 decreased weight gain by 31% and epididymal white fat by 24%. Sibutramine caused a respective reduction of 48% and 35%. Energy efficiency was not affected by HMR1426 in contrast to sibutramine, which reduced energy efficiency and transiently increased activity. Discussion: HMR1426 showed an anorectic potential in rats and decreased body weight and fat mass. This was achieved solely by reducing food intake without influencing overall energy expenditure or behavior suggesting a peripheral mode of action. Thus, HMR1426 can be considered a potential new drug for obesity treatment.  相似文献   

13.
Intracerebroventricular interleukin-6 treatment decreases body fat in rats   总被引:14,自引:0,他引:14  
Recently we found that interleukin-6 (IL-6) knockout mice develop mature-onset obesity and that a single intracerebroventricular (ICV) injection of IL-6 increases energy expenditure. In the present study we investigated if chronic ICV treatment with IL-6 can suppress body fat mass. IL-6 was injected ICV daily for two weeks to rats fed a high-fat diet. IL-6 treatment but not saline treatment decreased body weight by 8.4% and decreased the relative weights of mesenteric and retroperitoneal fat pads. Consistent with this, circulating leptin levels were decreased by 40% after IL-6 treatment but not after saline treatment. Average food intake per day was decreased in the IL-6 treated group compared to the saline treated rats. IL-6 treatment did not change hepatic expression of the acute-phase protein haptoglobin, serum levels of insulin or insulin-like growth factor-I, or the weights of the heart, liver, kidneys, adrenals, and spleen. We conclude that centrally administered IL-6 can decrease body fat in rats without causing acute-phase reaction.  相似文献   

14.
To assess the importance of the sympathetic nervous system in regulating body weight during prolonged leptin infusion, we evaluated food intake, body weight, and physical activity in conscious, unrestrained rats. Initial studies illustrated that prolonged intracerebroventricular (ICV) infusion of leptin enhanced substrate oxidation so that adipose tissue lipid stores were completely ablated, and muscle triglyceride and liver glycogen stores were depleted. After neonatal chemical sympathectomy, changes in weight and food intake were compared in groups of sympathectomized (SYM) and control (CON) adult animals during ICV infusion of leptin. CON animals lost 60 +/- 9 g over 10 days vs. 25 +/- 3 g in the SYM animals when food intake was matched between the two groups. Greater weight loss despite similar energy intake points to an important role of the sympathetic nervous system in stimulating energy expenditure during ICV leptin infusion by increasing the resting metabolic rate, since no differences in physical activity were observed between CON and SYM groups. In conclusion, activation of the SNS by leptin increases energy expenditure by augmenting the resting metabolic rate.  相似文献   

15.
In this study, we examined the effects of intracerebroventricular administration of melanotan II (MTII), a melanocortin agonist, on insulin sensitivity in diet-induced obese (DIO) rats. Although MTII treatment significantly decreased food intake and body weight for 10 days, there was no significant difference in body weight between MTII and pair-fed groups. The insulin tolerance test showed that insulin sensitivity was significantly improved in the MTII group compared to the pair-fed group. Furthermore, MTII treatment increased the number of small-sized adipocytes in epididymal white adipose tissues, suggesting that MTII increased insulin sensitivity through action on the white adipose tissues in DIO rats.  相似文献   

16.
The effects of continuously administered endotoxin on 7-day energy balance were investigated in male rats. Three groups of rats were implanted with osmotic pumps; two groups received saline-filled pumps, whereas the third received endotoxin. One of the saline groups was pair fed to match the food intake of the endotoxemic rats. After 7 days, body energy and protein and fat contents of rats were determined together with the energy content of food and feces. Endotoxin infusion not only induced fever, but it also suppressed appetite and significantly decreased body weight gain. Metabolizable energy intake was reduced by approximately 20% in infected rats. Although protein and fat gains were lowest in the endotoxin group, there appeared to be a selective loss of protein when considered as percent of body weight. Percent body fat was unaltered between the groups. Energy expenditure considered in absolute (kJ) or body weight-independent (kJ/kg0.67) terms yielded similar patterns of results; expenditure (kJ) was 10 and 20% (P less than 0.05, P less than 0.01) lower in the endotoxemic and pair-fed rats, respectively, compared with controls. Hence, compared with pair-fed rats, endotoxin-infused animals had a 10% rise in their expenditure. Brown adipose tissue thermogenesis was assessed by mitochondrial binding of guanosine 5'-diphosphate, and results showed that binding was greatest in endotoxemic rats and lowest in the pair-fed animals. The present results suggest that in this endotoxemic model appetite suppression exacerbates changes in energy balance. However, the reduction in body weight gain is also dependent on a decrease in metabolic efficiency and an increase in total energy expenditure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Short-term treatment of lean and obese mice with the fatty acid synthase (FAS) inhibitor, C75, alters expression of hypothalamic neuropeptides thereby reducing food intake, body weight, and body fat. Here we report the long-term effects of C75 on obese (Ob/Ob) mice. A low dose of C75 administered every third day for 30 days reduced food intake by 62% and body weight by 43% whereas body weight of ad lib-fed controls increased by 11%. Loss of body weight correlated with decreased adipose and liver tissue mass. Decreased food intake correlated with decreased expression of hypothalamic neuropeptide mRNAs for NPY, AgRP, and MCH and an increased expression of neuropeptide mRNAs for alphaMSH (i.e., POMC) and CART. Consistent with increased energy expenditure, C75 treatment caused greater weight loss than pair-fed controls and increased expression of skeletal muscle UCP-3 mRNA. Lowered blood glucose was due largely to restriction of food intake. C75 blocked the normal fasting-induced rise in blood free fatty acids and ketones due either to decreased adipose tissue lipolysis and hepatic ketogenesis or increased fatty acid and ketone utilization by peripheral tissues, notably skeletal muscle.  相似文献   

18.
Running wheel access and resulting voluntary exercise alter food intake and reduce body weight. The neural mechanisms underlying these effects are unclear. In this study, we first assessed the effects of 7 days of running wheel access on food intake, body weight, and hypothalamic gene expression. We demonstrate that running wheel access significantly decreases food intake and body weight and results in a significant elevation of CRF mRNA expression in the dorsomedial hypothalamus (DMH) but not the paraventricular nucleus. Seven-day running wheel access also results in elevated arcuate nucleus and DMH neuropeptide Y gene expression. To assess a potential role for elevated DMH CRF activity in the activity-induced changes in food intake and body weight, we compared changes in food intake, body weight, and hypothalamic gene expression in rats receiving intracerebroventricular (ICV) CRF antagonist alpha-helical CRF or vehicle with or without access to running wheels. During a 4-day period of running wheel access, we found that exercise-induced reductions of food intake and body weight were significantly attenuated by ICV injection of the CRF antagonist. The effect on food intake was specific to a blockade of activity-induced changes in meal size. Central CRF antagonist injection further increased DMH CRF mRNA expression in exercised rats. Together, these data suggest that DMH CRF play a critical role in the anorexia resulting from increased voluntary exercise.  相似文献   

19.
The ability of amylin to reduce acute food intake in rodents is well established. Longer-term administration in rats (up to 24 days) shows a concomitant reduction in body weight, suggesting energy intake plays a significant role in mediating amylin-induced weight loss. The current set of experiments further explores the long-term effects of amylin (4-11 wk) on food preference, energy expenditure, and body weight and composition. Furthermore, we describe the acute effect of amylin on locomotor activity and kaolin consumption to test for possible nonhomeostatic mechanisms that could affect food intake. Four-week subcutaneous amylin infusion of high-fat fed rats (3-300 microg.kg(-1).day(-1)) dose dependently reduced food intake and body weight gain (ED(50) for body weight gain = 16.5 microg.kg(-1).day(-1)). The effect of amylin on body weight gain was durable for up to 11 wks and was associated with a specific loss of fat mass and increased metabolic rate. The body weight of rats withdrawn from amylin (100 microg.kg(-1).day(-1)) after 4 wks of infusion returned to control levels 2 wks after treatment cessation, but did not rebound above control levels. When self-selecting calories from a low- or high-fat diet during 11 wks of infusion, amylin-treated rats (300 microg.kg(-1).day(-1)) consistently chose a larger percentage of calories from the low-fat diet vs. controls. Amylin acutely had no effect on locomotor activity or kaolin consumption at doses that decreased food intake. These results demonstrate pharmacological actions of amylin in long-term body weight regulation in part through appetitive-related mechanisms and possibly via changes in food preference and energy expenditure.  相似文献   

20.
Xenin is a 25‐amino acid peptide highly homologous to neurotensin. Xenin and neurotensin are reported to have similar biological effects. Both reduce food intake when administered centrally to fasted rats. We aimed to clarify and compare the effects of these peptides on food intake and behavior. We confirm that intracerebroventricular (ICV) administration of xenin or neurotensin reduces food intake in fasted rats, and demonstrate that both reduce food intake in satiated rats during the dark phase. Xenin reduced food intake more potently than neurotensin following ICV administration. ICV injection of either peptide in the dark phase increased resting behavior. Xenin and neurotensin stimulated the release of corticotrophin‐releasing hormone (CRH) from ex vivo hypothalamic explants, and administration of α‐helical CRH attenuated their effects on food intake. Intraperitoneal (IP) administration of xenin or neurotensin acutely reduced food intake in fasted mice and ad libitum fed mice in the dark phase. However, chronic continuous or twice daily peripheral administration of xenin or neurotensin to mice had no significant effect on daily food intake or body weight. These studies confirm that ICV xenin or neurotensin can acutely reduce food intake and demonstrate that peripheral administration of xenin and neurotensin also reduces food intake. This may be partly mediated by changes in hypothalamic CRH release. The lack of chronic effects on body weight observed in our experiments suggests that xenin and neurotensin are unlikely to be useful as obesity therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号