首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative analyses based upon the superimposition of phylogeneticand reproductive data have revealed that viviparity has originatedon at least 132 independent occasions among vertebrates, with98 of these origins having occurred among reptiles. The viviparouslineages have given rise to at least 24 matrotrophic clades,all but four of which are anamniotes. Traditional scenariosassume progressive, gradualistic evolution from oviparity tolecithotrophic viviparity to matrotrophic viviparity. However,mammalian evidence indicates that matrotrophy can precede theevolution of viviparity. Moreover, data on reptiles seem tobe consistent with a punctuated equilibrium model for viviparityand a saltatory model for incipient matrotrophy and placentation. Among the specializations for fetal nutrition, strong convergenceis evident at organismal, organological, and cytological levels.Examples include yolk sac placentation, trophotaeniae, and adaptationsfor embryonic cannibalism. Certain lizards of the genera Mabuyaand Chalcides have converged strongly on eutherian mammals withrespect to morphology of the chorioallantoic placenta. Placentalspecializations that have evolved independently in some eutheriansand matrotrophic lizards include placentomes, giant binucleatecells, deciduate maternal tissue, and chorionic areolae.  相似文献   

2.
K Itonaga  SM Jones  E Wapstra 《PloS one》2012,7(7):e41835
The evolution of matrotrophy (i.e., direct supply of nutrients by the mother during gestation) may be associated with high maternal energy availability during gestation. However, we lack knowledge about the selective advantages of matrotrophic viviparity (live-bearing) in reptiles. In reptiles, the interaction between body temperature and food intake affect maternal net energy gain. In the present study, we examined the effects of basking and food availability (2 by 2 factorial design) during gestation on offspring phenotype in a matrotrophic viviparous lizard (Pseudemoia entrecasteauxii). Subsequently, we investigated if the maternal effects were context-dependent using offspring growth rate as an indicator of the adaptive significance of matrotrophy. Offspring were exposed either to the same thermal conditions as their mothers experienced or to thermal conditions different from those experienced by their mothers. We provide the first evidence that an interaction between maternal thermal and maternal food conditions during gestation strongly affects offspring phenotype, including date of birth, body size and performance ability, which affect offspring fitness. Offspring growth rate was dependent on offspring thermal conditions, but was not influenced by maternal effects or offspring sex. Matrotrophic viviparity provided gravid females with the means to enhance offspring fitness through greater energetic input to offspring when conditions allowed it (i.e., extended basking opportunity with high food availability). Therefore, we suggest that selective advantages of matrotrophic viviparity in P. entrecasteauxii may be associated with high maternal energy availability during gestation.  相似文献   

3.
Squamate reptiles represent an ideal group for studies of viviparity, because they have evolved this reproductive pattern frequently, relatively recently, and at low taxonomic levels. A phylogenetic approach shows particular promise in helping us interpret anatomical, physiological, and ecological diversity. This review summarizes four major categories of active investigation: (1) reproductive anatomy and physiology; (2) placental structure and function; (3) reproductive endocrinology; and (4) reproductive and physiological ecology. Evolutionary reconstructions suggest that on many occasions viviparity has evolved concomitantly with functional placentation, through reduction of the shell membrane and hormonal modifications that prolong gestation. Studies of placentotrophic clades as well as reproductively bimodal species offer great potential for explaining the evolution of viviparity and placentation. However, live-bearing squamates are reproductively diverse, and appear to have solved physiological problems associated with viviparity by a variety of mechanisms. Consequently, studies on one or a few squamate species appear increasingly unlikely to yield all-inclusive explanations. Future studies and analyses should abandon assumptions of universal physiological mechanisms and a single historical sequence, in favor of the documentation of diversity in phylogenetic and quantitative terms.  相似文献   

4.
The evolution of matrotrophy introduces the potential for genomic conflicts between mothers and embryos. These conflicts are hypothesized to accelerate the evolution of reproductive isolation and to influence the evolution of life-history traits, reproductive structures, and genomic imprinting. These hypotheses assume offspring can influence the amount of maternal investment they receive and that there is a trade-off between maternal investment into individual offspring and maternal survival or fecundity. We used field data and laboratory crosses to test whether these assumptions are met in the matrotrophic poeciliid fish Heterandria formosa . Comparisons of life histories between two natural populations demonstrated a trade-off between the level of maternal investment into individual embryos and maternal fecundity. Laboratory crosses between individuals from these populations revealed that offspring genotype exerts an influence on the level of maternal investment and affects maternal fecundity through higher rates of embryo abortion and lower numbers of full-term offspring. Our results show that the prerequisites for parent–offspring conflict to be a potent evolutionary force in poeciliid fish are present in H. formosa. However, determining whether this conflict has shaped maternal investment in nature will require disentangling any effects of conflict from those of several ecological factors that are themselves correlated with the expected intensity of conflict.  相似文献   

5.
According to the “parent-offspring conflict hypothesis” the rapid evolution and diversification of the mammalian placenta is driven by divergent optima of resource allocation between fetus and mother. The fetus has an interest to maximize its resource intake, while the mother has an interest to restrict the transfer of resources, and thus retain resources for subsequent pregnancies. In the epitheliochorial placenta, the contacting fetal and maternal surfaces at the feto-maternal interface are covered with microvilli, which leads to an increase of membrane surfaces available for transport processes. Because membranes are the site of active transport, the conflict hypothesis predicts that the fetal surfaces at the feto-maternal interfaces are larger than the maternal ones. We use transmission electron microscopy and a stereological method to estimate the factors by which the apical fetal and maternal membranes are enlarged by the microvilli. Ten species with an epitheliochorial placenta were studied. Focused ion beam—scanning electron microscopy (FIB-SEM) was used to create three-dimensional models of the interdigitating microvilli of the bovine and porcine placenta. In all species, the fetal surface was larger than the maternal. This was due to a higher number of fetal microvilli and to the presence of membrane folds at the base of the fetal, but not of maternal microvilli. Our results suggest that the ultrastructural morphology of the feto-maternal interface in the epitheliochorial placenta is shaped by conflicting interests between fetus and mother and thus represent a so far neglected arena of the parent-offspring conflict.  相似文献   

6.
In birds and frogs, species pairs retain the capacity to produce viable hybrids for tens of millions of years, an order of magnitude longer than mammals. What accounts for these differences in relative rates of pre- and postzygotic isolation? We propose that reproductive mode is a critically important but previously overlooked factor in the speciation process. Viviparity creates a post-fertilization arena for genomic conflicts absent in egg-laying species. With viviparity, conflict can arise between: mothers and embryos; sibling embryos in the womb, and maternal and paternal genomes within individual embryos. Such intra- and intergenomic conflicts result in perpetual antagonistic coevolution, thereby accelerating interpopulation postzygotic isolation. In addition, by generating intrapopulation genetic incompatibility, viviparity-driven conflict favors polyandry and limits the potential for precopulatory divergence. Mammalian diversification is characterized by rapid evolution of incompatible feto-maternal interactions, asymmetrical postzygotic isolation, disproportionate effects of genomically-imprinted genes, and "F(2) hybrid enhancement. " The viviparity-driven conflict hypothesis provides a parsimonious explanation for these patterns in mammalian evolution.  相似文献   

7.
Maternal hormones in the yolk of birds' eggs have been a focus of attention in behavioral and evolutionary ecology stimulated by the pioneering work of Hubert Schwabl. Since then, knowledge of both the factors that influence maternal deposition patterns and their consequences for offspring development has accumulated rapidly. To date, the field has been dominated by the idea that mothers use yolk hormones to adaptively adjust offspring development, a view that assigns control over hormone deposition and its effects on the offspring to the mother. This neglects the possibility that the evolutionary interests of the mother and offspring differ. When there is such parent-offspring conflict, the offspring are selected to respond to the hormones in a way that is adaptive for themselves rather than for the mother. Moreover, sexual conflict between the parents over parental investment may shape the evolution of yolk hormone deposition: females may manipulate the male's contribution to parental care through the effect of yolk hormones on offspring begging, competitiveness, and developmental rate. We therefore suggest that for a full understanding of the evolution of hormone-mediated maternal effects, it is essential to study both fitness consequences and physiological mechanisms and constraints from the perspective of all family members.  相似文献   

8.
The primary pattern of embryonic nutrition for squamate reptiles is lecithotrophy; with few exceptions, all squamate embryos mobilize nutrients from yolk. The evolution of viviparity presents an opportunity for an additional source of embryonic nutrition through delivery of uterine secretions, or placentotrophy. This pattern of embryonic nutrition is thought to evolve through placental supplementation of lecithotrophy, followed by increasing dependence on placentotrophy. This review analyzes the relationship between reproductive mode and pattern of embryonic nutrition in three lecithotrophic viviparous species, and oviparous counterparts, for concordance with a current model for the evolution of viviparity and placentation. The assumptions of the model, that nutrients for oviparous embryos are mobilized from yolk, and that this source is not disrupted in the transition to viviparity, are supported for most nutrients. In contrast, calcium, an essential nutrient for embryonic development, is mobilized from both yolk and eggshell by oviparous embryos and reduction of eggshell calcium is correlated with viviparity. If embryonic fitness is compromised by disruption of a primary source of calcium, selection may not favor evolution of viviparity, yet viviparity has arisen independently in numerous squamate lineages. Studies of fetal nutrition in reproductively bimodal species suggest a resolution to this paradox. If uterine calcium secretion occurs during prolonged intrauterine egg retention, calcium placentotrophy evolves prior to viviparity as a replacement for eggshell calcium and embryonic nutrition will not be compromised. This hypothesis is integrated into the current model for evolution of viviparity and placentation to address the unique attributes of calcium nutrition. The sequence of events requires a shift in timing of uterine calcium secretion and the embryonic mechanism of calcium retrieval to be responsive to calcium availability. Regulation of uterine calcium secretion and the mechanism of embryonic uptake of calcium are important elements to understanding evolution of viviparity and placentation. J. Morphol., 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
This paper investigates the evolution of viviparity and of egg guarding in lizards and snakes in which three modes of reproduction can be described: oviparity without egg guarding, oviparity with egg guarding, and viviparity. All possible transitions of reproductive modes were detected in each taxon using Maddison's method. We then tested two specific hypotheses. First, egg guarding can be regarded as an alternative to viviparity. A relatively frequent association of egg guarding and viviparous species in the same taxon may be due to similar environmental conditions or species characteristics leading to two different solutions. Second, egg guarding may facilitate the evolution of viviparity. This hypothesis is supported by the high frequency of viviparous species in taxa containing egg guarding species and by a tendency for prolonged uterine retention of eggs in brooding squamates. Our analyses demonstrate that the first hypothesis is the best supported. Egg guarding and viviparity most often evolved independently. If a major benefit of egg guarding is the repulsion of potential predators, size is one of the most obvious morphological characters that should be correlated with the evolution of reproductive modes. The two reproductive traits were correlated to a reduction in body size for viviparous species and an increase in body size for egg guarding species. This could partly explain why the evolution of these reproductive modes seems almost antagonist.  相似文献   

10.
Reproductive mode has been remarkably labile among squamate reptiles and the evolutionary transition from oviparity to viviparity commonly has been accompanied by a shift in the pattern of embryonic nutrition. Structural specializations for placental transfer of nutrients during intrauterine gestation are highly diverse and many features of the extraembryonic membranes of viviparous species differ markedly from those of oviparous species. However, because of a high degree of evolutionary divergence between the species used for comparisons it is likely that the observed differences arose secondarily to the evolution of viviparity. We studied development of the extraembryonic membranes and placentation in the reproductively bimodal lizard Lacerta vivipara because the influence of reproductive mode on the structural/functional relationship between mothers and embryos can best be understood by studying the most recent evolutionary events. Lecithotrophic viviparity has evolved recently within this species and, although populations with different reproductive modes are allopatric, oviparous and viviparous forms interbreed in the laboratory and share many life history characteristics. In contrast to prior comparisons between oviparous and viviparous species, we found no differences in ontogeny or structure of the extraembryonic membranes between populations with different reproductive modes within L. vivipara. However, we did confirm conclusions from previous studies that the tertiary envelope of the egg, the eggshell, is much reduced in the viviparous population. These conclusions support a widely accepted model for the evolution of squamate placentation. We also found support for work published nearly 80 years ago that the pattern of development of the yolk sac of L. vivipara is unusual and that a function of a unique structure of squamate development, the yolk cleft, is hematopoiesis. The structure of the yolk sac splanchnopleure of L. vivipara is inconsistent with a commonly accepted model for amniote yolk sac function and we suggest that a long standing hypothesis that cells from the yolk cleft participate in yolk digestion requires further study.  相似文献   

11.
The cold-climate hypothesis for evolution of viviparity in squamates predicts a correlation between reproductive mode, altitude and latitude. I tested this prediction in horned lizards within a phylogenetic context. I first determined whether all viviparous species were monophyletic using Monte Carlo simulations. Secondly, I tested for presence of phylogenetic signal using randomization tests. Thirdly, I analysed relationships between reproductive mode and minimum, midpoint, and maximum altitudes and latitudes by computing conventional correlations and phylogenetically independent contrasts. Viviparous species do not form a monophyletic group suggesting viviparity evolved twice in the genus. Viviparity and altitude showed strong phylogenetic signal based on randomization tests and were significantly correlated, while latitude was not correlated with reproductive mode. This study partially supports the cold-climate model, but also suggests that altitude either may be a better predictor of cold temperatures or may be a surrogate for other selective factors important in the evolution of viviparity.  相似文献   

12.
Considerable diversity abounds among sponges with respect to reproductive and developmental biology. Their ancestral sexual mode (gonochorism vs. hermaphroditism) and reproductive condition (oviparity vs. viviparity) however remain unclear, and these traits appear to have undergone correlated evolution in the phylum. To infer ancestral traits and investigate this putative correlation, we used DNA sequence data from two loci (18S ribosomal RNA and cytochrome c oxidase subunit I) to explore the phylogenetic relationships of 62 sponges whose reproductive traits have been previously documented. Although the inferred tree topologies, using the limited data available, favoured paraphyly of sponges, we also investigated ancestral character‐state reconstruction on a phylogeny with constrained sponge monophyly. Both parsimony‐ and likelihood‐based ancestral state reconstructions indicate that viviparity (brooding) was the likely reproductive mode of the ancestral sponge. Hermaphroditism is favoured over gonochorism as the sexual condition of the sponge ancestor under parsimony, but the reconstruction is ambiguous under likelihood, rendering the ancestry of sexuality unresolved in our study. These results are insensitive to the constraint of sponge monophyly when tracing the reproductive characters using parsimony methods. However, the maximum likelihood analysis of the monophyletic hypothetical tree rendered gonochorism as ancestral for the phylum. A test of trait correlation unambiguously favours the concerted evolution of sexuality and reproductive mode in sponges (hermaphroditism/viviparity, gonochorism/oviparity). Although testing ecological hypotheses for the pattern of sponge reproduction is beyond the scope of our analyses, we postulate that certain physiological constrains might be key causes for the correlation of reproductive characters.  相似文献   

13.
The taxonomic distribution and evolution of viviparity in Diptera is critically reviewed. The phenomenon ranges from ovoviviparity (eggs deposited at an advanced stage of embryonic development; larva emerges immediately after deposition), through viviparity (larva hatches inside female before deposition) to pupiparity (offspring deposited as pupa). Some Diptera are known to be facultatively viviparous, which is hypothesized to be a step towards the evolution of obligate viviparity. Obligate viviparity is found to comprise unilarviparity (single large larva in maternal uterus) which evolved many times independently, the rare oligolarviparity (more than one but not more than 12 larvae) and multilarviparity (large numbers of developing eggs or larvae in uterus) which is typical for the two largest clades of viviparous Diptera. Unilarviparity is either lecithotrophic (developing larva nourished by yolk of egg) or pseudo-placental (larva nourished by glandular secretions of mother). Viviparity has clearly evolved on many separate occasions in Diptera. It is recorded in 22 families, and this review identifies at least 61 independent origins of viviparity. Six families appear to have viviparity in their ground-plan. Some families have a single evolution of viviparity, others multiple evolutions. Guimaraes' model for the evolution of viviparity in Diptera is tested against phylogenetic information and the adaptive significance of viviparity is reviewed in detail. Possible correlations with life-history parameters (coprophily, parasitism, breeding in ephemeral plant parts, malacophagy and adult feeding habits – especially haematophagy) are analysed critically, as are potential advantages (shorter larval life, less investment in yolk by mother, protection of vulnerable stages, better access to breeding substrates, predation on competitors). Morphological constraints, adaptations and exaptations are reviewed, including the provision of an incubation space for the egg(s), the positioning of the egg(s) in the uterus, and maternal glands. The main morphological adaptations include greater egg size, reduction of egg respiratory filaments, thinning of chorion, modified larval respiratory system and mouthparts, and instar skipping. Female morphology and behaviour is particularly strongly modified for viviparity. The terminalia are shortened, the vagina is more muscular and tracheated, and the ovaries of unilarviparous species have a reduced number of ovarioles with alternate ovulation. Many of the final conclusions are tentative, and a plea is made for more detailed morphological and experimental study of many of the viviparous species. Viviparity in Diptera provides a fascinating example of multiple parallel evolution, and a fertile field for future research.  相似文献   

14.
Fetal membranes (such as the chorioallantois and yolk sac) are essential to embryonic development, and have contributed importantly to the evolutionary and ecological diversity of vertebrates. Since the mid-19th century, many scientific careers have been devoted to investigations of their structure, function, and development. However, significant gaps remain in our understanding of the diversity and evolution of fetal membranes. This symposium volume focuses on the use of cladistic principles and phylogenetic relationships to reconstruct the evolutionary morphology of fetal membranes. The main goal of the present paper is to introduce the application of such methods to the evolution of vertebrate fetal membranes, as well as to provide the reader with background information on relevant concepts and terminology. Contributions within this journal issue draw upon studies of metatherian and eutherian mammals, as well as sauropsid reptiles (notably squamates). Particular attention is given to historical transformations of fetal membranes associated with the evolution of such phenomena as placentation and matrotrophy, and reproductive strategies such as viviparity. What emerges from the contributed papers is a broad sampling of contemporary research on fetal membranes, and an overview of how these membranes have evolved to support embryonic life in diverse terrestrial and intra-uterine environments.  相似文献   

15.
Maternal stress during gestation has the potential to affect offspring development via changes in maternal physiology, such as increases in circulating levels of glucocorticoid hormones that are typical after exposure to a stressor. While the effects of elevated maternal glucocorticoids on offspring phenotype (i.e., “glucocorticoid‐mediated maternal effects”) have been relatively well established in laboratory studies, it remains poorly understood how strong and consistent such effects are in natural populations. Using a meta‐analysis of studies of wild mammals, birds, and reptiles, we investigate the evidence for effects of elevated maternal glucocorticoids on offspring phenotype and investigate key moderators that might influence the strength and direction of these effects. In particular, we investigate the potential importance of reproductive mode (viviparity vs. oviparity). We show that glucocorticoid‐mediated maternal effects are stronger, and likely more deleterious, in mammals and viviparous squamate reptiles compared with birds, turtles, and oviparous squamates. No other moderators (timing and type of manipulation, age at offspring measurement, or type of trait measured) were significant predictors of the strength or direction of the phenotypic effects on offspring. These results provide evidence that the evolution of a prolonged physiological association between embryo and mother sets the stage for maladaptive, or adaptive, prenatal stress effects in vertebrates driven by glucocorticoid elevation.  相似文献   

16.
A prominent scenario for the evolution of viviparity and placentation in reptiles predicts a step-wise pattern with an initial phase of prolonged oviductal egg retention accompanied by progressive reduction in eggshell thickness culminating in viviparity; calcium placentotrophy evolves secondarily to viviparity. Saiphos equalis is an Australian scincid lizard with a reproductive mode that is uncommon for squamates because eggs are retained in the oviduct until late developmental stages, and the embryonic stage at oviposition varies geographically. We studied calcium mobilization by embryos in two populations with different oviductal egg retention patterns to test the hypothesis that the pattern of nutritional provision of calcium is independent of the embryonic stage at oviposition. Females from one population are viviparous and oviposit eggs containing fully formed embryos, whereas embryos in oviposited eggs of the second population are morphologically less mature, and these eggs hatch several days later. The reproductive mode of this population is denoted as prolonged oviductal egg retention. Yolk provided the highest proportion of calcium to hatchlings in both populations. Eggs of both populations were enclosed in calcified eggshells, but shells of the population with prolonged egg retention had twice the calcium content of the viviparous population and embryos recovered calcium from these eggshells. Placental transfer accounted for a substantial amount of calcium in hatchlings in both populations. Hatchling calcium concentration was higher in the population with prolonged egg retention because these embryos mobilized calcium from yolk, the eggshell and the placenta. This pattern of embryonic calcium provision in which both a calcified eggshell and placentotrophy contribute to embryonic nutrition is novel. The reproductive pattern of S. equalis illustrates that calcified eggshells are compatible with prolonged oviductal egg retention and that viviparity is not requisite to calcium placentotrophy.  相似文献   

17.
It is possible to interpret components of seed development in angiosperms from the perspective of parent-offspring conflict (a special case of kin selection) or sexual selection. Available parent-offspring conflict models predict the evolution of traits determining the outcome of competition among related individuals soliciting maternal resources. In such models, ‘selfishness’ may spread even if it reduces female fecundity and thus population mean fitness may decline. These models are limited, however, because most of them do not simultaneously consider selection among maternal genotypes varying in the tendency to respond to their offspring. Available sexual selection models, in contrast, do consider the joint evolution of polygenic male traits (influencing viability, mating success and fecundity) and female preferences (influencing the mating success of different male phenotypes). These models have shown that male traits may evolve that are non-optimal with respect to viability. Only one recent sexual selection model explicitly incorporates direct fecundity selection upon females; this model concludes that fecundity will be maximized at equilibrium. Hence population mean fitness may decline due to reduced male viability but not due to diminished female fecundity. Available sexual selection models, however, are limited because they do not consider the effects of interactions among relatives. The assumptions and qualitative results of the two types of models are compared and discussed in the context of seed development. Differential allocation of maternal resources among genetically distinct developing seeds may be viewed from the perspective of either. Because the results of the available models of parent-offspring conflict and sexual selection are not wholly consistent and because data confirming the genetic basis of maternal patterns of investment or differential male reproductive success are scant, it is not clear which set of conclusions is most appropriate to apply to plants. To achieve the generality towards which mathematical approaches aspire, new models concerning the evolution of traits influencing resource allocation in plants must incorporate the components of both parent-offspring conflict and sexual selection.  相似文献   

18.
Superfetation is the ability of females to simultaneously carry multiple broods of embryos, with each brood at a different developmental stage. Matrotrophy is the post‐fertilization maternal provisioning of nutrients to developing embryos throughout gestation. Several studies have demonstrated that, in viviparous fishes, superfetation and matrotrophy have evolved in a correlated way, such that species capable of bearing several simultaneous broods also exhibit advanced degrees of post‐fertilization provisioning. The adaptive value of the concurrent presence of both reproductive modes may be associated with the production of larger newborns, which in turn may result in enhanced offspring fitness. In this study, we tested two hypotheses: (1) species with superfetation and moderate or extensive matrotrophy give birth to larger offspring compared with species without superfetation or matrotrophy; (2) species with higher degrees of superfetation and matrotrophy (i.e. more simultaneous broods and increased amounts of post‐fertilization provisioning) give birth to larger offspring compared with species with relatively low degrees of superfetation and matrotrophy (i.e. fewer simultaneous broods and lesser amounts of post‐fertilization provisioning). Using different phylogenetic comparative methods and data on 44 species of viviparous fishes of the family Poeciliidae, we found a lack of association between offspring size and the combination of superfetation and matrotrophy. Therefore, the concurrent presence of superfetation and moderate or extensive matrotrophy has not facilitated the evolution of larger offspring. In fact, these traits have evolved differently. Superfetation and matrotrophy have accumulated gradual changes that largely can be explained by Brownian motion, whereas offspring size has evolved fluidly, experiencing changes that probably resulted from selective responses to the local conditions.  相似文献   

19.
Historically, an understanding of viviparity and its evolution in Old World chameleons (Chamaeleonidae) has lagged behind that of other squamate families. Not only is reproductive information scarce or entirely absent for most chameleon species, but the literature reveals no consensus as to the frequency and ecological circumstances under which chameleon viviparity evolved. We integrated information on reproductive modes for nearly all chameleon species with recently published family-scale phylogenetic and ecological analyses to clarify aspects of reproductive evolution in chameleons. Ancestral-trait reconstructions, after accounting for phylogenetic uncertainty, indicated that viviparity has arisen a minimum of three times in Chamaeleonidae, with each origin of live birth in closed-canopy forests. Our maximum-likelihood optimization therefore did not support the previous hypotheses of one, two or four origins of viviparity in the family. Past claims that arboreality would not allow for evolution of viviparity were also not supported, nor was a recent suggestion that viviparity has reverted to oviparity. However, cold climates of high latitudes and elevations may have selected for viviparity in arboreal chameleons. While peritoneal pigmentation may facilitate viviparity, its role as an exaptation rather than an adaptation remains equivocal without data from a wider range of chameleon species. Based on a comprehensive review of reproductive modes throughout the family, our study has resolved the number of origins of viviparity in Chamaeleonidae and provided evidence that live birth evolved under arboreal conditions on three separate occasions in this enigmatic squamate group. This study also reveals the value of using phylogenetic analysis in a manner that is robust to uncertainty (rather than simple correlational approaches) when the goal is to reconstruct evolutionary sequences and selective pressures.  相似文献   

20.
Viviparity, the bearing of live young, has evolved well over 100 times among squamate reptiles. This reproductive strategy is hypothesized to allow maternal control of the foetus' thermal environment and thereby to increase the fitness of the parents and offspring. Two hypotheses have been posited to explain this phenomenon: (i) the cold‐climate hypothesis (CCH), which advocates low temperatures as the primary selective force; and (ii) the maternal manipulation hypothesis (MMH), which advocates temperature variability as the primary selective force. Here, we investigate whether climatic and geographic variables associated with the CCH vs. the MMH best explain the current geographical distributions of viviparity in lizards while incorporating recent advances in comparative methods, squamate phylogenetics and geospatial analysis. To do this, we compared nonphylogenetic and phylogenetic models predicting viviparity based on point‐of‐capture data from 20 994 museum specimens representing 215 lizard species in conjunction with spatially explicit bioclimatic and geographic (elevation and latitude) data layers. The database we analysed emphasized Nearctic lizards from three species‐rich genera (Phrynosoma, Plestiodon and Sceloporus); however, we additionally analysed a less substantial, but worldwide sample of species to verify the universality of our Nearctic results. We found that maximum temperature of the warmest month (and, less commonly, elevation and maximum temperature of the driest quarter) was frequently the best predictor of viviparity and showed an association consistent with the CCH. Our results strongly favour the CCH over the MMH in explaining lizard reproductive mode evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号