首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advantage of using a vaccine based on sperm antigens is that it can be used both in males and females as individuals who have antisperm antibodies are usually infertile but otherwise healthy. Several sperm specific antigens identified as prospective candidates for immunocontraception are of testicular origin. For the purpose of immunocontraception it may be desirable not to disrupt spermatogenesis and testicular function. Concept of post testicular maturation of spermatozoa has been very well established. During post testicular voyage spermatozoa undergo a series of complex and sequential events which transforms the immature immotile spermatozoa into mature sperm. Acquisition of functional maturity is necessary for progressive motility, zona pellucida recognition culminating in sperm egg binding. Importance of epididymal maturation is highlighted by the fact that high percentage of male infertility in human originates from the malfunction of the epididymis. The epididymis has also shown to be involved in sperm storage and provides an adequate environment for final maturation of the sperm. It provides a conducive microenvironment by virtue of which the spermatozoa are protected during the storage. In view of this it is imperative that more attention needs to be focused on epididymal antigens. The information obtained will enable us to identify epididymal antigens relevant to fertility and also help in infertility diagnosis.  相似文献   

2.
Sperm entering the epididymis gain progressive motility and fertilizing ability in a process termed maturation. The functional dependence of the epididymis on dihydrotestosterone (DHT) is well established, yet few studies have examined the consequences on the epididymis of inhibiting DHT formation. We have shown that inhibition of both isoforms of 5alpha-reductase (types 1 and 2), the enzyme that converts testosterone to DHT, has pronounced effects on epididymal gene expression. In the present study, we investigate whether inhibiting 5alpha-reductase has consequences on epididymal sperm maturation. Rats were treated with vehicle or 10 mg/kg/day PNU157706, a dual-type inhibitor, for 28 days. Fertility and several key facets of sperm maturation were analyzed. Changes in sperm motility were assessed by computer-assisted sperm analysis (CASA). Changes in sperm morphology were assessed by CASA and electron microscopy. The motility of spermatozoa from the cauda epididymidis of treated animals showed a significant decrease in both the percentage of motile and progressively motile sperm as well as altered motion parameters. The morphology of cauda epididymal spermatozoa was also adversely affected by the treatment; the most prominent effect was a markedly elevated proportion of sperm that retained their cytoplasmic droplet. Matings with treated males resulted in fewer successful pregnancies and a higher rate of preimplantation loss. Progeny outcome was unaffected. The compromised sperm motility and morphology likely contribute to the subfertility of inhibitor-treated rats. Our results indicate a role for dual 5alpha-reductase inhibitors in further studies of epididymal physiology and as a potential component of a male contraceptive.  相似文献   

3.
Motility patterns of caput epididymal chimpanzee sperm, caput epididymal chimpanzee sperm incubated in vitro with chimpanzee cauda epididymal fluid, and cauda epididymal chimpanzee sperm were assessed quantitatively. Sperm recovered from the caput epididymis showed no motility, whereas sperm recovered from cauda epididymis showed progressive forward motility. After incubation in cauda fluid, approximately 25% of caput epididymal sperm showed some motile activity. Electrophoretic analysis of 125I-labeled sperm plasma membrane preparations revealed that the surface of caput epididymal sperm, incubated in cauda fluid, was modified by the appearance of a major protein-glycoprotein surface component with an apparent molecular weight of 27 kilodaltons (kD). THis 27-kD component was not detected on caput epididymal sperm incubated in buffer or in caput fluid. However, it was present in cauda fluid and on cauda epididymal sperm. Binding to caput epididymal sperm was cell specific in that chimpanzee erythrocytes incubated in cauda fluid did not bind this 27-kD cauda fluid component. Motility patterns of ejaculated chimpanzee sperm and of ejaculated chimpanzee sperm incubated in the uterus of adult female chimpanzees also were assessed quantitatively. Ejaculated sperm showed progressive forward motility, whereas in utero incubated ejaculated sperm showed hyperactivated motility typical of capacitated sperm. Electrophoretic analysis of 125I-labeled sperm plasma membrane preparations revealed the loss of a 27-kD component from the surface of ejaculated sperm after in utero incubation. No significant change in the 125I-distribution pattern was detectable when ejaculated sperm were incubated in buffer. These results suggest that the lumenal fluid component, which becomes adsorbed to the surface of chimpanzee sperm during maturation in the epididymis and which is removed from the surface of mature chimpanzee sperm in the female reproductive tract, affects sperm motility.  相似文献   

4.
Mammalian spermatozoa mature while passing through the epididymis. Maturation is accompanied by thiol oxidation to disulfides. In rats, sperm become motile and fertile in the cauda. We have previously demonstrated that rat caput sperm contain mostly thiols and that upon passage from the corpus to the cauda epididymidis, sperm protein thiols are oxidized. The present work was undertaken to study the role of the regions of the epididymis in sperm maturation as reflected in the thiol status, fertility, and motility of the spermatozoa. The distal caput epididymidis of mature albino rats was ligated on one side. After 5 days, sperm were isolated from the ligated caput and from caput and cauda of the control side. Thiol groups in sperm, epididymal luminal fluid (EF), and epididymal tissue were labeled using the fluorescent thiol-labeling agent monobromobimane. After ligation, changes were observed in a) sperm proteins, sperm nuclear proteins, and epididymal fluid by electrophoresis; b) epididymal tissues by histochemistry; c) progressive motility by phase microscopy; and d) fertilizing ability after insemination into uteri of immature females. We found that after ligation, caput sperm thiols, especially protamine thiols, are oxidized, rendering them similar to mature sperm isolated from the cauda epididymidis. Spermatozoa from ligated caput epididymidis gain progressive motility and partial fertilizing ability. Morphology of epithelial cells of ligated caput is similar to that of cauda cells. However, other changes in caput EF and epithelium induced by ligation render the ligated caput epididymidis different from either control caput or cauda. Hence, sperm thiol oxidation, along with the development of fertilizing ability, can occur in sperm without necessity for sperm transit through the corpus and cauda epididymidis.  相似文献   

5.
Mammalian sperm contain the serine/threonine phosphatases PP1γ2 and PP2A. The role of sperm PP1γ2 is relatively well studied. Here we confirm the presence of PP2A in sperm and show that it undergoes marked changes in methylation (leucine 309), tyrosine phosphorylation (tyrosine 307) and catalytic activity during epididymal sperm maturation. Spermatozoa isolated from proximal caput, distal caput and caudal regions of the epididymis contain equal immuno-reactive amounts of PP2A. Using demethyl sensitive antibodies we show that PP2A is methylated at its carboxy terminus in sperm from the distal caput and caudal regions but not in sperm from the proximal caput region of the epididymis. The methylation status of PP2A was confirmed by isolation of PP2A with microcystin agarose followed by alkali treatment, which causes hydrolysis of protein carboxy methyl esters. Tyrosine phosphorylation of sperm PP2A varied inversely with methylation. That is, PP2A was tyrosine phosphorylated when it was demethylated but not when methylated. PP2A demethylation and its reciprocal tyrosine phosphorylation were also affected by treatment of sperm with L-homocysteine and adenosine, which are known to elevate intracellular S-adenosylhomocysteine, a feedback inhibitor of methyltransferases. Catalytic activity of PP2A declined during epididymal sperm maturation. Inhibition of PP2A by okadaic acid or by incubation of caudal epididymal spermatozoa with L-homocysteine and adenosine resulted in increase of sperm motility parameters including percent motility, velocity, and lateral head amplitude. Demethylation or pharmacological inhibition of PP2A also leads to an increase in phosphorylation of glycogen synthase kinase-3 (GSK3). Our results show for the first time that changes in PP2A activity due to methylation and tyrosine phosphorylation occur in sperm and that these changes may play an important role in the regulation of sperm function.  相似文献   

6.
Changes that occur to mammalian sperm upon epididymal transit and maturation render these cells capable of moving progressively and capacitating. Signaling events leading to mammalian sperm capacitation depend on the modulation of proteins by phosphorylation and dephosphorylation cascades. Recent experiments have demonstrated that the Src family of kinases plays an important role in the regulation of these events. However, sperm from cSrc null mice display normal tyrosine phosphorylation associated with capacitation. We report here that, despite normal phosphorylation, sperm from cSrc null mice display a severe reduction in forward motility, and are unable to fertilize in vitro. Histological analysis of seminiferous tubules in the testes, caput and corpus epididymis do not reveal obvious defects. However, the cauda epididymis is significantly smaller, and expression of key transport proteins in the epithelial cells lining this region is reduced in cSrc null mice compared to wild type littermates. Although previously, we and others have shown the presence of cSrc in mature sperm from cauda epididymis, a closer evaluation indicates that this tyrosine kinase is not present in sperm from the caput epididymis, suggesting that this protein is acquired by sperm later during epididymal maturation. Consistent with this observation, cSrc is enriched in vesicles released by the epididymal epithelium known as epididymosomes. Altogether, these observations indicate that cSrc is essential for cauda epididymal development and suggest an essential role of this kinase in epididymal sperm maturation involving cSrc extracellular trafficking.  相似文献   

7.
Inpp5b is an ubiquitously expressed type II inositol polyphosphate 5-phosphatase. We have disrupted the Inpp5b gene in mice and found that homozygous mutant males are infertile. Here we examine the causes for the infertility in detail. We demonstrate that sperm from Inpp5b(-/-) males have reduced motility and reduced ability to fertilize eggs, although capacitation and acrosome exocytosis appear to be normal. In addition, fertilin beta, a sperm surface protein involved in sperm-egg membrane interactions that is normally proteolytically processed during sperm transit through the epididymis, showed reduced levels of processing in the Inpp5b(-/-) animals. Inpp5b was expressed in the Sertoli cells and epididymis and at low levels in the developing germ cells; however, mice lacking Inpp5b in spermatids and not in other cell types generated by conditional gene targeting, were fully fertile. The abnormalities in mutant sperm function and maturation appear to arise from defects in the functioning of Sertoli and epididymal epithelial cells. Our results directly demonstrate a previously unknown role for phosphoinositides in normal sperm maturation beyond their previously characterized involvement in the acrosome reaction. Inpp5b(-/-) mice provide an excellent model to study the role of Sertoli and epididymal epithelial cells in the differentiation and maturation of sperm.  相似文献   

8.
The epididymis and vas deferens constitute not only a simple conduit for sperm transport but also play an important physiological role in the development of sperm fertilizing ability. The epithelial compartment plays a major functional role in determining the biochemical composition of the luminal fluid in which the spermatozoa undergo a series of structural, biochemical and metabolic changes. During epididymal transit spermatozoa acquire their capacity for motility and also their ability to attach and bind to the zona pellucida and fertilize the oocyte. In man, sperm maturation may occur in the extreme proximal region of the epididymis. The regulation of epididymal and vasa deferential function, as well as sperm maturation, are under androgenic control  相似文献   

9.
B S Setty 《Endokrinologie》1979,74(1):100-117
The structural and functional integrity of the epididymis, the acquisition of fertilizing ability by spermatozoa and their viability within the epididymis are androgen dependent phenomena. Although the precise mechanism by which sperm maturation and viability in the epididymis are brought about by androgen are not clearly understood, it is generally held that specific epididymal secretions produced under the influence of androgen affect these events. Though the spermatozoa appear to remain viable in a low androgen environment, sperm maturation requires a relatively high androgen environment. Against this background the potentiality of antiandrogens as extragonadal antifertility agents has been discussed. Studies with steroidal and nonsteroidal antiandrogens have revealed that in adult animals the secretory activity of the epididymis, as evidenced by the level of glycerylphosphorylcholine, either remains unaffected or is stimulated under their influence. These studies have further indicated that the extragonadal antifertility action of antiandrogens will depend upon their ability to (1) lower the testicular androgen synthesis and/or androgen binding protein, which possibly serves as a carrier of androgen from the testis to epididymis; (2) to lower local androgen synthesis as a result of reduced levels of circulating androgen, and (3) to inhibit 5 alpha-reduction of testosterone to dihydrotestosterone and/or to inhibit androgen binding to receptors. Success in the rational development of new antifertility agents for male which will act by controlling epididymal function will depend upon a clear understanding of the factors that regulate epididymal secretion and the role of epididymal secretions in sperm maturation and survival.  相似文献   

10.
The plasma membrane of spermatozoa undergoes substantial remodeling during passage through the epididymal duct, principally because of changes in phospholipid composition, exchange of glycoproteins with epididymal fluid, and processing of existing membrane proteins. Here, we describe the interaction of an epididymal glycoprotein recognized by monoclonal antibody 2D6 with the plasma membrane of rat spermatozoa. Our goals have been to understand more about the mechanism of secretion of epididymal glycoproteins, how they interact with the sperm's plasma membrane, and their disposition within it. Reactivity to 2D6 monoclonal antibody was first detectable in principal cells in the distal caput epididymidis and as a soluble high-molecular-weight complex in the secreted fluid. It was not associated with membranous vesicles in the duct lumen. On cauda spermatozoa 2D6 monoclonal antibody recognized a 24-kDa glycoprotein (the subunit of a disulfide cross-linked homodimer of 48 kDa) that was present on the plasma membrane overlying the sperm tail. Binding of 2D6 to immature spermatozoa in vitro was cell-type specific but not species specific, and the antigen could only be extracted from cauda spermatozoa with detergents. Sequencing studies revealed that the 24-kDa glycoprotein was a member of the beta-defensin superfamily of small pore-forming glycopeptides of which several others (ESP13.2, Bin1b, E-2, EP2, HE2) are found in the epididymis. This evidence suggests that some epididymal glycoproteins are secreted into the luminal fluid in a soluble form and bind to specific regions of the sperm's surface via hydrophobic interactions. Given the antimicrobial function of beta-defensins, they have a putative role in protecting spermatozoa and the epididymis from bacterial infections.  相似文献   

11.
In mammals, the epididymis has numerous interrelated functions including absorptive and secretory activity that affect luminal environment and cell membrane, and the maturation and storage of sperm. Spermatozoa acquire their motility and fertilizing ability during their passage through the epididymis and the motility of epididymal spermatozoa should be a balance between the maturation of flagellum and the inhibition of the flagellar machinery. In this study maturational change in sperm characteristics were evaluated in the epididymis of donkey. Spermatozoa collected from four portions of the epididymis (head, cranial corpus, caudal corpus, tail) were compared before and after ejaculation for viability, mitochondrial activity, kinetic parameters, and morphology. A significant increase in the mitochondrial activity along the epididymis was reported, suggesting a possible involvement in the motion mechanism. This should be corroborated by the significant correlation between mitochondrial activity and the total and progressive motility and the increase in velocities of spermatozoa recorded by computer-assisted sperm analysis. The percentage of most of the abnormal spermatozoa were similar in all tracts, with a great variability between jackasses. Only the bent midpiece percentage decreased significantly along epididymis. A significant increase in the percentage of distal cytoplasmic droplets (DCD), and a simultaneous decrease in the proximal cytoplasmic droplets (PCD), was found. The DCD fell down after ejaculation suggesting the late loss of the cytoplasmic residual (DCD) in the donkey, as hypothesized in the stallion. Because the prevalence of PCD were similar in both tail epididymal and ejaculated spermatozoa, a defect of the maturative process in the PCD sperm should be speculated.  相似文献   

12.
Region-specific gene expression in the epididymis   总被引:1,自引:0,他引:1  
The epididymis is responsible for post-testicular sperm maturation, which consists in the acquisition of forward motility and fertilizing ability. This organ is composed of three main anatomical regions - the caput, corpus and cauda epididymidis - which possess distinct gene expression profiles, ensuring different epididymal functions essential to the different steps of sperm maturation. Since many genes display spatially restricted expression in the epididymis, this organ constitutes a model of choice to study the mechanisms that govern region-specific gene expression. Factors such as steroid hormones, lumicrine factors and temperature affect the pattern of gene expression in the epididymis. Recently, the contribution of small RNAs in epididymal gene regulation has been investigated and constitutes a promising avenue for clinical application with regard to male fertility.  相似文献   

13.
Sperm Proteome Maturation in the Mouse Epididymis   总被引:1,自引:0,他引:1  
In mammals, transit through the epididymis, which involves the acquisition, loss and modification of proteins, is required to confer motility and fertilization competency to sperm. The overall dynamics of maturation is poorly understood, and a systems level understanding of the complex maturation process will provide valuable new information about changes occurring during epididymal transport. We report the proteomes of sperm collected from the caput, corpus and cauda segments of the mouse epididymis, identifying 1536, 1720 and 1234 proteins respectively. This study identified 765 proteins that are present in sperm obtained from all three segments. We identified 1766 proteins that are potentially added (732) or removed (1034) from sperm during epididymal transit. Phenotypic analyses of the caput, corpus and cauda sperm proteomes identified 60 proteins that have known sperm phenotypes when mutated, or absent from sperm. Our analysis indicates that as much as one-third of proteins with known sperm phenotypes are added to sperm during epididymal transit. GO analyses revealed that cauda sperm are enriched for specific functions including sperm-egg recognition and motility, consistent with the observation that sperm acquire motility and fertilization competency during transit through the epididymis. In addition, GO analyses revealed that the immunity protein profile of sperm changes during sperm maturation. Finally, we identified components of the 26S proteasome, the immunoproteasome, and a proteasome activator in mature sperm.  相似文献   

14.
This study examines the effect of semen-collection rhythm on the sperm maturation process in boar epididymis. Three post-pubertal boars were submitted to a high semen-collection frequency (stressed boars) during 4 days, and three males were kept as a control group (control boars). Semen samples coming from six epididymal regions and from the ejaculate of each male were evaluated for sperm concentration, sperm vitality, sperm motility and sperm morphology. In each epididymal region, either fluid resorption or fluid secretion was determined from the variation in sperm concentration. The pattern of fluid resorption-secretion along the epididymal duct differed significantly between the stressed and control boars. A high semen-collection frequency also affected the development of sperm motility and the sperm cytoplasmic droplet displacement along the epididymal duct. The incidence of some sperm abnormalities was also found to be higher in some epididymal regions and ejaculates of stressed boars. From the results of this study, it can be concluded that a high semen-collection frequency brings about an altered resorption and secretion pattern of the epididymal fluid, which results in defective sperm maturation and abnormal development of sperm motility.  相似文献   

15.
As mammalian spermatozoa migrate through the epididymis, they acquire functionality characterized by the potential to express coordinated movement and the competence to undergo capacitation. The mechanisms by which spermatozoa gain the ability to capacitate during epididymal transit are poorly understood. The purpose of this study was to investigate the impact of epididymal maturation on the signal transduction pathways regulating tyrosine phosphorylation, because this process is thought to be central to the attainment of a capacitated state and expression of hyperactivated motility. Western blot and immunocytochemical analyses demonstrated that epididymal maturation in vivo is associated with a progressive loss of phosphotyrosine residues from the sperm head. As cells pass from the caput to the cauda epididymis, tyrosine phosphorylation becomes confined to a narrow band at the posterior margin of the acrosomal vesicle. Epididymal maturation of rat spermatozoa was also associated with an acquired competence to respond to high levels of intracellular cAMP by phosphorylating tyrosine residues on the sperm tail. Immature caput spermatozoa were incapable of exhibiting this response, despite the apparent availability of cAMP and protein kinase A. These findings help to clarify the biochemical changes associated with the functional maturation of spermatozoa during epididymal transit.  相似文献   

16.
Secretions from the mammalian epididymis contain proteins that bind to developing sperm and are presumed to play a role in sperm maturation. The biochemical functions in sperm of most of these proteins are not known. In this report we describe the presence of a low molecular weight compound in bovine caudal epididymal luminal fluid (CF) that has a potent stimulatory effect on calcium (45Ca2+) uptake in immature caput epididymal spermatozoa. The studies were initially undertaken to characterize the effect of the protein caltrin, present in bovine seminal plasma (BSP), on calcium uptake into caput spermatozoa. Caltrin is known to block calcium influx into mature bovine sperm. Unexpectedly, the kinetics of calcium uptake into caput sperm showed a biphasic response when treated with BSP, namely, a stimulation of uptake at 1 to 5 min and inhibition of uptake after this time. Since caudal sperm do not show this biphasic response, we reasoned that BSP contained a factor derived from CF that must interact with developing sperm before the binding of caltrin to sperm can prevent further calcium uptake. We first demonstrated that preincubation of caput sperm with CF eliminated the biphasic calcium uptake effect induced in caput sperm by BSP and that caudal fluid alone had a potent stimulatory effect on calcium uptake in caput sperm. Half-maximal stimulation (fivefold over control) occurred at a caudal fluid protein concentration of 0.27 mg/ml. Partial purification of the factor indicates that it is of low molecular weight (MW ~ 1,000), but further chemical characterization has not been carried out and its epididymal site of origin is not known. The results indicate that the regulation of intracellular calcium levels in sperm differs in immature and mature bovine sperm in that an epididymal factor promotes calcium uptake during epididymal maturation, and the seminal fluid protein caltrin prevents it at ejaculation.  相似文献   

17.
Spermatozoa leave the testis in an immature functional state and are devoid of self defense mechanisms. They will become motile and ready to fertilize only after their descent and their progressive maturation within the epididymal tubule. The epididymis also ensures the survival and the protection of male gametes while they go through the epididymis and during their storage in between two ejaculations. Amongst common stresses that concern spermatozoa, oxidative stress occupies a peculiar and dual position. While the events of epididymal sperm maturation necessitate a given level of oxidation, spermatozoa are particularly sensitive to oxidative damage. A fine balance between beneficial oxidation versus detrimental oxidative damage has to be maintained in the epididymal environment. Antioxidant enzymes of the glutathione peroxidase family play a key role in controling such a situation in the epididymis.  相似文献   

18.
Micropuncture was used to collect pure suspensions of sperm from the caput and cauda regions of chimpanzee epididymides, which were analyzed with a Motion Analysis VP-110. Sperm recovered from the caput region showed no forward motility. Incubation of these sperm with cauda epididymal fluid affected motility in 62%–90% of the sperm. Dilution of cauda sperm into buffer containing >50 mM theophylline resulted in immediate initiation of progressive forward motility. Although this motility was maintained by at least 50% of the sperm for over 5 hr, these “activated” caput sperm did not penetrate zona-free hamster ova. These data show that sperm from the caput epididymis of the chimpanzee have the capacity for normal motility but do not have the capacity to bind to and penetrate an ovum. Cauda epididymal chimpanzee sperm were motile at the time of recovery and this motility was maintained for over 5 hr. These sperm penetrated both hamster zona-free ova and intact chimpanzee ova. These data show that sperm from the cauda epididymis of the chimpanzee have the capacity for normal motility and also have the capacity to bind to and penetrate an ovum. This is the first use of computer assisted analysis to quantify motility in maturing nonhuman primate sperm.  相似文献   

19.
20.
Beyond the haploid genome, mammalian sperm carry a payload of epigenetic information with the potential to modulate offspring phenotypes. Recent studies show that the small RNA repertoire of sperm is remodeled during post-testicular maturation in the epididymis. Epididymal maturation has also been linked to changes in the sperm methylome, suggesting that the epididymis might play a broader role in shaping the sperm epigenome. Here, we characterize the genome-wide methylation landscape in seven germ cell populations from throughout the male reproductive tract. We find very few changes in the cytosine methylation landscape between testicular germ cell populations and cauda epididymal sperm, demonstrating that the sperm methylome is stable throughout post-testicular maturation. Although our sequencing data suggested that caput epididymal sperm exhibit a highly unusual methylome, follow-up studies revealed that this resulted from contamination of caput sperm by extracellular DNA. Extracellular DNA formed web-like structures that ensnared sperm, and was present only in sperm samples obtained from the caput epididymis and vas deferens of virgin males. Curiously, contaminating extracellular DNA was associated with citrullinated histone H3, potentially resulting from a PAD-driven genome decondensation process. Taken together, our data emphasize the stability of cytosine methylation in mammalian sperm, and identify a surprising, albeit transient, period during which sperm are associated with extracellular DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号