首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G protein-coupled receptors represent the largest superfamily of cell membrane-spanning receptors. We used allosteric small molecules as a novel approach to better understand conformational changes underlying the inactive-to-active switch in native receptors. Allosteric molecules bind outside the orthosteric area for the endogenous receptor activator. The human muscarinic M(2) acetylcholine receptor is prototypal for the study of allosteric interactions. We measured receptor-mediated G protein activation, applied a series of structurally diverse muscarinic allosteric agents, and analyzed their cooperative effects with orthosteric receptor agonists. A strong negative cooperativity of receptor binding was observed with acetylcholine and other full agonists, whereas a pronounced negative cooperativity of receptor activation was observed with the partial agonist pilocarpine. Applying a newly synthesized allosteric tool, point mutated receptors, radioligand binding, and a three-dimensional receptor model, we found that the deviating allosteric/orthosteric interactions are mediated through the core region of the allosteric site. A key epitope is M(2)Trp(422) in position 7.35 that is located at the extracellular top of transmembrane helix 7 and that contacts, in the inactive receptor, the extracellular loop E2. Trp 7.35 is critically involved in the divergent allosteric/orthosteric cooperativities with acetylcholine and pilocarpine, respectively. In the absence of allosteric agents, Trp 7.35 is essential for receptor binding of the full agonist and for receptor activation by the partial agonist. This study provides first evidence for a role of an allosteric E2/transmembrane helix 7 contact region for muscarinic receptor activation by orthosteric agonists.  相似文献   

2.
3.
Many G protein-coupled receptors (GPCRs) possess allosteric binding sites distinct from the orthosteric site utilized by their cognate ligands, but most GPCR allosteric modulators reported to date lack signaling efficacy in their own right. McN-A-343 (4-(N-(3-chlorophenyl)carbamoyloxy)-2-butynyltrimethylammonium chloride) is a functionally selective muscarinic acetylcholine receptor (mAChR) partial agonist that can also interact allosterically at the M(2) mAChR. We hypothesized that this molecule simultaneously utilizes both an allosteric and the orthosteric site on the M(2) mAChR to mediate these effects. By synthesizing progressively truncated McN-A-343 derivatives, we identified two, which minimally contain 3-chlorophenylcarbamate, as pure allosteric modulators. These compounds were positive modulators of the orthosteric antagonist N-[(3)H]methylscopolamine, but in functional assays of M(2) mAChR-mediated ERK1/2 phosphorylation and guanosine 5'-3-O-([(35)S]thio)triphosphate binding, they were negative modulators of agonist efficacy. This negative allosteric effect was diminished upon mutation of Y177A in the second extracellular (E2) loop of the M(2) mAChR that is known to reduce prototypical allosteric modulator potency. Our results are consistent with McN-A-343 being a bitopic orthosteric/allosteric ligand with the allosteric moiety engendering partial agonism and functional selectivity. This finding suggests a novel and largely unappreciated mechanism of "directed efficacy" whereby functional selectivity may be engendered in a GPCR by utilizing an allosteric ligand to direct the signaling of an orthosteric ligand encoded within the same molecule.  相似文献   

4.
The second extracellular (E2) loop of G protein-coupled receptors (GPCRs) plays an essential but poorly understood role in the binding of non-peptidic small molecules. We have utilized both orthosteric ligands and allosteric modulators of the M2 muscarinic acetylcholine receptor, a prototypical Family A GPCR, to probe possible E2 loop binding dynamics. We developed a homology model based on the crystal structure of bovine rhodopsin and predicted novel cysteine substitutions that should dramatically reduce E2 loop flexibility via disulfide bond formation and significantly inhibit the binding of both types of ligands. This prediction was validated experimentally using radioligand binding, dissociation kinetics, and cell-based functional assays. The results argue for a flexible "gatekeeper" role of the E2 loop in the binding of both allosteric and orthosteric GPCR ligands.  相似文献   

5.
Conventionally, an allosteric modulator is neutral in respect of efficacy and binds to a receptor site distant from the orthosteric site of the endogenous agonist. However, recently compounds being ago-allosteric modulators have been described i.e., compounds acting both as agonists on their own and as enhancers for the endogenous agonists in both increasing agonist potency and providing additive efficacy-superagonism. The additive efficacy can also be observed with agonists, which are neutral or even negative modulators of the potency of the endogenous ligand. Based on the prevailing dimeric concept for 7TM receptors, it is proposed that the ago-allosteric modulators bind in the orthosteric binding site, but-importantly-in the "other" or allosteric protomer of the dimer. Hereby, they can act both as additive co-agonists, and through intermolecular cooperative effects between the protomers, they may influence the potency of the endogenous agonist. It is of interest that at least some endogenous agonists can only occupy one protomer of a dimeric 7TM receptor complex at a time and thereby they leave the orthosteric binding site in the allosteric protomer free, potentially for binding of exogenous, allosteric modulators. If the allosteric modulator is an agonist, it is an ago-allosteric modulator; if it is neutral, it is a classical enhancer. Molecular mapping in hetero-dimeric class-C receptors, where the endogenous agonist clearly binds only in one protomer, supports the notion that allosteric modulators can act through binding in the "other" protomer. It is suggested that for the in vivo, clinical setting a positive ago-allosteric modulator should be the preferred agonist drug.  相似文献   

6.
Conventionally, an allosteric modulator is neutral in respect of efficacy and binds to a receptor site distant from the orthosteric site of the endogenous agonist. However, recently compounds being ago-allosteric modulators have been described i.e., compounds acting both as agonists on their own and as enhancers for the endogenous agonists in both increasing agonist potency and providing additive efficacy—superagonism. The additive efficacy can also be observed with agonists, which are neutral or even negative modulators of the potency of the endogenous ligand. Based on the prevailing dimeric concept for 7TM receptors, it is proposed that the ago-allosteric modulators bind in the orthosteric binding site, but–importantly–in the “other” or allosteric protomer of the dimer. Hereby, they can act both as additive co-agonists, and through intermolecular cooperative effects between the protomers, they may influence the potency of the endogenous agonist. It is of interest that at least some endogenous agonists can only occupy one protomer of a dimeric 7TM receptor complex at a time and thereby they leave the orthosteric binding site in the allosteric protomer free, potentially for binding of exogenous, allosteric modulators. If the allosteric modulator is an agonist, it is an ago-allosteric modulator; if it is neutral, it is a classical enhancer. Molecular mapping in hetero-dimeric class-C receptors, where the endogenous agonist clearly binds only in one protomer, supports the notion that allosteric modulators can act through binding in the “other” protomer. It is suggested that for the in vivo, clinical setting a positive ago-allosteric modulator should be the preferred agonist drug.  相似文献   

7.
Muscarinic receptors (M-Rs) for acetylcholine (ACh) belong to the class A of G protein–coupled receptors. M-Rs are activated by orthosteric agonists that bind to a specific site buried in the M-R transmembrane helix bundle. In the active conformation, receptor function can be modulated either by allosteric modulators, which bind to the extracellular receptor surface or by the membrane potential via an unknown mechanism. Here, we compared the modulation of M1-Rs and M3-Rs induced by changes in voltage to their allosteric modulation by chemical compounds. We quantified changes in receptor signaling in single HEK 293 cells with a FRET biosensor for the Gq protein cycle. In the presence of ACh, M1-R signaling was potentiated by voltage, similarly to positive allosteric modulation by benzyl quinolone carboxylic acid. Conversely, signaling of M3-R was attenuated by voltage or the negative allosteric modulator gallamine. Because the orthosteric site is highly conserved among M-Rs, but allosteric sites vary, we constructed “allosteric site” M3/M1-R chimeras and analyzed their voltage dependencies. Exchanging the entire allosteric sites eliminated the voltage sensitivity of ACh responses for both receptors, but did not affect their modulation by allosteric compounds. Furthermore, a point mutation in M3-Rs caused functional uncoupling of the allosteric and orthosteric sites and abolished voltage dependence. Molecular dynamics simulations of the receptor variants indicated a subtype-specific crosstalk between both sites, involving the conserved tyrosine lid structure of the orthosteric site. This molecular crosstalk leads to receptor subtype-specific voltage effects.  相似文献   

8.
There are five subtypes of muscarinic receptors that serve various important physiological functions in the central nervous system and the periphery. Mental functions like attention, learning, and memory are attributed to the muscarinic M1 subtype. These functions decline during natural aging and an early deficit is typical for Alzheimer s disease. In addition, stimulation of the M1 receptor increases non-amyloidogenic processing of the amyloid precursor protein and thus prevents accumulation of noxious beta-amyloid fragments. The selectivity of classical muscarinic agonists among receptor subtypes is very low due to the highly conserved nature of the orthosteric binding site among receptor subtypes. Herein we summarize some recent studies with the functionally-selective M1 agonist xanomeline that indicate complex pharmacological profile of this drug that includes interactions with and activation of receptor from both orthosteric and ectopic binding sites, and the time-dependent changes of ligand binding and receptor activation. These findings point to potential profitability of exploitation of ectopic ligands in the search for truly selective muscarinic receptor agonists.  相似文献   

9.
Subtype-selective ligands are important tools for the pharmacological characterisation of neurotransmitter receptors. This is particularly the case for nicotinic acetylcholine receptors (nAChRs), given the heterogeneity of their subunit composition. In addition to agonists and antagonists that interact with the extracellular orthosteric nAChR binding site, a series of nAChR allosteric modulators have been identified that interact with a distinct transmembrane site. Here we report studies conducted with three pharmacologically distinct nicotinic ligands, an orthosteric agonist (compound B), a positive allosteric modulator (TQS) and an allosteric agonist (4BP-TQS). The primary focus of the work described in this study is to examine the suitability of these compounds for the characterisation of native neuronal receptors (both rat and human). However, initial experiments were conducted on recombinant nAChRs demonstrating the selectivity of these three compounds for α7 nAChRs. In patch-clamp recordings on rat primary hippocampal neurons we found that all these compounds displayed pharmacological properties that mimicked closely those observed on recombinant α7 nAChRs. However, it was not possible to detect functional responses with compound B, an orthosteric agonist, using a fluorescent intracellular calcium assay on either rat hippocampal neurons or with human induced pluripotent stem cell-derived neurons (iCell neurons). This is, presumably, due to the rapid desensitisation of α7 nAChR that is induced by orthosteric agonists. In contrast, clear agonist-evoked responses were observed in fluorescence-based assays with the non-desensitising allosteric agonist 4BP-TQS and also when compound B was co-applied with the non-desensitising positive allosteric modulator TQS. In summary, we have demonstrated the suitability of subtype-selective orthosteric and allosteric ligands for the pharmacological identification and characterisation of native nAChRs and the usefulness of ligands that minimise receptor desensitisation for the characterisation of α7 nAChRs in fluorescence-based assays.  相似文献   

10.
TBPB and 77-LH-28-1 are selective agonists of the M1 muscarinic acetylcholine receptor (mAChR) that may gain their selectivity through a bitopic mechanism, interacting concomitantly with the orthosteric site and part of an allosteric site. The current study combined site-directed mutagenesis, analytical pharmacology,and molecular modeling to gain further insights into the structural basis underlying binding and signaling by these agonists. Mutations within the orthosteric binding site caused similar reductions in affinity and signaling efficacy for both selective and prototypical orthosteric ligands. In contrast, the mutation of residues within transmembrane helix (TM) 2 and the second extracellular loop (ECL2) discriminated between the different classes of ligand. In particular, ECL2 appears to be involved in the selective binding of bitopic ligands and in coordinating biased agonism between intracellular calcium mobilization and ERK1/2 phosphorylation. Molecular modeling of the interaction between TBPB and the M1 mAChR revealed a binding pose predicted to extend from the orthosteric site up toward a putative allosteric site bordered by TM2, TM3, and TM7, thus consistent with a bitopic mode of binding. Overall, these findings provide valuable structural and mechanistic insights into bitopic ligand actions and receptor activation and support a role for ECL2 in dictating the active states that can be adopted by a G protein-coupled receptor. This may enable greater selective ligand design and development for mAChRs and facilitate improved identification of bitopic ligands.  相似文献   

11.
Chemokine receptors play a major role in immune system regulation and have consequently been targets for drug development leading to the discovery of several small molecule antagonists. Given the large size and predominantly extracellular receptor interaction of endogenous chemokines, small molecules often act more deeply in an allosteric mode. However, opposed to the well described molecular interaction of allosteric modulators in class C 7-transmembrane helix (7TM) receptors, the interaction in class A, to which the chemokine receptors belong, is more sparsely described. Using the CCR5 chemokine receptor as a model system, we studied the molecular interaction and conformational interchange required for proper action of various orthosteric chemokines and allosteric small molecules, including the well known CCR5 antagonists TAK-779, SCH-C, and aplaviroc, and four novel CCR5 ago-allosteric molecules. A chimera was successfully constructed between CCR5 and the closely related CCR2 by transferring all extracellular regions of CCR2 to CCR5, i.e. a Trojan horse that resembles CCR2 extracellularly but signals through a CCR5 transmembrane unit. The chimera bound CCR2 (CCL2 and CCL7), but not CCR5 chemokines (CCL3 and CCL5), with CCR2-like high affinities and potencies throughout the CCR5 signaling unit. Concomitantly, high affinity binding of small molecule CCR5 agonists and antagonists was retained in the transmembrane region. Importantly, whereas the agonistic and antagonistic properties were preserved, the allosteric enhancement of chemokine binding was disrupted. In summary, the Trojan horse chimera revealed that orthosteric and allosteric sites could be structurally separated and still act together with transmission of agonism and antagonism across the different receptor units.  相似文献   

12.
Allosteric modulators have been identified for several G protein-coupled receptors, most notably muscarinic receptors. To study their mechanism of action, we made use of a recently developed technique to generate fluorescence resonance energy transfer (FRET)-based sensors to monitor G protein-coupled receptor activation. Cyan fluorescent protein was fused to the C terminus of the M2 muscarinic receptor, and a specific binding sequence for the small fluorescent compound fluorescein arsenical hairpin binder, FlAsH, was inserted into the third intracellular loop; the latter site was labeled in intact cells by incubation with FlAsH. We then measured FRET between the donor cyan fluorescent protein and the acceptor FlAsH in intact cells and monitored its changes in real time. Agonists such as acetylcholine and carbachol induced rapid changes in FRET, indicative of agonist-induced conformational changes. Removal of the agonists or addition of an antagonist caused a reversal of this signal with rate constants between 400 and 1100 ms. The allosteric ligands gallamine and dimethyl-W84 caused no changes in FRET when given alone, but increased FRET when given in the presence of an agonist, compatible with an inactivation of the receptors. The kinetics of these effects were very rapid, with rate constants of 80–100 ms and ≈200 ms for saturating concentrations of gallamine and dimethyl-W84, respectively. Because these speeds are significantly faster than the responses to antagonists, these data indicate that gallamine and dimethyl-W84 are allosteric ligands and actively induce a conformation of the M2 receptor with a reduced affinity for its agonists.  相似文献   

13.
Benzylquinolone carboxylic acid (BQCA) is an unprecedented example of a selective positive allosteric modulator of acetylcholine at the M1 muscarinic acetylcholine receptor (mAChR). To probe the structural basis underlying its selectivity, we utilized site-directed mutagenesis, analytical modeling, and molecular dynamics to delineate regions of the M1 mAChR that govern modulator binding and transmission of cooperativity. We identified Tyr-852.64 in transmembrane domain 2 (TMII), Tyr-179 and Phe-182 in the second extracellular loop (ECL2), and Glu-3977.32 and Trp-4007.35 in TMVII as residues that contribute to the BQCA binding pocket at the M1 mAChR, as well as to the transmission of cooperativity with the orthosteric agonist carbachol. As such, the BQCA binding pocket partially overlaps with the previously described “common” allosteric site in the extracellular vestibule of the M1 mAChR, suggesting that its high subtype selectivity derives from either additional contacts outside this region or through a subtype-specific cooperativity mechanism. Mutation of amino acid residues that form the orthosteric binding pocket caused a loss of carbachol response that could be rescued by BQCA. Two of these residues (Leu-1023.29 and Asp-1053.32) were also identified as indirect contributors to the binding affinity of the modulator. This new insight into the structural basis of binding and function of BQCA can guide the design of new allosteric ligands with tailored pharmacological properties.  相似文献   

14.
Studies have demonstrated the presence of allosteric binding sites on each of the muscarinic acetylcholine receptor (mAChR) subtypes. Since most drugs targeting muscarinic receptors bind to the highly conserved orthosteric binding site, they fail to achieve appreciable subtype selectivity. Targeting non-conserved allosteric sites may provide a new way of enhancing selectivity for individual subtypes of muscarinic receptor. Tetra(ethyleneglycol)(3-methoxy-1,2,5-thiadiazol-4-yl)[3-(1-methyl-1,2,5,6-tetrahydropyrid-3-yl)-1,2,5-thiadiazol-4-yl] ether, CDD-0304 (10), was found to be a M1/2/4 selective muscarinic agonist and might prove useful in treating the symptoms associated with schizophrenia (J. Med. Chem. 2003, 46, 4273). It was hypothesized that the observed subtype selectivity demonstrated by 10 may be due to its ability to function as a bitopic ligand (J. Med. Chem. 2006, 49, 7518). To further investigate this possibility, a novel series of compounds was synthesized using a 1,2,5-thiadiazole moiety along with varying lengths of a polyethylene glycol linker and terminal groups, for evaluation as potential allosteric modulators of muscarinic receptors. Preliminary biological studies were performed using carbachol to stimulate M1 and M5 receptors. No significant agonist activity was observed at either M1 or M5 receptors for any of the compounds. Compound 18, 2-(4-methoxy-1,2,5-thiadiazol-3-yloxy)-N,N-dimethylethanamine fumarate (CDD-0361F) was found to block the effects of carbachol at M5 muscarinic receptors.  相似文献   

15.
Staurosporine and four staurosporine derivatives were docked on the rhodopsin-based homology model of the M1 muscarinic acetylcholine receptor in order to localize the possible allosteric sites of this receptor. It was found that there were three major allosteric sites, two of which are located at the extracellular face of the receptor, and one in the intracellular domain of the receptor. In the present study, the localization of these binding sites is described for the first time. The present study confirms the existence of multiple allosteric sites on the M1 muscarinic receptor, and lays the ground for further experimental and computational analysis to better understand how muscarinic receptors are modulated via their allosteric sites. These findings will also help to design and develop novel drugs acting as allosteric modulators of the M1 receptor, which can be used in the treatment of the Alzheimer's disease.  相似文献   

16.
The recently identified small molecule, 3-amino-5-chloro-6-methoxy-4-methylthieno[2,3-b]pyridine-2-carboxylic acid cyclopropylamide (LY2033298), is the first selective allosteric modulator of the muscarinic acetylcholine receptors (mAChRs) that mediates both receptor activation and positive modulation of the endogenous agonist, acetylcholine (ACh), via the same allosteric site on the M4 mAChR. We thus utilized this novel chemical tool, as well as ACh, the bitopic (orthosteric/allosteric) agonist, McN-A-343, and the clinically efficacious M1/M4 mAChR-preferring agonist, xanomeline, in conjunction with site-directed mutagenesis of four different regions of the M4 mAChR (extracellular loops 1, 2, and 3, and transmembrane domain 7), to identify regions that govern ligand-specific modes of binding, signaling, and allosteric modulation. In the first extracellular loop (E1), we identified Ile93 and Lys95 as key residues that specifically govern the signaling efficacy of LY2033298 and its binding cooperativity with ACh, whereas Phe186 in the E2 loop was identified as a key contributor to the binding affinity of the modulator for the allosteric site, and Asp432 in the E3 loop appears to be involved in the functional (activation) cooperativity between the modulator and the endogenous agonist. In contrast, the highly conserved transmembrane domain 7 residues, Tyr439 and Tyr443, were identified as contributing to a key activation switch utilized by all classes of agonists. These results provide new insights into the existence of multiple activation switches in G protein-coupled receptors (GPCRs), some of which can be selectively exploited by allosteric agonists, whereas others represent global activation mechanisms for all classes of ligand.  相似文献   

17.
Birdsall NJ  Lazareno S  Popham A  Saldanha J 《Life sciences》2001,68(22-23):2517-2524
Proteins and small molecules are capable of regulating the agonist binding and function of G-protein coupled receptors by multiple allosteric mechanisms. In the case of muscarinic receptors, there is the well-characterised allosteric site that binds, for example, gallamine and brucine. The protein kinase inhibitor, KT5720, has now been shown to bind to a second allosteric site and to regulate agonist and antagonist binding. The binding of brucine and gallamine does not affect KT5720 binding nor its effects on the dissociation of [3H]-N-methylscopolamine from M1 receptors. Therefore it is possible to have a muscarinic receptor with three small ligands bound simultaneously. A model of the M1 receptor, based on the recently determined structure of rhodopsin, has the residues that have been shown to be important for gallamine binding clustered within and to one side of a cleft in the extracellular face of the receptor. This cleft may represent the access route of acetylcholine to its binding site.  相似文献   

18.
GAT107, the (+)-enantiomer of racemic 4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide, is a strong positive allosteric modulator (PAM) of α7 nicotinic acetylcholine receptor (nAChR) activation by orthosteric agonists with intrinsic allosteric agonist activities. The direct activation produced by GAT107 in electrophysiological studies is observed only as long as GAT107 is freely diffusible in solution, although the potentiating activity primed by GAT107 can persist for over 30 min after drug washout. Direct activation is sensitive to α7 nAChR antagonist methyllycaconitine, although the primed potentiation is not. The data are consistent with GAT107 activity arising from two different sites. We show that the coupling between PAMs and the binding of orthosteric ligands requires tryptophan 55 (Trp-55), which is located at the subunit interface on the complementary surface of the orthosteric binding site. Mutations of Trp-55 increase the direct activation produced by GAT107 and reduce or prevent the synergy between allosteric and orthosteric binding sites, so that these mutants can also be directly activated by other PAMs such as PNU-120596 and TQS, which do not activate wild-type α7 in the absence of orthosteric agonists. We identify Tyr-93 as an essential element for orthosteric activation, because Y93C mutants are insensitive to orthosteric agonists but respond to GAT107. Our data show that both orthosteric and allosteric activation of α7 nAChR require cooperative activity at the interface between the subunits in the extracellular domain. These cooperative effects rely on key aromatic residues, and although mutations of Trp-55 reduce the restraints placed on the requirement for orthosteric agonists, Tyr-93 can conduct both orthosteric activation and desensitization among the subunits.  相似文献   

19.
Fully flexible docking of KT5720, an allosteric modulator of the muscarinic receptors, was performed on a dynamic model of the M(1) muscarinic acetylcholine receptor. The results confirmed the existence of a second allosteric site, located on the intracellular face of the receptor. These results would be beneficial for the design of modulators of this receptor to be used as an effective alternative against the Alzheimer's disease.  相似文献   

20.
Metabotropic glutamate receptor 1α (mGluR1α), a member of the family C G protein-coupled receptors, is emerging as a potential drug target for various disorders, including chronic neuronal degenerative diseases. In addition to being activated by glutamate, mGluR1α is also modulated by extracellular Ca2+. However, the underlying mechanism is unknown. Moreover, it has long been challenging to develop receptor-specific agonists due to homologies within the mGluR family, and the Ca2+-binding site(s) on mGluR1α may provide an opportunity for receptor-selective targeting by therapeutics. In the present study, we show that our previously predicted Ca2+-binding site in the hinge region of mGluR1α is adjacent to the site where orthosteric agonists and antagonists bind on the extracellular domain of the receptor. Moreover, we found that extracellular Ca2+ enhanced mGluR1α-mediated intracellular Ca2+ responses evoked by the orthosteric agonist l-quisqualate. Conversely, extracellular Ca2+ diminished the inhibitory effect of the mGluR1α orthosteric antagonist (S)-α-methyl-4-carboxyphenylglycine. In addition, selective positive (Ro 67-4853) and negative (7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester) allosteric modulators of mGluR1α potentiated and inhibited responses to extracellular Ca2+, respectively, in a manner similar to their effects on the response of mGluR1α to glutamate. Mutations at residues predicted to be involved in Ca2+ binding, including E325I, had significant effects on the modulation of responses to the orthosteric agonist l-quisqualate and the allosteric modulator Ro 67-4853 by extracellular Ca2+. These studies reveal that binding of extracellular Ca2+ to the predicted Ca2+-binding site in the extracellular domain of mGluR1α modulates not only glutamate-evoked signaling but also the actions of both orthosteric ligands and allosteric modulators on mGluR1α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号