首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Exercise training and hypertension induced cardiac hypertrophy but modulate differently left ventricle (LV) function. This study set out to evaluate cardiac adaptations induced by moderate exercise training in normotensive and untreated severe hypertensive rats. Four groups of animals were studied: normotensive (Ctl) and severe hypertensive (HT) Wistar rats were assigned to be sedentary (Sed) or perform a moderate exercise training (Ex) over a 10-wk period. Severe hypertension was induced in rat by a two-kidney, one-clip model. At the end of the training period, hemodynamic parameters and LV morphology and function were assessed using catheterism and conventional pulsed Doppler echocardiography. LV histology was performed to study fibrosis infiltrations. Severe hypertension increased systolic blood pressure to 202 +/- 9 mmHg and induced pathological hypertrophy (LV hypertrophy index was 0.34 +/- 0.02 vs. 0.44 +/- 0.02 in Ctl-Sed and HT-Sed groups, respectively) with LV relaxation alteration (early-to-atrial wave ratio = 2.02 +/- 0.11 vs. 1.63 +/- 0.12). Blood pressure was not altered by exercise training, but arterial stiffness was reduced in trained hypertensive rats (pulse pressure was 75 +/- 7 vs. 62 +/- 3 mmHg in HT-Sed and HT-Ex groups, respectively). Exercise training induced eccentric hypertrophy in both Ex groups by increasing LV cavity without alteration of LV systolic function. However, LV hypertrophy index was significantly decreased in normotensive rats only (0.34 +/- 0.02 vs. 0.30 +/- 0.02 in Ctl-Sed and Ctl-Ex groups, respectively). Moreover, exercise training improved LV passive filling in Ctl-Ex rats but not in Ht-Ex rats. In this study, exercise training did not reduce blood pressure and induced an additional physiological hypertrophy in untreated HT rats, which was slightly blunted when compared with Ctl rats. However, cardiac function was not worsened by exercise training.  相似文献   

2.
Older, obese, and sedentary individuals are at high risk of developing diabetes and cardiovascular disease. Exercise training improves metabolic anomalies associated with such diseases, but the effects of caloric restriction in addition to exercise in such a high-risk group are not known. Changes in body composition and metabolism during a lifestyle intervention were investigated in 23 older, obese men and women (aged 66 +/- 1 yr, body mass index 33.2 +/- 1.4 kg/m(2)) with impaired glucose tolerance. All volunteers undertook 12 wk of aerobic exercise training [5 days/wk for 60 min at 75% maximal oxygen consumption (Vo(2max))] with either normal caloric intake (eucaloric group, 1,901 +/- 277 kcal/day, n = 12) or a reduced-calorie diet (hypocaloric group, 1,307 +/- 70 kcal/day, n = 11), as dictated by nutritional counseling. Body composition (decreased fat mass; maintained fat-free mass), aerobic fitness (Vo(2max)), leptinemia, insulin sensitivity, and intramyocellular lipid accumulation (IMCL) in skeletal muscle improved in both groups (P < 0.05). Improvements in body composition, leptin, and basal fat oxidation were greater in the hypocaloric group. Following the intervention, there was a correlation between the increase in basal fat oxidation and the decrease in IMCL (r = -0.53, P = 0.04). In addition, basal fat oxidation was associated with circulating leptin after (r = 0.65, P = 0.0007) but not before the intervention (r = 0.05, P = 0.84). In conclusion, these data show that exercise training improves resting substrate oxidation and creates a metabolic milieu that appears to promote lipid utilization in skeletal muscle, thus facilitating a reversal of insulin resistance. We also demonstrate that leptin sensitivity is improved but that such a trend may rely on reducing caloric intake in addition to exercise training.  相似文献   

3.
To test whether changes in sympathetic nervous system (SNS) activity or insulin sensitivity contribute to the heterogeneous blood pressure response to aerobic exercise training, we used compartmental analysis of [3H]norepinephrine kinetics to determine the extravascular norepinephrine release rate (NE2) as an index of systemic SNS activity and determined the insulin sensitivity index (S(I)) by an intravenous glucose tolerance test, before and after 6 mo of aerobic exercise training, in 30 (63 +/- 7 yr) hypertensive subjects. Maximal O2 consumption increased from 18.4 +/- 0.7 to 20.8 +/- 0.7 ml x kg(-1) x min(-1) (P = 0.02). The average mean arterial blood pressure (MABP) did not change (114 +/- 2 vs. 114 +/- 2 mmHg); however, there was a wide range of responses (-19 to +17 mmHg). The average NE2 did not change significantly (2.11 +/- 0.15 vs. 1.99 +/- 0.13 microg x min(-1) x m(-2)), but there was a significant positive linear relationship between the change in NE2 and the change in MABP (r = 0.38, P = 0.04). S(I) increased from 2.81 +/- 0.37 to 3.71 +/- 0.42 microU x 10(-4) x min(-1) x ml(-1) (P = 0.004). The relationship between the change in S(I) and the change in MABP was not statistically significant (r = -0.03, P = 0.89). When the changes in maximal O2 consumption, percent body fat, NE2, and S(I) were considered as predictors of the change in MABP, only NE2 was a significant independent predictor. Thus suppression of SNS activity may play a role in the reduction in MABP and account for a portion of the heterogeneity of the MABP response to aerobic exercise training in older hypertensive subjects.  相似文献   

4.
Plasma catecholamine concentrations (norepinephrine, NE; epinephrine, E) were measured along with heart rate (HR) and blood pressure (BP) at rest in supine (20 min) and standing (10 min) positions and in response to cycle ergometer exercise (5 min; 60% estimated maximal aerobic power) in 12 hypertensive patients before and after 20 weeks of aerobic training on cycle ergometer (six males, one female) or by jogging (five males). In a control group of labile hypertensive patients (five males, two females), estimated maximal aerobic power as well as HR and BP at rest in the supine and standing positions and in response to exercise were not modified from the first to the second evaluation (43 +/- 4 vs 43 +/- 5 ml.kg-1.min-1). In comparison estimated maximal aerobic power significantly increased in both training groups (cycle: 38 +/- 4 to 43 +/- 4; jogging: 38 +/- 3 to 46 +/- 4 ml.kg-1.min-1). However HR and BP were not modified following training, except for small reductions in systolic (18.9 to 18 kPa: 142 to 135 mmHg) and diastolic pressures (13.3 to 12 kPa: 100 to 90 mmHg) (p less than 0.05) at standing rest in the cycle group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The general purpose of this study was to test the effect of exercise training on the left ventricular (LV) pressure-volume relationship (LV/PV) and apoptotic signaling markers in normotensive and hypertensive hearts. Four-month-old female normotensive Wistar-Kyoto rats (WKY; n = 37) and spontaneously hypertensive rats (SHR; n = 38) were assigned to a sedentary (WKY-SED, n = 21; SHR-SED, n = 19) or treadmill-trained (WKY-TRD, n = 16; SHR-TRD, n = 19) group (~60% Vo(2 peak), 60 min/day, 5 days/wk, 12 wk). Ex vivo LV/PV were established in isovolumic Langendorff-perfused hearts, and LV levels of Akt, phosphorylated Akt (Akt(Pi)), Bad, phosphorylated Bad (Bad(Pi)) c-IAP, x-IAP, calcineurin, and caspases 3, 8, and 9 were measured. Heart-to-body weight ratio was increased in SHR vs. WKY (P < 0.05), concomitant with increased calcineurin mRNA (P < 0.05). There was a rightward shift in the LV/PV (P < 0.05) and a reduction in systolic elastance (E(s)) in SHR vs. WKY. Exercise training corrected E(s) in SHR (P < 0.05) but had no effect on the LV/PV in WKY. Caspase 3 was increased in SHR-SED relative to WKY-SED, while Bad(Pi,) c-IAP, and x-IAP were significantly lower in SHR relative to WKY (P < 0.05). Exercise training increased Bad(Pi) in both WKY and SHR but did not alter caspase 9 activity in either group. While caspase 3 activity was increased with training in WKY (P < 0.05), it was unchanged with training in SHR. We conclude that moderate levels of regular aerobic exercise attenuate systolic dysfunction early in the compensatory phase of hypertrophy, and that a differential phenotypical response to moderate-intensity exercise exists between WKY and SHR.  相似文献   

6.
Exercise improves glucose metabolism and delays the onset and/or reverses insulin resistance in the elderly by an unknown mechanism. In the present study, we examined the effects of exercise training on glucose metabolism, abdominal adiposity, and adipocytokines in obese elderly. Sixteen obese men and women (age = 63 +/- 1 yr, body mass index = 33.2 +/- 1.4 kg/m2) participated in a 12-wk supervised exercise program (5 days/wk, 60 min/day, treadmill/cycle ergometry at 85% of heart rate maximum). Visceral fat (VF), subcutaneous fat, and total abdominal fat were measured by computed tomography. Fat mass and fat-free mass were assessed by hydrostatic weighing. An oral glucose tolerance test was used to determine changes in insulin resistance. Exercise training increased maximal oxygen consumption (21.3 +/- 0.8 vs. 24.3 +/- 1.0 ml.kg(-1).min(-1), P < 0.0001), decreased body weight (P < 0.0001) and fat mass (P < 0.001), while fat-free mass was not altered (P > 0.05). VF (176 +/- 20 vs. 136 +/- 17 cm2, P < 0.0001), subcutaneous fat (351 +/- 34 vs. 305 +/- 28 cm2, P < 0.03), and total abdominal fat (525 +/- 40 vs. 443 +/- 34 cm2, P < 0.003) were reduced through training. Circulating leptin was lower (P < 0.003) after training, but total adiponectin and tumor necrosis factor-alpha remained unchanged. Insulin resistance was reversed by exercise (40.1 +/- 7.7 vs. 27.6 +/- 5.6 units, P < 0.01) and correlated with changes in VF (r = 0.66, P < 0.01) and maximal oxygen consumption (r = -0.48, P < 0.05) but not adipocytokines. VF loss after aerobic exercise training improves glucose metabolism and is associated with the reversal of insulin resistance in older obese men and women.  相似文献   

7.
Part of the association between physical activity and low blood pressure (BP) may be a consequence of genetic selection. We investigated the association of genetic factors and physical activity in adolescence and adulthood with BP. BP was measured with a Finapres device in 71 monozygotic and 104 dizygotic male twin pairs using no antihypertensive medication. Subjects' mean age was 50.4 yr (range 40-72 yr). Subjects were interviewed about their lifetime exercise and other health habits. Exercise was classified as aerobic, power, or other, and these were further divided into adolescence (12-20 yr of age), the previous year, and lifetime. Genetic modeling was conducted to estimate genetic and environmental components of variance of systolic and diastolic BP. Aerobic exercise in adolescence and high-intensity aerobic exercise throughout the lifetime were associated with low diastolic BP in adulthood. Of the variance in diastolic BP, genetic factors accounted for 35% and aerobic exercise in adolescence for 5%. For systolic BP, genetic factors accounted for 39% of the variance. In turn, genetic factors accounted for 44% of the variance in aerobic exercise in adolescence. The genetic factors in part accounting for the variance in diastolic BP and those in part accounting for variance in aerobic exercise in adolescence were correlated. The association between aerobic exercise in adolescence and low diastolic BP in adulthood is a new finding, as is the observation that the factors partly share the same genes.  相似文献   

8.
We previously reported an "athlete's paradox" in which endurance-trained athletes, who possess a high oxidative capacity and enhanced insulin sensitivity, also have higher intramyocellular lipid (IMCL) content. The purpose of this study was to determine whether moderate exercise training would increase IMCL, oxidative capacity of muscle, and insulin sensitivity in previously sedentary overweight to obese, insulin-resistant, older subjects. Twenty-five older (66.4 +/- 0.8 yr) obese (BMI = 30.3 +/- 0.7 kg/m2) men (n = 9) and women (n = 16) completed a 16-wk moderate but progressive exercise training program. Body weight and fat mass modestly but significantly (P < 0.01) decreased. Insulin sensitivity, measured using the euglycemic hyperinsulinemic clamp, was increased (21%, P = 0.02), with modest improvements (7%, P = 0.04) in aerobic fitness (Vo2peak). Histochemical analyses of IMCL (Oil Red O staining), oxidative capacity [succinate dehydrogenase activity (SDH)], glycogen content, capillary density, and fiber type were performed on skeletal muscle biopsies. Exercise training increased IMCL by 21%. In contrast, diacylglycerol and ceramide, measured by mass spectroscopy, were decreased (n = 13; -29% and -24%, respectively, P < 0.05) with exercise training. SDH (19%), glycogen content (15%), capillary density (7%), and the percentage of type I slow oxidative fibers (from 50.8 to 55.7%), all P < or = 0.05, were increased after exercise. In summary, these results extend the athlete's paradox by demonstrating that chronic exercise in overweight to obese older adults improves insulin sensitivity in conjunction with favorable alterations in lipid partitioning and an enhanced oxidative capacity within muscle. Therefore, several key deleterious effects of aging and/or obesity on the metabolic profile of skeletal muscle can be reversed with only moderate increases in physical activity.  相似文献   

9.
To determine whether endurance exercise training can alter the beta-adrenergic-stimulated inotropic response in older women, we studied 10 postmenopausal healthy women (65.4 +/- 0.9 yr old) who exercised for 11 mo. Left ventricular (LV) function was evaluated with two-dimensional echocardiography during infusion of isoproterenol after atropine. Maximal O(2) consumption increased 23% in response to training (from 1.35 +/- 0.06 to 1.66 +/- 0.07 l/min; P = 0.004). Training had no effect on baseline LV function, end-diastolic diameter, LV wall thickness, or LV mass. The increase in LV systolic function in response to isoproterenol was unaffected by training. Furthermore, neither the systolic shortening-to-end-systolic wall stress relationship nor the end-systolic wall stress-to-end-systolic diameter relationship during isoproterenol infusion changed with training. We conclude that older postmenopausal women can increase their maximal O(2) consumption with exercise training without eccentric LV hypertrophy or enhancement of beta-adrenergic-mediated LV contractile function. These observations provide an explanation for the finding that maximal cardiac output and stroke volume are not increased in older women in response to training.  相似文献   

10.
Hypertension and exercise independently induce left ventricular (LV) remodeling and alter LV function. The purpose of this study was to determine systolic and diastolic LV pressure-volume relationships (LV-PV) in spontaneously hypertensive rats (SHR) with and without LV hypertrophy, and to determine whether 6 mo of exercise training modified the LV-PV in SHR. Four-month-old female SHR (n = 20), were assigned to a sedentary (SHR-SED) or treadmill-trained (SHR-TRD) group (approximately 60% peak O2 consumption, 5 days/wk, 6 mo), while age-matched female Wistar-Kyoto rats (WKY; n = 13) served as normotensive controls. The LV-PV was determined using a Langendorff isolated heart preparation at 4 (no hypertrophy: WKY, n = 5; SHR, n = 5) and 10 mo of age (hypertrophy: WKY, n = 8; SHR-SED, n = 8; SHR-TRD, n = 7). At 4 mo, the LV-PV in SHR was similar to that observed in WKY controls. However, at 10 mo of age, a rightward shift in the LV-PV occurred in SHR. Exercise training did not alter the extent of the shift in the LV-PV relative to SHR-SED. Relative systolic function, i.e., relative systolic elastance, was approximately 50% lower in SHR than WKY at 10 mo of age (P < 0.05). Doppler-derived LV filling parameters [early wave (E), atrial wave (A), and the E/A ratio] were similar between groups. LV capacitance was increased in SHR at 10 mo (P < 0.05), whereas LV diastolic chamber stiffness was similar between groups at 10 mo. Hypertrophic remodeling at 10 mo of age in female SHR is manifest with relative systolic decompensation and normal LV diastolic function. Exercise training did not alter the LV-PV in SHR.  相似文献   

11.
Exercise training results in cardiovascular and metabolic adaptations that may be beneficial in menopausal women by reducing blood pressure, insulin resistance, and cholesterol level. The adaptation of the cardiac hormonal systems oxytocin (OT), natriuretic peptides (NPs), and nitric oxide synthase (NOS) in response to exercise training was investigated in intact and ovariectomized (OVX) rats. Ovariectomy significantly augmented body weight (BW), left ventricle (LV) mass, and intra-abdominal fat pad weight and decreased the expression of oxytocin receptor (OTR), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and guanylyl cyclase-A (GC-A), in the right atrium (RA) and LV, indicating estrogenic control of these genes. These effects of ovariectomy were counteracted by 8-wk-long exercise training which decreased fat pad weight (33.4 +/- 2.3 to 23.4 +/- 3.1 g, n = 8, P < 0.05), plasma free fatty acids (0.124 +/- 0.033 to 0.057 +/- 0.010 mM, n = 8, P < 0.01), and plasma triacylglycerol (0.978 +/- 0.174 to 0.588 +/- 0.115 mM, n = 8, P < 0.05). Chronic exercise tended to decrease BW and stimulated ANP (4- to 5-fold) and OTR gene expression in the LV and RA and BNP and inducible NOS (iNOS) mRNA in the LV. In sham-operated rats, exercise augmented ANP expression in the RA, downregulated GC-A mRNA in the LV and RA, but increased its expression threefold in the RA of OVX animals. Endothelial NOS and iNOS expression was enhanced in the left atrium of sham-operated rats. Altogether, these data indicate that in OVX animals, chronic exercise significantly enhances cardiac OT, NPs, and NOS, thus implicating all three hormonal systems in the beneficial effects of exercise training.  相似文献   

12.
Although exercise training-induced changes in left ventricular (LV) structure are well characterized, adaptive functional changes are incompletely understood. Detailed echocardiographic assessment of LV systolic function was performed on 20 competitive rowers (10 males and 10 females) before and after endurance exercise training (EET; 90 days, 10.7 +/- 1.1 h/wk). Structural changes included LV dilation (end-diastolic volume = 128 +/- 25 vs. 144 +/- 28 ml, P < 0.001), right ventricular (RV) dilation (end-diastolic area = 2,850 +/- 550 vs. 3,260 +/- 530 mm2, P < 0.001), and LV hypertrophy (mass = 227 +/- 51 vs. 256 +/- 56 g, P < 0.001). Although LV ejection fraction was unchanged (62 +/- 3% vs. 60 +/- 3%, P = not significant), all direct measures of LV systolic function were altered. Peak systolic tissue velocities increased significantly (basal lateral S'Delta = 0.9 +/- 0.6 cm/s, P = 0.004; and basal septal S'Delta = 0.8 +/- 0.4 cm/s, P = 0.008). Radial strain increased similarly in all segments, whereas longitudinal strain increased with a base-to-apex gradient. In contrast, circumferential strain (CS) increased in the LV free wall but decreased in regions adjacent to the RV. Reductions in septal CS correlated strongly with changes in RV structure (DeltaRV end-diastolic area vs. DeltaLV septal CS; r2 = 0.898, P < 0.001) and function (Deltapeak RV systolic velocity vs. DeltaLV septal CS, r2 = 0.697, P < 0.001). EET leads to significant changes in LV systolic function with regional heterogeneity that may be secondary to concomitant RV adaptation. These changes are not detected by conventional measurements such as ejection fraction.  相似文献   

13.
Insulin action in skeletal muscle is enhanced by regular exercise. Whether insulin signaling in human skeletal muscle is affected by habitual exercise is not well understood. Phosphatidylinositol 3-kinase (PI3-kinase) activation is an important step in the insulin-signaling pathway and appears to regulate glucose metabolism via GLUT-4 translocation in skeletal muscle. To examine the effects of regular exercise on PI3-kinase activation, 2-h hyperinsulinemic (40 mU. m(-2). min(-1))-euglycemic (5.0 mM) clamps were performed on eight healthy exercise-trained [24 +/- 1 yr, 71.8 +/- 2.0 kg, maximal O(2) uptake (VO(2 max)) of 56.1 +/- 2.5 ml. kg(-1). min(-1)] and eight healthy sedentary men and women (24 +/- 1 yr, 64.7 +/- 4.4 kg, VO(2 max) of 44.4 +/- 2.7 ml. kg(-1). min(-1)). A [6, 6-(2)H]glucose tracer was used to measure hepatic glucose output. A muscle biopsy was obtained from the vastus lateralis muscle at basal and at 2 h of hyperinsulinemia to measure insulin receptor substrate-1(IRS-1)-associated PI3-kinase activation. Insulin concentrations during hyperinsulinemia were similar for both groups (293 +/- 22 and 311 +/- 22 pM for trained and sedentary, respectively). Insulin-mediated glucose disposal rates (GDR) were greater (P < 0.05) in the exercise-trained compared with the sedentary control group (9.22 +/- 0.95 vs. 6.36 +/- 0.57 mg. kg fat-free mass(-1). min(-1)). Insulin-stimulated PI3-kinase activation was also greater (P < 0.004) in the trained compared with the sedentary group (3.8 +/- 0.5- vs. 1.8 +/- 0.2-fold increase from basal). Endurance capacity (VO(2 max)) was positively correlated with PI3-kinase activation (r = 0.53, P < 0.04). There was no correlation between PI3-kinase and muscle morphology. However, increases in GDR were positively related to PI3-kinase activation (r = 0.60, P < 0.02). We conclude that regular exercise leads to greater insulin-stimulated IRS-1-associated PI3-kinase activation in human skeletal muscle, thus facilitating enhanced insulin-mediated glucose uptake.  相似文献   

14.
The purpose of this study was to determine the effects of exercise training on ventricular epicardial fat thickness in obese men and to investigate the relationship of the change in epicardial fat thickness to changes in abdominal fat tissue following exercise training. Twenty-four obese middle-aged men [age, 49.4 +/- 9.6 yr; weight, 87.7 +/- 11.2 kg; body mass index (BMI), 30.7 +/- 3.3 kg/m(2); peak oxygen consumption, 28.4 +/- 7.2 ml.kg(-1).min(-1); means +/- SD] participated in this study. Each participant completed a 12-wk supervised exercise training program (60-70% of the maximal heart rate; 60 min/day, 3 days/wk) and underwent a transthoracic echocardiography. The epicardial fat thickness on the free wall of the right ventricle was measured from both parasternal long- and short-axis views. The visceral adipose tissue (VAT) and subcutaneous adipose tissues were measured by computed tomography. Following exercise training, the epicardial fat thickness was significantly decreased (P < 0.001). The percentage change of epicardial fat thickness was twice as high compared with those of waist, BMI, and body weight of original values (P <0.05). There was a significant relationship (r = 0.525, P = 0.008) between changes in the epicardial fat thickness and VAT with exercise training. Stepwise multiple regression analysis revealed that the change in VAT, change in systolic blood pressure, and change in quantitative insulin sensitivity check index were independently related to the change epicardial fat thickness (P < 0.05). The ventricular epicardial fat thickness is reduced significantly after aerobic exercise training and is associated with a decrease in VAT. These results suggest that aerobic exercise training may be an effective nonpharmacological strategy for decreasing the ventricular epicardial fat thickness and visceral fat area in obese middle-aged men.  相似文献   

15.
Bed rest deconditioning leads to physiological cardiac atrophy, which may compromise left ventricular (LV) filling during orthostatic stress by reducing diastolic untwisting and suction. To test this hypothesis, myocardial-tagged magnetic resonance imaging (MRI) was performed, and maximal untwisting rates of the endocardium, midwall, and epicardium were calculated by Harmonic Phase Analysis (HARP) before and after -6 degrees head-down tilt bed rest for 18 days with (n = 14) and without exercise training (n = 10). LV mass and LV end-diastolic volume were measured using cine MRI. Exercise subjects cycled on a supine ergometer for 30 min, three times per day at 75% maximal heart rate (HR). After sedentary bed rest, there was a significant reduction in maximal untwisting rates of the midwall (-46.8 +/- 14.3 to -35.4 +/- 12.4 degrees /s; P = 0.04) where untwisting is most reliably measured, and to a lesser degree of certainty in the endocardium (-50.3 +/- 13.8 to -40.1 +/- 18.5 degrees /s; P = 0.09); the epicardium was unchanged. In contrast, when exercise was performed in bed, untwisting rates were enhanced at the endocardium (-48.4 +/- 20.8 to -72.3 +/- 22.3 degrees /ms; P = 0.05) and midwall (-39.2 +/- 12.2 to -59.0 +/- 19.6 degrees /s; P = 0.03). The differential response was significant between groups at the endocardium (interaction P = 0.02) and the midwall (interaction P = 0.004). LV mass decreased in the sedentary group (156.4 +/- 30.3 to 149.5 +/- 27.9 g; P = 0.07), but it increased slightly in the exercise-trained subjects (156.4 +/- 34.3 to 162.3 +/- 40.5 g; P = 0.16); (interaction P = 0.03). We conclude that diastolic untwisting is impaired following sedentary bed rest. However, exercise training in bed can prevent the physiological cardiac remodeling associated with bed rest and preserve or even enhance diastolic suction.  相似文献   

16.
Although insulin and exercise cause dramatic changes in physiological parameters, the impact of exercise on neural and hemodynamic responses to insulin administration has not been described. In a study of the effects of a single bout of exercise on blood pressure (BP), muscle sympathetic nerve activity (MSNA), and forearm blood flow (FBF) responses to insulin infusion during the postexercise period, 11 healthy men underwent, in a random order, two hyperinsulinemic euglycemic clamps performed after 45 min of 1) bicycle exercise (50% peak O(2) uptake, Exercise session) and 2) seated rest (Control session). Data were analyzed during baseline and steady-state periods. Although insulin levels and insulin sensitivity were similar, baseline plasma glucose levels were significantly lower in the Exercise than in the Control session. Mean BP was significantly lower (3%) and FBF was higher (27%) in the Exercise session. Exercise increased insulin-induced MSNA enhancement (84%) without changing FBF and BP responses to hyperinsulinemia. In conclusion, a single bout of exercise that does not alter insulin sensitivity exacerbates insulin-induced increase in MSNA without changing FBF and BP responses to hyperinsulinemia.  相似文献   

17.
We evaluated the effects of swimming and anabolic steroids (AS) on ventricular function, collagen synthesis, and the local renin-angiotensin system in rats. Male Wistar rats were randomized into control (C), steroid (S; nandrolone decanoate; 5 mg/kg sc, 2x/wk), steroid + losartan (SL; 20 mg.kg(-1).day(-1)), trained (T), trained + steroid (T+S), and trained + steroid + losartan (T+SL; n = 14/group) groups. Swimming was performed 5 times/wk for 10 wk. Serum testosterone increased in S and T+S. Resting heart rate was lower in T and T+S. Percent change in left ventricular (LV) weight-to-body weight ratio increased in S, T, and T+S. LV systolic pressure declined in S and T+S. LV contractility increased in T (P < 0.05). LV relaxation increased in T (P < 0.05). It was significantly lower in T+S compared with C. Collagen volumetric fraction (CVF) and hydroxyproline were higher in S and T+S than in C and T (P < 0.05), and the CVF and LV hypertrophy were prevented by losartan treatment. LV-ANG I-converting enzyme activity increased (28%) in the S group (33%), and type III collagen synthesis increased (56%) in T+S but not in T group. A positive correlation existed between LV-ANG I-converting enzyme activity and collagen type III expression (r(2) = 0.88; P < 0.05, for all groups). The ANG II and angiotensin type 1a receptor expression increased in the S and T+S groups but not in T group. Supraphysiological doses of AS exacerbated the cardiac hypertrophy in exercise-trained rats. Exercise training associated with AS induces maladaptive remodeling and further deterioration in cardiac performance. Exercise training associated with AS causes loss of the beneficial effects in LV function induced by exercising. These results suggest that aerobic exercise plus AS increases cardiac collagen content associated with activation of the local renin-angiotensin system.  相似文献   

18.
The aim of this study was to determine whether estrogen therapy enhances postexercise muscle sympathetic nerve activity (MSNA) decrease and vasodilation, resulting in a greater postexercise hypotension. Eighteen postmenopausal women received oral estrogen therapy (ET; n=9, 1 mg/day) or placebo (n=9) for 6 mo. They then participated in one 45-min exercise session (cycle ergometer at 50% of oxygen uptake peak) and one 45-min control session (seated rest) in random order. Blood pressure (BP, oscillometry), heart rate (HR), MSNA (microneurography), forearm blood flow (FBF, plethysmography), and forearm vascular resistance (FVR) were measured 60 min later. FVR was calculated. Data were analyzed using a two-way ANOVA. Although postexercise physiological responses were unaltered, HR was significantly lower in the ET group than in the placebo group (59+/-2 vs. 71+/-2 beats/min, P<0.01). In both groups, exercise produced significant decreases in systolic BP (145+/-3 vs. 154+/-3 mmHg, P=0.01), diastolic BP (71+/-3 vs. 75+/-2 mmHg, P=0.04), mean BP (89+/-2 vs. 93+/-2 mmHg, P=0.02), MSNA (29+/-2 vs. 35+/-1 bursts/min, P<0.01), and FVR (33+/-4 vs. 55+/-10 units, P=0.01), whereas it increased FBF (2.7+/-0.4 vs. 1.6+/-0.2 ml x min(-1) x 100 ml(-1), P=0.02) and did not change HR (64+/-2 vs. 65+/-2 beats/min, P=0.3). Although ET did not change postexercise BP, HR, MSNA, FBF, or FVR responses, it reduced absolute HR values at baseline and after exercise.  相似文献   

19.
Few studies have compared the relative benefits of moderate- vs. higher intensity exercise training on improving insulin sensitivity in older people while holding exercise volume constant. Healthy older (73 +/- 10 yr) women (N = 25) who were inactive, but not obese, were randomized into one of three training programs (9-mo duration): 1) high-intensity [80% peak aerobic capacity (V(O2)peak); T(H)] aerobic training; 2) moderate-intensity (65% V(O2)peak; T(M)) aerobic training; or 3) low-intensity (stretching) placebo control (50% V(O2)peak); C(TB)). Importantly, exercise volume (300 kcal/session) was held constant for subjects in both the T(H) and the T(M) groups. V(O2)peak was determined by using a graded exercise challenge on a treadmill. Total body fat and lean mass were determined with dual-energy X-ray absorptiometry. The rate of insulin-stimulated glucose utilization as well as the suppression of lipolysis were determined approximately 72 h after the final exercise bout by using a two-step euglycemic-hyperinsulinemic clamp. We observed improved glucose utilization at the higher insulin dose with training, but these improvements were statistically significant only in the T(H) (21%; P = 0.02) compared with the T(M) (16%; P = 0.17) and C(TB) (8%; P = 0.37) groups and were observed without changes in either body composition or V(O2)peak. Likewise in the T(H) group, we detected a significant improvement in insulin-stimulated suppression (%) of adipose tissue lipolysis at the low-insulin dose (38-55%, P < 0.05). Our findings suggest that long-term higher intensity exercise training provides more enduring benefits to insulin action compared with moderate- or low-intensity exercise, likely due to greater transient effects.  相似文献   

20.
Exercise training improves arterial baroreflex control in heart failure (HF) rabbits. However, the mechanisms involved in the amelioration of baroreflex control are unknown. We tested the hypothesis that exercise training would increase the afferent aortic depressor nerve activity (AODN) sensitivity in ischemic-induced HF rats. Twenty ischemic-induced HF rats were divided into trained (n = 11) and untrained (n = 9) groups. Nine normal control rats were also studied. Power spectral analysis of pulse interval, systolic blood pressure, renal sympathetic nerve activity (RSNA), and AODN were analyzed by means of autoregressive parametric spectral and cross-spectral algorithms. Spontaneous baroreflex sensitivity of heart rate (HR) and RSNA were analyzed during spontaneous variation of systolic blood pressure. Left ventricular end-diastolic pressure was higher in HF rats compared with that in the normal control group (P = 0.0001). Trained HF rats had a peak oxygen uptake higher than untrained rats and similar to normal controls (P = 0.01). Trained HF rats had lower low-frequency [1.8 +/- 0.2 vs. 14.6 +/- 3 normalized units (nu), P = 0.0003] and higher high-frequency (97.9 +/- 0.2 vs. 85.0 +/- 3 nu, P = 0.0005) components of pulse interval than untrained rats. Trained HF rats had higher spontaneous baroreceptor sensitivity of HR (1.19 +/- 0.2 vs. 0.51 +/- 0.1 ms/mmHg, P = 0.003) and RSNA [2.69 +/- 0.4 vs. 1.29 +/- 0.3 arbitrary units (au)/mmHg, P = 0.04] than untrained rats. In HF rats, exercise training increased spontaneous AODN sensitivity toward normal levels (trained HF rats, 1,791 +/- 215; untrained HF rats, 1,150 +/- 158; and normal control rats, 2,064 +/- 327 au/mmHg, P = 0.05). In conclusion, exercise training improves AODN sensitivity in HF rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号