首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During postnatal development, the subunit compositions of the 6-phosphofructo-l-kinase isozyme pools of heart and skeletal muscle are known to change. The isozyme pools from fetal muscle were composed of the L-type (60%), and M-type (36%) and C-type (4%) subunits and the isozymes from fetal and early neonatal heart contain nearly equal amounts of all three subunits. During postnatal development of both tissues, the proportion of the M-type subunit increases until it is the only type present in adult muscle and the major subunit in adult heart (7507o). The isozyme pool from fetal muscle exhibit a decreased affinity for fructose-6-P and a greater susceptibility to ATP inhibition compared to the M-rich isozymes which are subsequently present. The isozyme pools from fetal and early neonatal heart, if compared to the M-rich isozymes which are present later during heart development and to the fetal muscle isozymes, exhibited the least affinity for fructose-6-P and the greatest susceptibility to ATP inhibition. Comparison of the isozyme pools containing little or no C-type subunit with those from fetal and early neonatal heart clearly indicates that the presence of substantial levels of the C-type subunit imposed a decreased ability for fructose-2,6-P2 to both lower affinity for fructose-6-P and antagonize sensitivity to ATP inhibition. Although still not thoroughly appreciated, it appears that the changing nature of the isozyme pools in these tissues permits regulation of glucose metabolism in a manner which allows efficient utilization of nutritional opportunities and which adequately meets the energy requirements of each tissue at different stages of development.Abbreviations PFK 6-phosphofructo-l-kinase - fructose-6-P D-fructose-6-phosphate - fr-t_ose-2,6-P2 D-fructose-2,6-bisphosphate  相似文献   

2.
6-Phosphofructo-1-kinase (PFK) isoenzyme pools from livers of fetal, neonatal, young adult (3 months) and aged (24 months) rats were studied. Near-term liver PFK isoenzyme pools were composed of nearly equal quantities of all three subunits. During the 30 days after birth, the total activity increased by 25%; the amount of the L-type, M-type or C-type subunit was increased 3-fold, was unchanged, or was decreased by 80% respectively. In aged rats, compared with young adults, total PFK activity was unchanged, but the L-type, M-type or C-type subunit decreased by 24%, increased by 39%, or increased by 338% respectively. During neonatal maturation, the changing subunit composition of the hepatic isoenzyme pools led to a decreased susceptibility to ATP inhibition, to a greater apparent affinity for fructose 6-phosphate, and to increased sensitivity to fructose 2,6-bisphosphate. Also, these alterations correlated with the measured increases in fructose 2,6-bisphosphate and the reported optimal rate of hepatic glycolysis/gluconeogenesis.  相似文献   

3.
Spermatogenic cells isolated from adult and prepubertal mice by unit gravity sedimentation were used to examine enzyme activities and synthesis of the lactate dehydrogenase (LDH) isozymes during spermatogenesis. The synthesis and activity of LDH-C4, the germ cell-specific isozyme, was detected earliest in isolated preleptotene and leptotene/zygotene spermatocytes prior to the mid-pachytene stage of meiosis reported previously. The LDH-C4 isozyme was prominent in pachytene spermatocytes, round spermatids, and condensing spermatids, whereas spermatozoa contained only the LDH-C4 isozyme. In addition, somatic-type LDH isozymes consisting primarily of LDH-B subunits were present in germ cells throughout spermatogenesis. This is in contrast to a previous report that the LDH-B subunit was not synthesized in germ cells. Sertoli cells were further shown to exhibit comparable amounts of five tetrameric LDH isozymes formed by combination of muscle-type LDH-A and heart-type LDH-B subunits.  相似文献   

4.
1. The subunit proportions (L:M:C) of the PFK isozymes from normal adult erythrocytes were 2:86:12. Affected adult erythrocyte 6-phosphofructo-1-kinase (PFK) isozymes contained normal L-type (31%) and C-type (61%) subunits as well as a small amount (8%) of truncated M-type subunit. 2. When measured within 24 hr of birth, both normal and affected dog erythrocytes contained high PFK activities due to elevated levels of the L-type subunit. As the dogs matured, PFK activity decreased due to a greater than 99% loss of the L-type subunit. 3. By 2 weeks of age, the M-type and C-type subunits in normal dog PFK isozymes increased several-fold and attained near adult levels. 4. During post-natal development, the L-type subunit from affected dog erythrocytes decreased more rapidly than from normal dog erythrocytes; but it was maintained at a higher level in the affected adult erythrocytes. Also, in the affected dog erythrocytes, truncated M-type subunits were detected; and the initially high levels of the C-type subunit decreased approximately 50% after 4 weeks.  相似文献   

5.
Developmental changes in heart and muscle phosphofructokinase isozymes   总被引:2,自引:0,他引:2  
Phosphofructokinase isozymes of fetal, neonatal, and adult rat heart and skeletal muscle were characterized by DEAE-cellulose chromatography, agarose gel electrophoresis, and immunodiffusion with specific antisera. The results of these studies indicate that in skeletal muscle and heart the levels of the major liver phosphofructokinase isozyme (PFK-L2) and the muscle phosphofructokinase isozyme (PFK-M) are dependent on the developmental status of the rat. For example, PFK-L2 and PFK-M are present in fetal and early neonatal skeletal muscle; whereas in adult skeletal muscle, only PFK-M is detectable. By DEAE- cellulose chromatography, PFK-L2 activity was estimated to be 2.4 units/g (41% of total phosphofructokinase activity) in fetal muscle, very low and not resolved from PFK-M in 7-day neonatal muscle, and not detectable in adult muscle. Further, PFK-M activity was found to be 3.4 units/g (59% of total phosphofructokinase activity), 10 units/g, and 31.6 units/g in fetal, 7-day neonatal, and adult skeletal muscle, respectively. The developmental changes of heart phosphofructokinase isozymes differ considerably from that of the skeletal muscle phosphofructokinase isozymes. In fetal heart, PFK-L2 is the major phosphofructokinase isozyme (5.6 units/g), constituting 67% of total phosphofructokinase activity. Further, in fetal heart another phosphofructokinase isozyme (33% of total phosphofructokinase activity) was found by DEAE-cellulose chromatography which is different from PFK-M and PFK-L2. In 7-day neonatal and adult heart, PFK-M and PFK-L2 are the only detectable phosphofructokinase isozymes. Varying from 5.6 units/g (44% of total) in 7-day neonatal to 5.9 units/g (40% of total) in adult heart, PFK-L2 activity remains fairly constant. Also, PFK-M is very low in fetal heart but increases within 1 week postpartum to 5.5 units/g (50% of total activity) and to 8.9 units/g (60% of total activity) in adult heart.  相似文献   

6.
Recent studies suggest that the tissue/organ proportions of 6-phosphofructo-1-kinase (PFK) subunits from diverse strains of rat may be drastically different. To test this possibility rigorously, the PFK isoenzyme populations and subunit contents in muscle, liver, brain and heart were examined in the following strains: Wistar, ACI, Long Evans, Norway Brown and Wag/Rij. Regardless of the strain, adult muscle possessed only the M-type subunit; adult liver contained predominantly the L-type subunit as well as M-type and C-type subunits; and the adult brain and heart exhibited all three subunit types.  相似文献   

7.
8.
Relative to 2–3 month rats, total 6-phosphofructo-1-kinase (PFK) activity in heart atria from 12 month rats declined 31%; but, by 24 months it was decreased by only 13%. PFK activities from 12 and 24 month ventricles relative to the 2–3 month rat were decreased by 40% and 30%, respectively. This change in PFK activity in each heart region was associated with alterations of subunit composition. In heart atria from 12 and 24 month rats when compared to 3 month rats, the levels of L-type subunit were not significantly different; but the levels of the M-type subunit were decreased by 43% and 38%, respectively. With respect to levels in 2–3 month atria, the C-type subunit in 12 month atria decreased by 27%; and at 24 months it increased by 31%. Making the same comparison for the heart ventricle at 12 and 24 months, L-type subunit decreased by 30% and 24% respectively; M-type subunit decreased by approximately 47%; and the C-type subunit increased 1.9 and 4.7 fold, respectively. These age-related changes of subunit composition in atrial and ventricular PFK isozyme pools led to changes in their kinetic and regulatory properties suggesting that the aged rat could exhibit a diminished capacity to produce ATP from glucose.  相似文献   

9.
PYRUVATE KINASE ISOZYMES IN NEURONS, GLIA, NEUROBLASTOMA, AND GLIOBLASTOMA   总被引:2,自引:2,他引:0  
Abstract– The distribution of pyruvate kinase isozymes (EC 2.7.1.40) was examined in cells and tissues from the central and peripheral nervous system of the rat. Most tissues contain significant quantities of both the K4 (fetal type) and M4 (skeletal muscle type) isozymes plus tetrameric hybrids comprised of various combination of the type M and type K subunits. Retina, for example, contains a five-mem-bered hybrid set weighted toward K4, while sciatic nerve and spinal cord have patterns very similar to that of adult brain, consisting predominantly of M4 with small amounts of K4 and K-M hybrids. This adult pattern is achieved by a gradual shift from a hybrid set dominated by K4 in fetal life, to the pattern at birth at which time the two most prominent bands were M4 and K2M2, and finally to the adult pattern by about 28 days after birth. Neurons and glial cells were isolated from rat and mouse brains at the various developmental levels. The pyruvate kinase isozyme patterns in the two cell types were similar to each other and to the patterns seen in whole brain homogenates at all ages, indicating similar rates of isozymic maturation in the two cell types. The correlation of maturation with pyruvate kinase isozyme patterns was further tested in cultures of malignant cell lines. A K-M hybrid set, weighted toward K4, was seen in two clonal lines of mouse neuroblastoma under normal culture conditions. However, lowering the serum concentration in the culture medium or adding bromodeoxyuridine caused a shift in the patterns toward type M as the cells differentiated, mimicking in part the in vivo maturation of normal cells. On the other hand, a rapidly growing and poorly differentiated line of rat glioblastoma had only K4 under all conditions examined.  相似文献   

10.
11.
Y Mhaskar  U Giger  G A Dunaway 《Enzyme》1991,45(3):137-144
6-Phosphofructo-1-kinase (PFK) activity in the brain of a dog affected by glycogen storage disease type VII was only 31% of the PFK activity in the normal dog brain. PFK in the normal dog brain was composed of L-type, M-type and C-type subunits with apparent molecular weights of 78,000, 86,000, and 88,000, respectively, and subunit proportions (L:M:C) of 27:49:24. PFK in the affected dog brain was composed of nearly equal levels of the normal L-type and C-type subunits, but a normal M-type subunit was not detected. Using antidog muscle PFK IgG, immunoblots of gels containing partially purified PFK from the affected dog brain revealed a small amount of immunoreactive protein with an apparent molecular weight of 84,000, suggesting the presence of a truncated M-type subunit. Kinetic studies indicated that the PFK isozymes in the affected dog brain exhibited significantly different kinetic regulatory properties when compared to the PFK isozyme pool in the normal dog brain.  相似文献   

12.
E Cayanis  O Greengard  C Iliescu 《Enzyme》1980,25(6):382-386
The isozyme pattern and total activity of adenylate kinase were studied in normal adult and fetal human and rat tissues using starch gel electrophoresis. Three adenylate kinase isoenzymes were identified in human tissues. Although normal adult lung exhibited higher adenylate kinase activity than did its fetal or neoplastic variant, isozyme patterns in the three types of tissues were indistinguishable from each other and from that in fetal human liver. The pattern of these three isozymes in rat lung (as in spleen) also did not change between fetal and adult life. However, adult kidney and heart of this species did appear to contain isozymes not present in fetal life. Brain (both adult and fetal) was striking different from all the other tissues in that it contained only one adenylate kinase isozyme. The total adenylate kinase activity per gram of adult rat liver, kidney and lung was significantly higher than in the cognate fetal organs, whereas that in brain or spleen did not change with age. The activity in adult heart (similar to the fetal one) was higher than in any other tissue examined.  相似文献   

13.
The soluble creatine kinase isozymes CK-II, CK-III, and CK-IV fromXenopus laevis have been purified to apparent homogeneity and their subunits characterized by means of molecular weight, peptide pattern, and dissociation-reassociation experiments. CK-III and CK-IV are homodimeric isozymes whose subunits are distinct in both molecular weight (42,000 and 41,000, respectively) andStaphylococcus aureus V8 peptide pattern. In dissociation-reassociation experiments, those two subunits do form active heterodimeric isozymes with one another or with rabbit M-CK subunits. Hybrid CK-III/IV isozymes occur also during embryonic differentiation and in adult heart muscle, whereas most other adult tissues contain only homodimeric CK-III or CK-IV isozymes. The CK-II isozyme is a heterodimer composed of one CK-III subunit and another subunit specific to CK-II (M r =41,000). Neitherin vivo norin vitro does this subunit seem able to form homodimers or heterodimers with CK-IV and rabbit M-CK subunits. If we take into account the apparent association of CK-I isozyme with cellular organelles, these results corroborate earlier statements and suggest that the CK isozyme system ofX. laevis is encoded by at least four differentially regulated genomic loci.  相似文献   

14.
The 6-phosphofructo-1-kinase (PFK) subunits and isoenzymes were studied in human muscle, heart, brain, liver, platelets, fibroblasts, erythrocytes, placenta and umbilical cord. In each tissue, the subunit types in the native isoenzymes were characterized by immunological titration with subunit-specific antibodies and by column chromatography on QAE (quaternary aminoethyl)-Sephadex. Further, the subunits of the partially purified native isoenzymes were resolved by SDS/polyacrylamide-gel electrophoresis, identified by immunoblotting, and quantified by scanning gel densitometry of silver-stained gels and immunoblots. Depending on the type of tissue, one to three subunits were detected. The Mr values of the L, M and C subunits regardless of tissue were 76,700 +/- 1400, 82,500 +/- 1640 and 86,500 +/- 1620. Of the tissues studied, only the muscle PFK isoenzymes exhibited one subunit, which was the M-type subunit. Of the other tissues studied, the PFK isoenzymes contained various amounts of all three subunits. Considering the properties of the native PFK isoenzymes, it is clear that, in human tissues, they are not simply various combinations of two or three homotetrameric isoenzymes, but complex mixtures of homotetramers and heterotetramers. The kinetic/regulatory properties of the various isoenzyme pools were found to be dependent on subunit composition.  相似文献   

15.
1. The concentration of myoglobin (Mb) and the isozymic distribution and activity of lactate dehydrogenase (LDH) in heart and pectoralis muscle were investigated at three stages of maturation of the Pigeon Guillemot, Cepphus columba. 2. Mb is not detectable in chick pectoralis; it is present in fledgling pectoralis muscle and increases four-fold in adult pectoralis. Mb concentration in heart muscle is similar in chick and fledgling and doubles in the adult. 3. LDH activities in pectoralis muscle of fledgling and adult increase to about three times that of the chick. LDH activities in heart of chick, fledgling and adult are similar to one another. 4. All five isozymes of LDH are present in both heart and pectoralis muscle at all stages; the heart muscle shows predominantly LDH-1 isozyme, and the pectoralis, LDH-5. The relative amounts of the five isozymes in the heart extract were constant during maturation but pectoralis LDH isozymes changed during maturation towards a more even distribution of the five isozymes in the adult. 5. Changes in Mb and LDH in the Pigeon Guillemot correlate with the animal's maturation from a sedentary nest sitter to an active diver and flyer. The adult pectoralis muscle probably has both aerobic function for wing-propelled short dives and flying and anaerobic capacity for longer dives.  相似文献   

16.
Abstract. Myosin isozymes from the slow soleus and fast EDL muscles of the rat hindlimb were analyzed by pyrophosphate gel electrophoresis, by peptide mapping of heavy chains, and by antibody staining. At the earliest stage examined, 20 days gestation, distinctions between the developing fast and slow muscles were seen by all these criteria; all fibers in the distal hindlimb reacted strongly with antibody to adult fast myosin. Some fibers also reacted with antibody to adult slow myosin; these fibers had a precise, axial distribution in the hindlimb. This pattern of staining which includes the entire soleus, foreshadows the adult distribution of slow fibers and may indicate that the specific pattern of innervation of the limb is already determined. In the early developing soleus there are four fetal and neonatal isozymes plus two isozymes present in equal proportions in the 'slow' area of the pyrophosphate gel. The mobility of these two slow isozymes decreases with maturity and the slowest moving isozyme gradually becomes the dominant species. Thus early diversity between the soleus and EDL is expressed by myosins which are distinct from the mature isozymes. The relative proportion of slow isozymes significantly increases with development and as this occurs the fetal and neonatal isozymes are progressively eliminated. Transiently at least one mature fast isozyme appears in the soleus. This is present at 15 days postpartum and probably correlates with the population of fast, type II fibers, which comprise 50% of this muscle cell population at 15 days. The EDL contained three fetal and neonatal isozymes and only one slow isozyme which does not change in mobility with age. Slow isozymes in the soleus and EDL are thus not identical. Each muscle underwent a unique series of changes until the adult pattern of isozymes and heavy chains was reached about one month postpartum.  相似文献   

17.
There is broad species variation in the type of cAMP-dependent protein kinase isozyme present in supernatant fractions of heart homogenates as determined by DEAE-cellulose chromatography, Isozyme I, which elutes at less than 0.1 M NaCl, is predominant in mouse and rat hearts; while isozyme II, which elutes at greater than 0.1 M NaCl, is the predominant type in beef and guinea pig. Human and rabbit hearts contain about equal amounts of the two types. The type I heart kinases are more easily dissociated into free regulatory and catalytic subunits by incubation with histone than are the type II kinases, and the separated regulatory and catalytic subunits of isozyme II of rat heart reassociate more rapidly than the subunits of isozyme I under the conditions used. The data from several experiments using rat heart indicate that the basal activity ratio of the protein kinase in crude extracts (approximately 0.15) is due mainly to basal endogenous cAMP and that cAMP elevation accounts entirely for the epinephrine effect on the enzyme. Addition of epinephrine and 1-methyl-3-isobutylxanthine to the perfusate causes a rapid (1 min) increase in cAMP, active supernatant protein kinase, and active phosphorylase in perfused hearts of both rat (mainly isozyme I) and guinea pig (mainly isozyme II). The elevation percentage in cAMP is about the same in the two species, but the increase in active protein kinase is greater in rat heart. If hearts from either animal are perfused continually (10 min) with epinephrine (0.8 muM) and 1-methyl-3-isobutylxanthine (10 muM), the cAMP level, active protein kinase, and active phosphorylase remain elevated. Likewise, all parameters return rapidly to the basal levels when epinephrine and 1-methyl-3-isobutylxanthin are removed. Most of the epinephrine effect on the rat heart supernatant kinase is retained at 0 degrees if cAMP is removed by Sephadex G-25 chromatography, although this procedure completely reverses the epinephrine effect in the guinea pig heart. The epinephrine effect on the rabbit heart kinase (approximately equal amounts of isozymes I and II) is partially reversed by Sephadex G-25. These species differences can be accounted for by differences in association-dissociation behavior of the isozymes in vitro. The data suggest that epinephrine causes activation of both isozymes. The activity present in the particulate fraction comprises nearly half of the total cAMP-dependent protein kinase activity in homogenates of rabbit heart. Triton X-100 extracts of low speed particulate fractions from hearts of each species tested, including rat heart, contain predominantly or entirely the type II isozyme, suggesting differences in intracellular distribution of the isozymes. The binding of the protein kinase to the particulate fraction is apparently due to the properties of the regulatory subunit component. Differences in topographical distribution of the isozymes could provide for differences in either physiological regulation or substrate specificity.  相似文献   

18.
Nature of the rat brain 6-phosphofructo-1-kinase isozymes   总被引:1,自引:0,他引:1  
The complex nature of the brain 6-phosphofructo-1-kinase isozymes was examined by elution with a discontinuous gradient from QAE (quaternary aminoethyl)-Sephadex. In the first wash (150 mM NaCl), where the rat muscle 6-phosphofructo-1-kinase isozyme (M4) eluted, about 40% of the total brain 6-phosphofructo-1-kinase activity washed through without exhibiting a sharp peak. In the second elution (300 mM NaCl), the remaining activity eluted in a sharp peak that preceded where the major rat liver 6-phosphofructo-1-kinase isozyme (L4) eluted. Enzyme activity in brain extracts or purified brain isozymes was titrated above 90% with M4 anti-IgG and 20% with L4 anti-IgG. A purification procedure was developed which resulted in a recovery of 70 to 80% of the original enzyme activity in brain 100,000 X g supernatant fluids. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis on slab gels and detection by silver staining indicated that three components were present with apparent molecular weights of 87,500, 85,000, and 80,000. The 85,000- and 80,000-dalton components corresponded to the subunits of M4 and L4, respectively. The third component (C type) was thought to be an actual subunit since it exhibited the highest molecular weight and was present in an exhaustively washed immunoprecipitate of the purified brain isozymes. From 10 different purifications of the brain enzyme, the subunit distributions of the liver, muscle, and C-type subunit were 1.4 +/- 0.2, 4.9 +/- 0.5, and 3.9 +/- 0.3, respectively. A comparison of the kinetic properties of purified liver, muscle, and brain isozymes clearly demonstrated that all three preparations had quantitatively different regulatory properties. All three subunits were present in different regions of the brain, and region-specific changes in total activity and the relative amounts of each subunit were observed. This study suggests that brain 6-phosphofructo-1-kinase is a complex mixture of homotetramers and hybrids which are composed of different amounts of the three subunits.  相似文献   

19.
Pyruvate kinase isozyme patterns in the ventricle of developing chicks shift gradually from one dominated by type K at ten days of embryonic development to the adult pattern, which is dominated by type M. Hybrid isozymes are apparent throughout development and are most prominent from two days before hatching until at least 14 days after hatching. These hybrid isozymes indicate simultaneous synthesis of the two subunit types in the same cells.The complex isozyme patterns of the chick heart probably limit the usefulness of simple kinetic analyses on tissue extracts for determing isozymic compositions during development.  相似文献   

20.
In human, there are four AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) isozymes: E1, E2, M and L. Chromatographic, electrophoretic and immunological studies showed the existence of isozymes E1 and E2 in erythrocytes, isozyme M in muscle and isozyme L in liver and brain. The tissues such as heart, kidney and spleen contained isozymes E1, E2 and L. Isozymes E1, M and L were isolated as apparently homogeneous preparations. The three isozymes were all tetramers composed of identical subunits, but differing slightly in molecular weight; isozyme E1 showed a subunit molecular weight of 80 000, isozyme M 72 000 and isozyme L 68 000. They were immunologically different from one another. The antisera precipitated only the corresponding enzyme and did not precipitate any other isozyme. The three isozymes were also different in kinetic and regulatory properties. Isozyme E2 was very similar to isozyme E1 in immunological and kinetic properties, although isozyme E2 could be separated from isozyme E1 by phosphocellulose chromatography, and zonal electrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号