首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA gyrase from Bacillus subtilis 168 was purified by affinity chromatography on novobiocin-Sepharose and shown to consist of two subunits, A and B, with molecular weights of 100,000 and 85,000, respectively. The B subunits, which contains novobiocin-sensitive. ATPase activity, could complement the gyrA protein of Escherichia coli. No complementation was detected between the A subunit and the E. coli gyrB protein.  相似文献   

2.
DNA supercoiling by DNA gyrase involves the cleavage of a DNA helix, the passage of another helix through the break, and the religation of the first helix. The cleavage-religation reaction involves the formation of a 5'-phosphotyrosine intermediate with the GyrA subunit of the gyrase (A(2)B(2)) complex. We report the characterization of mutations near the active-site tyrosine residue in GyrA predicted to affect the cleavage-religation reaction of gyrase. We find that mutations at Arg32, Arg47, His78 and His80 inhibit DNA supercoiling and other reactions of gyrase. These effects are caused by the involvement of these residues in the DNA cleavage reaction; religation is largely unaffected by these mutations. We show that these residues cooperate with the active-site tyrosine residue on the opposite subunit of the GyrA dimer during the cleavage-religation reaction.  相似文献   

3.
We have examined the role of the DNA gyrase B protein in cleavage and religation of DNA using site-directed mutagenesis. Three aspartate residues and a glutamate residue: E424, D498, D500 and D502, thought to co-ordinate a magnesium ion, were mutated to alanine; in addition, the glutamate residue and one aspartate residue were mutated to glutamine and asparagine, respectively. We have shown that these residues are important for the cleavage-religation reaction and are likely to be involved in magnesium ion co-ordination. On separate mutation of two of these aspartate residues to cysteine or histidine, the metal ion preference for the DNA relaxation activity of gyrase changed from magnesium to manganese (II). We present evidence to support the idea that cleavage of each DNA strand involves two or more metal ions, and suggest a scheme for the DNA cleavage chemistry of DNA gyrase involving two metal ions.  相似文献   

4.
5.
Specific insulin receptor proteins of plasma membrane preparations from various tissues of the rat were identified using a photoreactive insulin derivative, NεB29-mono(azidobenzoyl)insulin. Except for the brain, all tissues examined showed the specific photolabeling of two proteins of Mr~130K and ~90K. In brain tissue, only one protein, Mr~115K, was specifically labeled. Liver and adipocyte membranes of the genetic obese (obob) mice showed decreased labeling of both 130K and 90K proteins when compared to those of lean littermates. Labeling of these proteins in liver plasma membranes was abolished by trypsin, whereas neuraminidase increased their electrophoretic mobility in SDS-polyacrylamide gel. The labeling of these two proteins was inhibited by a human anti-receptor serum which also formed an immunocomplex with both proteins. The labeling of the 115K protein in brain tissue was, however, not affected by the antiserum.  相似文献   

6.
The synthesis of [3H]chloramphenicol and its erythro-diastereoisomer with specific activities of 1.25 Ci/mmol, and the further transformation of the [3H]chloramphenicol to a series of azido and diazo-substituted derivatives are described. The antibiotic activity of the compounds was considered insufficient for their use as photoaffinity labels.  相似文献   

7.
8.
The first high-level production of a binding-active odorant binding protein is described. The expression cassette polymerase chain reaction was used to generate a DNA fragment encoding the pheromone binding protein (PBP) of the male moth Antheraea polyphemus. Transformation of Escherichia coli cells with a vector containing this construct generated clones which, when induced with isopropyl beta-D-thiogalactopyranoside, produced the 14-kDa PBP in both the soluble fraction and in inclusion bodies. Purification of the soluble recombinant PBP by preparative isoelectric focusing and gel filtration gave > 95% homogeneous protein, which was immunoreactive with an anti-PBP antiserum and exhibited specific, pheromone-displaceable covalent modification by the photoaffinity label [3H]6E,11Z-hexadecadienyl diazoacetate. Recombinant PBP was indistinguishable from the insect-derived PBP, as determined by both native and denaturing gel electrophoresis, immunoreactivity, and photoaffinity labeling properties. Moreover, the insoluble inclusion body protein could be solubilized, refolded, and purified by the same procedures to give a recombinant PBP indistinguishable from the soluble PBP. Proton NMR spectra of the soluble and refolded protein provide further evidence that they possess the same folded structure.  相似文献   

9.
A binary system of photoaffinity reagents was proposed earlier for highly efficient labeling of DNA polymerases by 5"-[32P]DNA primers. In the present study we demonstrate the feasibility of this approach to increase the efficiency of DNA polymerase labeling. A photoactive 2,3,5,6-tetrafluoro-4-azidobenzoyl (FAB) group was incorporated at the 3"-end of 5"-[32P]DNA primers synthesized by DNA polymerase or Tte in the presence of one of the dTTP analogs—FAB-4-dUTP, FAB-9-dUTP, or FAB-4-ddUTP. The reaction mixture was irradiated by light with wavelength of 334-365 nm (direct labeling) or 365-450 nm in the presence of photosensitizer, one of dTTP analogs containing a pyrene moiety, Pyr-6-dUTP or Pyr-8-dUTP. In the case of the binary system of photoaffinity reagents, a FAB group is activated by energy transfer from sensitizer localized in the dNTP-binding site of DNA polymerase in the triple complex, comprised by reagent, DNA polymerase, and Pyr-6(8)-dUTP. Direct activation of the FAB group under these conditions is negligible. The most efficient photolabeling of DNA polymerases was observed with a primer containing a FAB-4-dUMP group at the 3"-end, and Pyr-6-dUTP as a photosensitizer. Using 10-fold molar excess of photoreagent to DNA polymerase , the labeling efficiency was shown to achieve 60%, which is 2-fold higher than the efficiency of the direct DNA polymerase labeling under harsher conditions (334-365 nm).  相似文献   

10.
The beta 1-adrenergic receptor of turkey erythrocytes has been purified by a combination of affinity and high performance steric exclusion chromatography. These procedures provide preparations with specific activities of greater than 15,000 pmol/mg of protein with an overall recovery of approximately 30% of the receptor activity solubilized from membrane preparations. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of radioiodinated purified receptor reveals two bands of labeled protein with apparent Mr = 40,000 +/- 2,000 and 45,000 +/- 3,000 in a 3-4:1 ratio. These same two peptides can also be labeled specifically and in approximately the same ration in both membranes and purified preparations using the photoaffinity probe 125I-labeled p-azidobenzylcarazolol. When the two purified polypeptides are completely separated by high performance liquid chromatography and subjected to detailed ligand binding studies, identical beta 1-adrenergic specificities are found for the two receptor forms. Preliminary characterization of these two proteins by partial protease digestion suggests a large degree of similarity between them, albeit with some significant differences. These results demonstrate that both purification and photoaffinity labeling identify two polypeptides in turkey erythrocyte membranes as containing a beta 1-adrenergic receptor binding site. The functional and structural relationships of these two forms of the receptor remain to be elucidated.  相似文献   

11.
Irradiation of erythrocyte ghosts in the presence of [3H]forskolin resulted in a concentration-dependent, covalent incorporation of radiolabel into several of the major membrane protein bands. Most of the incorporation occurred in four regions of the gel. Peak 1 (216 kDa) was a sharp peak near the top of the gel in the region corresponding to spectrin. Peak 2 appeared to be associated with band 3 (89 kDa), while a third peak occurred around the position of band 4.2 (76 kDa). The fourth region of labeling was a broad area between 43-75 kDa which corresponds to the region of the glucose transporter. Forskolin labeling of this region was inhibited by cytochalasin B and D-glucose, but not L-glucose. Extraction of extrinsic membrane proteins resulted in a loss of radiolabeled protein from the 216- and 76-kDa regions. Treatment of membranes labeled with either cytochalasin B or forskolin with endo-beta-galactosidase resulted in identical shifts of the 43 to 75-kDa peaks to 42 kDa. Similarly, trypsinization of membranes photolabeled with either cytochalasin B or forskolin resulted in the generation of a 17-kDa radiolabeled fragment in both cases. Photoincorporation of [3H]cytochalasin B into the glucose transporter was blocked in a concentration-dependent manner by unlabeled forskolin.  相似文献   

12.
To obtain high levels of expression of the free alpha and beta subunits of tryptophan synthase from Salmonella typhimurium, we have used two plasmids (pStrpA and pStrpB) that carry the genes encoding the alpha and beta subunits, respectively. The expression of each plasmid in Escherichia coli CB149 results in overproduction of each subunit. We also report new and efficient methods for purifying the individual alpha and beta subunits. Microcrystals of the beta subunit are obtained by addition of polyethylene glycol 8000 and spermine to crude bacterial extracts. This crystallization procedure is similar to methods used previously to grow crystals of the S. typhimurium tryptophan synthase alpha 2 beta 2 complex for X-ray crystallography and to purify this complex by crystallization from bacterial extracts. The results suggest that purification by crystallization may be useful for other overexpressed enzymes and multienzymes complexes. Purification of the alpha subunit utilizes ammonium sulfate fractionation, chromatography on diethylaminoethyl-Sephacel, and high-performance liquid chromatography on a Mono Q column. The purified alpha and beta subunits are more than 95% pure by the criterion of sodium dodecyl sulfate gel electrophoresis. The procedures developed can be applied to the expression and purification of mutant forms of the separate alpha and beta subunits. The purified alpha and beta subunits provide useful materials for studies of subunit association and for investigations of other properties of the separate subunits.  相似文献   

13.
NADH:ubiquinone oxidoreductase (complex I) is the first, largest and most complicated enzyme of the mitochondrial electron transport chain. Photoaffinity labeling with the highly potent and specific inhibitor trifluoromethyldiazirinyl-[(3)H]pyridaben ([(3)H]TDP) labels only the PSST and ND1 subunits of complex I in electron transport particles. PSST is labeled at a high-affinity site responsible for inhibition of enzymatic activity while ND1 is labeled at a low-affinity site not related to enzyme inhibition. In this study we found, as expected, that 13 complex I inhibitors decreased labeling at the PSST site without effect on ND1 labeling. However, there were striking exceptions where an apparent interaction was found between the PSST and ND1 subunits: preincubation with NADH increases PSST labeling and decreases ND1 labeling; the very weak complex I inhibitor 1-methyl-4-phenylpyridinium ion (MPP(+)) and the semiquinone analogue stigmatellin show the opposite effect with increased labeling at ND1 coupled to decreased labeling at PSST in a concentration- and time-dependent manner. MPP(+), stigmatellin and ubisemiquinone have similarly positioned centers of highly negative and positive electrostatic potential surfaces. Perhaps the common action of MPP(+) and stigmatellin on the functional coupling of the PSST and ND1 subunits is initiated by binding at a semiquinone binding site in complex I.  相似文献   

14.
As a means of gaining additional information on the topoisomerase-mediated cytotoxicity induced by a variety of antibacterial and antitumor compounds we have examined the interaction of the quinolone anti-bacterial agent, norfloxacin, with the bacterial topoisomerase, DNA gyrase. Membrane filtration and spin-column techniques were used to study the binding of [3H]norfloxacin to purified plasmid DNA, DNA gyrase, and complexes formed by adding gyrase to different forms of plasmid DNA. Consistent with previous results (Shen, L. L., and Pernet, A. G. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 301-311) little [3H]norfloxacin binds to reconstituted gyrase, but significant levels of drug bind nonspecifically to relaxed DNA. However, when DNA and gyrase are incubated together additional norfloxacin binding sites are detectable. These complex-dependent sites are distinguishable from those sites involved in nonspecific DNA binding in that the complex-dependent sites are saturable and they retain bound norfloxacin after centrifuging the complex through a spin column. In addition, extent of binding is influenced by the topological state of DNA used to form the complex. The complex-dependent norfloxacin binding sites are likely involved in the inhibition of the enzyme since saturation of these sites occurs in the same norfloxacin concentration range as the inhibition of DNA supercoiling activity. Moreover, there is a close correlation of norfloxacin-induced DNA breakage with levels of norfloxacin bound to complexes of gyrase and relaxed DNA. These findings provide the first direct correlation of quinolone binding with inhibition of enzyme activity and induction of DNA breakage, and they suggest that the inhibition of DNA gyrase by norfloxacin occurs as a result of binding to a site which appears after the formation of a gyrase-DNA complex.  相似文献   

15.
As only the type II topoisomerase is capable of introducing negative supercoiling, DNA gyrase is involved in crucial cellular processes. Although the other domains of DNA gyrase are better understood, the mechanism of DNA binding by the C-terminal domain of the DNA gyrase A subunit (GyrA-CTD) is less clear. Here, we investigated the DNA-binding sites in the GyrA-CTD of Mycobacterium tuberculosis gyrase through site-directed mutagenesis. The results show that Y577, R691 and R745 are among the key DNA-binding residues in M.tuberculosis GyrA-CTD, and that the third blade of the GyrA-CTD is the main DNA-binding region in M.tuberculosis DNA gyrase. The substitutions of Y577A, D669A, R691A, R745A and G729W led to the loss of supercoiling and relaxation activities, although they had a little effect on the drug-dependent DNA cleavage and decatenation activities, and had no effect on the ATPase activity. Taken together, these results showed that the GyrA-CTD is essential to DNA gyrase of M.tuberculosis, and promote the idea that the M.tuberculosis GyrA-CTD is a new potential target for drug design. It is the first time that the DNA-binding sites in GyrA-CTD have been identified.  相似文献   

16.
Escherichia coli DNA gyrase is comprised of two subunits, GyrA and GyrB. Previous studies have shown that GyrI, a regulatory factor of DNA gyrase activity, inhibits the supercoiling activity of DNA gyrase and that both overexpression and antisense expression of the gyrI gene suppress cell proliferation. Here we have analyzed the interaction of GyrI with DNA gyrase using two approaches. First, immunoprecipitation experiments revealed that GyrI interacts preferentially with the holoenzyme in an ATP-independent manner, although a weak interaction was also detected between GyrI and the individual GyrA and GyrB subunits. Second, surface plasmon resonance experiments indicated that GyrI binds to the gyrase holoenzyme with higher affinity than to either the GyrA or GyrB subunit alone. Unlike quinolone antibiotics, GyrI was not effective in stabilizing the cleavable complex consisting of gyrase and DNA. Further, we identified an 8-residue synthetic peptide, corresponding to amino acids (89)ITGGQYAV(96) of GyrI, which inhibits gyrase activity in an in vitro supercoiling assay. Surface plasmon resonance analysis of the ITGGQYAV-containing peptide-gyrase interaction indicated a high association constant for this interaction. These results suggest that amino acids 89--96 of GyrI are essential for its interaction with, and inhibition of, DNA gyrase.  相似文献   

17.
We investigated the mode of action of ES-1273, a novel DNA gyrase inhibitor obtained by optimization of ES-0615, which was found by screening our chemical library using anucleate cell blue assay. ES-1273 exhibited the same antibacterial activity against S. aureus strains with amino acid change(s) conferring quinolone- and coumarin-resistance as that against a susceptible strain. In addition, ES-1273 inhibited DNA gyrase supercoiling activity, but not ATPase activity of the GyrB subunit of DNA gyrase. Moreover, ES-1273 did not induce cleavable complex. These findings demonstrate that the mechanism by which ES-1273 inhibits DNA gyrase is different from that of the quinolones or the coumarins. Preincubation of DNA gyrase and substrate DNA prevented inhibition of DNA gyrase supercoiling activity by ES-1273. ES-1273 antagonized quinolone-induced cleavage. In electrophoretic mobility shift assay, no band representing DNA gyrase-DNA complex was observed in the presence of ES-1273. Taken together, these results indicate that ES-1273 prevents DNA from binding to DNA gyrase. Furthermore, our results from surface plasmon resonance experiments strongly suggest that ES-1273 interacts with DNA. Therefore, the interaction between ES-1273 and DNA prevents DNA from binding to DNA gyrase, resulting in inhibition of DNA gyrase supercoiling. Interestingly, we also found that ES-1273 inhibits topoisomerase IV and human topoisomerase IIalpha, but not human topoisomerase I. These findings indicate that ES-1273 is a type II topoisomerase specific inhibitor.  相似文献   

18.
The membrane-bound beta-glucan synthase from Italian ryegrass (Lolium multiflorum L.) endosperm cells has been solubilized by both non-ionic and zwitterionic detergents. A complex relationship exists between the ratio of (1----3)-, (1----4)-, and (1----3, 1----4)-beta-glucan products of the solubilized enzyme, the cations present, and the concentration of the uridine 5'-diphosphoglucose substrate. Monoclonal antibodies directed against the beta-glucan synthase complex were generated by immunization of mice with an unfractionated microsomal reparation. Hybridoma cell lines were screened using a combination of indirect enzyme-linked immunosorbent assay followed by an enzyme-capture assay. The purified monoclonal antibodies were used with Pan-sorbin (stablized protein A-bearing staphylococcal cells) to immunoprecipitate an active beta-glucan synthase complex which had been solubilized from a microsomal preparation with 0.6% CHAPS. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the immunoprecipitated synthase complex revealed four major polypeptides of apparent molecular mass 30, 31, 54, and 58 kDa together with several minor components. The immunoprecipitated beta-glucan synthase complex was capable of synthesizing both (1----3)- and (1----4)-beta-glucans. A new photoreactive pyrimidine analogue of uridine 5'-diphosphoglucose, 5-[3-(p-azidosalicylamide]allyl-uridine 5'-diphosphoglucose was synthesized in a three-step reaction sequence involving mercuration of UDP-Glc, alkylation of 5-Hg-UDP-Glc, and acylation of 5-(3-amino)allyl-UDP-Glc and characterized by chemical and spectroscopic analysis. The analogue inhibits (Kiapp 16 microM) and, upon UV irradiation, irreversibly inactivates the beta-glucan synthase. The analogue was iodinated with Na125I to give a radiolabeled, photoreactive compound, and was used in photoaffinity labeling of UDP-Glc pyrophosphorylase, UDP-Glc dehydrogenase, and several putative UDP-Glc-binding proteins from L. multiforum. The radiolabeled analogue specifically labeled the 31-kDa polypeptide in the immunoprecipitated synthase complex. The photolabeling of this polypeptide is strictly dependent on UV irradiation, is blocked by uridine 5'-diphosphoglucose and uridine 5'-diphosphate, and reaches saturation at analogue concentrations above 300 microM. These results indicate that the 31-kDa polypeptide in the beta-glucan synthase complex bears a uridine 5'-diphosphoglucose-binding site and is involved in the catalysis of beta-glucan synthesis.  相似文献   

19.
DNA gyrase, topoisomerase IV, and the 4-quinolones.   总被引:26,自引:2,他引:24       下载免费PDF全文
For many years, DNA gyrase was thought to be responsible both for unlinking replicated daughter chromosomes and for controlling negative superhelical tension in bacterial DNA. However, in 1990 a homolog of gyrase, topoisomerase IV, that had a potent decatenating activity was discovered. It is now clear that topoisomerase IV, rather than gyrase, is responsible for decatenation of interlinked chromosomes. Moreover, topoisomerase IV is a target of the 4-quinolones, antibacterial agents that had previously been thought to target only gyrase. The key event in quinolone action is reversible trapping of gyrase-DNA and topoisomerase IV-DNA complexes. Complex formation with gyrase is followed by a rapid, reversible inhibition of DNA synthesis, cessation of growth, and induction of the SOS response. At higher drug concentrations, cell death occurs as double-strand DNA breaks are released from trapped gyrase and/or topoisomerase IV complexes. Repair of quinolone-induced DNA damage occurs largely via recombination pathways. In many gram-negative bacteria, resistance to moderate levels of quinolone arises from mutation of the gyrase A protein and resistance to high levels of quinolone arises from mutation of a second gyrase and/or topoisomerase IV site. For some gram-positive bacteria, the situation is reversed: primary resistance occurs through changes in topoisomerase IV while gyrase changes give additional resistance. Gyrase is also trapped on DNA by lethal gene products of certain large, low-copy-number plasmids. Thus, quinolone-topoisomerase biology is providing a model for understanding aspects of host-parasite interactions and providing ways to investigate manipulation of the bacterial chromosome by topoisomerases.  相似文献   

20.
The bacteriophage T4 dda protein is a 5'-3' DNA helicase that stimulates DNA replication and recombination reactions in vitro and seems to play a role in the initiation of T4 DNA replication in vivo. Oligonucleotide probes based on NH2-terminal amino acid sequence were used to precisely map the location of the dda gene on the T4 chromosome. Using polymerase chain reaction techniques, the dda gene was then cloned into an expression vector, and the overproduced protein was purified in two chromatography steps. Both the genomic and cloned dda genes were sequenced and found to be identical, encoding a protein of 439 amino acids. The dda protein contains amino acid sequences resembling those of other known helicases, and is most homologous to the Escherichia coli recD protein. Protein affinity chromatography was used to show a direct interaction between the dda protein and the T4 uvsX protein (a rec A-type DNA recombinase).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号