首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
gamma-Aminobutyric acid (GABA) and glutamic acid decarboxylase (GAD) activities were measured in the ovary and the Fallopian tube of rats and compared with brain values. GABA levels in the Fallopian tube were about twice as high as in the brain, while in the ovary they represented only about 5% of the amino acid content of the CNS. In vitro decarboxylation of glutamate, measured via CO2 formation, occurred both in the Fallopian tube and in the ovary. These two organs contained, respectively, 10% and 1% of brain GAD activity. However, the actual formation of GABA from glutamate in a high-speed supernatant was detectable only in the Fallopian tube, where it represented about 5% of brain GAD activity. In contrast with the enzyme present in ovary, liver, anterior pituitary, and kidney, that in the Fallopian tube was quantitatively precipitated by a specific antiserum directed against rat neuronal GAD. Moreover, subcutaneous transplantation resulted in a quantitative decrease of both GABA levels and GAD activity in the Fallopian tube while no change occurred in the ovary, and vagus nerve section induced a 50% decrease of GAD activity in the Fallopian tube, although GABA levels were not significantly altered. The findings suggest an extrinsic GABAergic innervation in the rat Fallopian tube but not in the ovary.  相似文献   

2.
The presence of gamma-hydroxybutyric acid (GHB) in synaptosome-enriched fractions of rat brain was ascertained using a GLC technique. The stability of GHB in synaptosomes was evaluated by addition of various gamma-aminobutyric acid (GABA) transaminase (GABA-T) inhibitors, GHB, or ethosuximide to the homogenizing medium. Furthermore, changes in whole brain GHB levels were compared with those in the synaptosomal fraction in animals treated with GABA-T inhibitors, GABA, or ethosuximide. GHB was present in synaptosome-enriched fractions in concentrations ranging from 40 to 70 pmol/mg of protein. There was no evidence for redistribution, leakage, or metabolism of GHB during the preparation of synaptosomes. The elevations of whole brain GHB level associated with GABA-T or ethosuximide treatment were reflected by a parallel increase in synaptosomal GHB content. These data add to the growing evidence that GHB may have neurotransmitter or neuromodulator function.  相似文献   

3.
Pyridoxal-5'-phosphate (PLP) plays a crucial role in regulating the steady-state levels of gamma-aminobutyric acid (GABA) in CNS. Adrenalectomy resulted in decreased conversion of dietary vitamin B6 to PLP. As a consequence of this, GABA levels in cerebral cortex decrease, since synthesis of GABA is determined by glutamate decarboxylase, a PLP-dependent enzyme. Feeding diet supplemented with vitamin B6 elevated the GABA levels in adrenalectomized animals, because of increased availability of the coenzyme for apodecarboxylase. The data suggest a role for corticosteroids in maintaining GABA levels, through their effects on PLP formation.  相似文献   

4.
The regulation of glutamate decarboxylase (GAD; EC 4.1.1.15) was studied by using cultures of cerebral cortical neurons from rat brain grown in serum-free medium. About 50% of the neurons in the cultures were gamma-aminobutyric acid (GABA)ergic as determined by two double-staining procedures. Immunoblotting experiments with four anti-GAD sera that recognize the two forms to varying degrees, demonstrated that the cultures contained the two forms of GAD that are present in rat brain (apparent molecular masses = 63 and 66 kDa). GAD activity was reduced by 60-70% when intracellular GABA levels were increased by incubating the cultures with the GABA-transaminase inhibitor gamma-vinyl-GABA for greater than 5-10 h or with 1 mM GABA itself. Neither baclofen nor muscimol (100 microM) affected GAD activity. Immunoblotting experiments showed that only the larger of the two forms of GAD (66 kDa) was decreased by elevated GABA levels. These results, together with previous results indicating that the smaller form of GAD is more strongly regulated by pyridoxal 5'-phosphate (the cofactor for GAD), suggest that the two forms of GAD are regulated by different mechanisms.  相似文献   

5.
Abstract: As γ-aminobutyric acid (GABA) was first discovered as the free acid in the mammalian central nervous system, it has been assumed that GABA is generally to be found in significant amounts only in the brain, in spite of reports of its presence in a number of non-neuronal tissues. In this study, GABA was detected amongst the free amino acids in most rat tissues that were examined. The highest concentration outside the brain was in the ovary (0.59 μmol/g fresh tissue). It is concluded that the synthesis of the GABA is intragonadal and probably of metabolic importance.  相似文献   

6.
Abstract Ca2+-dependent K+-stimulated γ-aminobutyric acid release from rat hippocampal slices was reduced about 30% by pre-incubation of the slices with 104 mouse LD50/ml tetanus toxin for 3 h at 37°C.  相似文献   

7.
The Uptake of Carnitine by Slices of Rat Cerebral Cortex   总被引:2,自引:3,他引:2  
Abstract: The properties of carnitine transport were studied in rat brain slices. A rapid uptake system for carnitine was observed, with tissue-medium gradients of 38 ± 3 for L-[14CH3]carnitine and 27 ± 3 for D-[14CH3]carnitine after 180 min incubation at 37°C in 0.64 mM substrate. Uptake of L- and D-carnitine showed saturability. The estimated values of K m for L- and D-carnitine were 2.85 mM and 10.0 mM, respectively; but values of V max (1 μmol/min/ml in-tracellular fluid) were the same for the two isomers. The transport system showed stereospecificity for L-carnitine. Carnitine uptake was inhibited by structurally related compounds with a four-carbon backbone containing a terminal carboxyl group. L-Carnitine uptake was competitively inhibited by γ-butyrobetaine ( K i= 3.22 mM), acetylcarnitine ( K i= 6.36 mM), and γ-aminobutyric acid ( K i= 0.63 mM). The data suggest that carnitine and γ-aminobutyric acid interact at a common carrier site. Transport was not significantly reduced by choline or lysine. Carnitine uptake was inhibited by an N2 atmosphere, 2,4-dinitrophenol, carbonylcyanide- N -chlorophenylhydrazone, potassium cyanide, n-ethylmaleimide, and ouabain. Transport was abolished by low temperature (4°C) and absence of glucose from the medium. Carnitine uptake was Na+-dependent, but did not require K+ or Ca2+.  相似文献   

8.
目的:研究大鼠坐骨神经结扎模型钙结合蛋白Parvalbumin(PV)在脊髓的时空变化规律,为探讨其在神经再生中的作用与机制提供实验依据。方法:SD大鼠随机分为假手术对照组和坐骨神经结扎组,实验组结扎后分别存活1,3,7,14或21d,采用免疫组化结合图像分析技术观察PV在脊髓的表达变化。结果:在对照组,PV免疫阳性神经元主要分布于腰髓背角Ⅱ层,Ⅲ~Ⅵ层只观察到少量散在分布的PV样阳性神经元,脊髓前角Ⅷ层和Ⅸ层内也可见少量多极的大型阳性神经元。术后各时间点PV样阳性神经元表达下降,14d下降最显著,21d表达有所上升,但还是低于7d组。脊髓后角PV免疫阳性产物灰度值测定结果显示:术后14d后角PV表达最低,与对侧和对照组以及1、3d组相比有统计学意义(P<0.05)。结论:坐骨神经结扎后PV表达变化呈现一定的时空模式,为进一步揭示PV在神经系统疾病中的作用提供实验依据。  相似文献   

9.
Early iron deficiency in rat does not affect the weight or the protein, DNA, and RNA content but results in a slight reduction in gamma-aminobutyric acid (GABA) (13%, p less than 0.01) and glutamic acid (20%, p less than 0.001) content of the brain. The activities of the two GABA shunt enzymes, glutamate dehydrogenase and GABA-transaminase, and of the NAD+-linked isocitrate dehydrogenase (ICDH) were inhibited whereas the glutamic acid decarboxylase, mitochondrial NADP+-linked ICDH, and succinic dehydrogenase activities remained unaltered in brain. On rehabilitation with the iron-supplemented diet for 1 week, these decreased enzyme activities in brain attained the corresponding control values. However, the hepatic nonheme iron content increased to about 80% of the control, after rehabilitation for 2 weeks. A prolonged iron deficiency resulting in decreased levels of glutamate and GABA may lead to endocrinological, neurological, and behavioral alterations.  相似文献   

10.
The mechanism by which ethanol affects the gamma-aminobutyric acid (GABA)/benzodiazepine complex is not clear. It is known that ethanol enhances the Cl- influx mediated by the GABAA receptor complex, and although chronic ethanol administration does not change the KD or Bmax for [3H]flunitrazepam binding, some reports have suggested that it could modify the modulation of benzodiazepine binding produced by GABA. In the present work, we studied the effect of chronic ethanol treatment on the modulation by GABA of [3H]flunitrazepam binding, using light microscopic autoradiography. This technique allows the measurement of densities of benzodiazepine receptors in different brain areas, the visual cortex and hippocampus, which appear to constitute the anatomical support for the behavioral and physiological responses affected by ethanol. We found enhancement of benzodiazepine binding by GABA at concentrations of greater than 10(-6) M for the various cortical and hippocampal areas studied from both control and ethanol-treated animals; this enhancement peaked at 10(-4) M GABA but decreased at 10(-3) M GABA. We found a clear effect of ethanol treatment on the modulatory properties of GABAA receptor, in both cortex and hippocampus, although only in cortex were the differences statistically significant between control and ethanol-treated animals.  相似文献   

11.
Higher GABA Concentrations in Fallopian Tube Than in Brain of the Rat   总被引:6,自引:5,他引:6  
Abstract: The GABA content was determined simultaneously in two peripheral organs, i.e., ovary and Fallopian tube. Moreover, the effects of inhibitors of glutamate decarboxylase or γ-aminobutyrate transaminase (GABA-T) on the GABA concentrations of the two organs were examined, to point out similarities and differences between central and peripheral pathways of GABA biosynthesis and degradation. In ovary, GABA concentration was found to be about 30% of that in total brain tissue. Furthermore, isoniazid and thiosemicarbazide caused significant reduction of GABA levels in peripheral organs. In contrast to the CNS, aminooxyacetic acid failed to increase, but even produced a significant diminution in peripheral GABA content. Gabaculine did not change GABA levels. In conclusion, it has been demonstrated for the first time that a peripheral organ, i.e. fallopian tube, contained higher GABA concentrations than the CNS. On the other hand, in the organs examined GABA seemed to be synthesized similarly, but metabolized by a pathway different from that in the brian.  相似文献   

12.
目的:观察慢性吗啡处理及戒断后大鼠杏仁核中Parvalbumin(PV)的表达变化,为其功能的研究提供形态学依据。方法:将30只健康雄性SD大鼠随机分为吗啡依赖组和生理盐水对照组。吗啡依赖组大鼠腹膜腔注射吗啡,2次/d,起始剂量为5 mg/kg,逐日递增5mg,至第10d为50mg/kg;对照组注射同体积的生理盐水。于末次注射后动物分别存活3h、3 d和14d。用免疫组化方法和相对平均灰度值检测杏仁核内PV的表达。结果:在生理盐水处理组各存活时间点,杏仁核内PV的表达相同。和生理盐水对照组相比,3h时杏仁核内PV的表达明显增加(P<0.05)。第3d时,杏仁核内PV的表达减少,明显低于第3 h组(P<0.05)。至第14d时,PV的表达又开始增加,明显高于第3 d组(P<0.05)。结论:本结果提示慢性吗啡处理及戒断后杏仁核PV的表达具有时相特异性;这种变化在戒断早期可能主要与躯体依赖相关,而戒断晚期主要与精神依赖相关。  相似文献   

13.
Chemicals that are active at the benzodiazepine receptor (endozepines) are naturally present in the CNS. These substances are present in tissue from humans and animals and in plants and fungi. Using selective extraction protocols, HPLC purification, receptor binding displacement studies, and selective anti-benzodiazepine antibodies, we have identified six or seven peaks of endozepines in rat and human brain. All material could competitively displace [3H]flunitrazepam binding to cerebellar benzodiazepine binding sites. Two peaks also competitively displaced Ro 5-4864 binding to the mitochondrial benzodiazepine binding site. Total amounts of brain endozepines were estimated to be present in potentially physiological concentrations, based on their ability to displace [3H]flunitrazepam binding. Although endozepine peaks 1 and 2 had HPLC retention profiles similar to those of nordiazepam and diazepam, respectively, gas chromatography-mass spectrometry as well as high-performance TLC revealed biologically insignificant amounts of diazepam (less than 0.02 pg/g) and nordiazepam (less than 0.02 pg/g) in the purified material. Electrophysiologically, some purified endozepines positively modulated gamma-aminobutyric acid (GABA) action on Cl- conductance, monitored in patch-clamped cultured cortical neurons or in mammalian cells transfected with cDNA encoding various GABAA receptor subunits. These studies demonstrate that mammalian brains contain endozepines that could serve as potent endogenous positive allosteric modulators of GABAA receptors.  相似文献   

14.
Abstract: Following incubation with [14C]y-aminobutyric acid (GABA) or [3H]dopamine, slices of rat striatum were superfused with media containing 36 mM K+ or ethylenediamine (EDA), 1 or 5 mM. Both K+ and EDA induced a release of [14C]GABA, the K+-induced release being largely Ca2+-dependent, while the EDA-induced release was not. Whereas K+ also evoked a Ca2+-dependent release of [3H]dopamine, EDA evoked no release of dopamine. EDA may therefore have potential as a specific GABA releasing agent.  相似文献   

15.
Gamma-Aminobutyric acid (GABA) was taken up by a MgATP-dependent mechanism into synaptic vesicles isolated by hypoosmotic shock and density gradient centrifugation. The properties of the vesicular uptake differed clearly from those of synaptosomal and glial uptake, both with respect to Na+, Mg2+, and ATP dependence and with respect to response to general GABA uptake inhibitors such as nipecotic acid, diaminobutyric acid, and beta-alanine. The uptake showed a Km of 5.6 mM and a net uptake rate of 1,500 pmol/min/mg of protein. It is suggested that the vesicular uptake of GABA is driven by an electrochemical proton gradient generated by a Mg2+-ATPase.  相似文献   

16.
Because of the increasing evidence that Ca2+-binding proteins have important regulating functions in nerve cells and because of the indications that there are species differences in the structures of these proteins, parvalbumin was purified from cat brain and muscle. Brain and muscle parvalbumins were found to be indistinguishable from each other in their biochemical and immunological properties. However, cat parvalbumin differs from all other mammalian parvalbumins by its apparently lower Mr on sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 10-11K (compared to rat parvalbumin, 12K), and a lower pI of 4.6 (rat parvalbumin, 4.9), in the tryptic peptide maps, and in the immunological properties, indicating a distinct primary structure. With the purified parvalbumin as antigen, polyclonal antibodies were raised in rabbits and these were subsequently used for immunohistochemical localizations of parvalbumin in the cat brain. In the visual cortices of adult cats immunoreactive neurons were present throughout layers II and IV. In cerebellar cortex, Purkinje, basket, and stellate cells were immunoreactive. Comparison with staining patterns obtained with antiserum against rat parvalbumin revealed some cross-reactivity but confirmed the existence of species differences in the antigenic structure of rat and cat parvalbumin.  相似文献   

17.
gamma-Aminobutyric acid (GABA) concentrations in human CSF are known to increase significantly after hydrolysis; however, the source of this increase has been unknown. Using either ion-exchange or reverse-phase chromatography coupled with on-line alkaline hydrolysis, we have shown 2-pyrrolidinone, the lactam of GABA, to be present in insufficient quantity to account for this increase. Subsequent experiments involving fraction collection of column eluents followed by acid hydrolysis and rechromatography demonstrated the presence of several previously undetected GABA-containing compounds.  相似文献   

18.
Abstract: It has been proposed that hyperammonemia may be associated with valproate therapy. As astrocytes are the primary site of ammonia detoxification in brain, the effects of valproate on glutamate and glutamine metabolism in astrocytes were studied. It is well established that, because of compartmentation of glutamine synthetase, astrocytes are the site of synthesis of glutamine from glutamate and ammonia. The reverse reaction is catalyzed by the ubiquitous enzyme glutaminase, which is present in both neurons and astrocytes. In astrocytes exposed to 1.2 mM valproate, glutaminase activity increased 80% by day 2 and remained elevated at day 4; glutamine synthetase activity was decreased 30%. Direct addition of valproate to assay tubes with enzyme extracts from untreated astrocytes had significant effects only at concentrations of 10 and 20 mM, When astrocytes were exposed for 4 days to 0.3, 0.6, or 1.2 mM valproate and subsequently incubated with l -[U-14C]glutamate, label incorporation into [14C]glutamine was decreased by 11, 25, and 48%, respectively, and is consistent with a reduction in glutamine synthetase activity. Label incorporation from l -[U-14C]glutamate into [14C]aspartate also decreased with increasing concentrations of valproate. Following a 4-day exposure to 0.6 mM valproate, the glutamine levels increased 40% and the glutamate levels 100%. These effects were not directly proportional to valproate concentration, because exposure to 1.2 mM valproate resulted in a 15% decrease in glutamine levels and a 25% increase in glutamate levels compared with control cultures. Intracellular aspartate was inversely proportional to all concentrations of extracellular valproate, decreasing 60% with exposure to 1.2 mM valproate. These results indicate that valproate increases glutaminase activity, decreases glutamine synthetase activity, and alters Krebs-cycle activity in astrocytes, suggesting a possible mechanism for hyperammonemia in brain during valproate therapy.  相似文献   

19.
A mass fragmentographic method for the simultaneous quantification of gamma-aminobutyric acid (GABA) and glutamic acid is described. In a convenient one-step reaction, the two amino acids were derivatized with pentafluoropropionic anhydride and pentafluoropropanol. The derivatization products were stable for several days. The technique has been applied to the assay of GABA and Glu in five amygdaloid nuclei of the rat brain. The GABA level was high in the central and medial nuclei, whereas the Glu level was high in the lateral and basal nuclei. The regional distribution of GABA was different from that of Glu within the amygdaloid nuclei.  相似文献   

20.
Benzodiazepine agonists such as Ro 11-6896 [B10(+)], diazepam, clonazepam, and flurazepam were found to enhance muscimol-stimulated 36Cl- uptake into rat cerebral cortical synaptoneurosomes. The rank order of potentiation was B10(+) greater than diazepam greater than clonazepam greater than flurazepam. These benzodiazepines had no effect on 36Cl-uptake in the absence of muscimol. Further, the inactive enantiomer, Ro 11-6893 [B10(-)], and the peripheral benzodiazepine receptor ligand Ro 5-4864 did not potentiate muscimol-stimulated 36Cl- uptake at concentrations up to 10 microM. In contrast, the benzodiazepine receptor inverse agonists ethyl-beta-carboline-3-carboxylate and 6,7-dimethoxy-4-ethyl-beta- carboline-3-carboxylic acid methyl ester inhibited muscimol stimulated 36Cl- uptake. Benzodiazepines and beta-carbolines altered the apparent K0.5 of muscimol-stimulated 36Cl- uptake, without affecting the Vmax. The effects of both benzodiazepine receptor agonists and inverse agonists were reversed by the benzodiazepine antagonists Ro 15-1788 and CGS-8216. These data further confirm that central benzodiazepine receptors modulate the capacity of gamma-aminobutyric acid receptor agonists to enhance chloride transport and provide a biochemical technique for studying benzodiazepine receptor function in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号