共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Genetically marked maroon-like (mal) clones were induced by mitotic recombination with X-rays at the blastoderm stage in mal/mal
+ heterozygotes and were analysed in differentiated Malpighian tubules (MT). Marked cells were not confined to single anterior (MA) or posterior (MP) tubules, but were distributed among the four tubules. About 70% of the clones with two or more cells were fragmented, i.e. mal cells were separated by wild-type cells. Since the clones contain, on average, 6 cells and the differentiated MT consist of 484 cells (2 × 136 MA cells, 2 × 106 MP cells), we estimate that there are about 80 cells in the blastoderm anlage which on average pass through two to three mitoses. With increasing radiation doses (254 R, 635 R, 1270 R) a linear increase in clone frequency is observed. The mean sizes and size distributions of clones, however, remain unchanged. Since the increasing radiation dose also results in fewer differentiated Malpighi cells, we assume that regeneration does not occur. Therefore, size distributions of marked clones presumably represent real mitotic patterns in normogenesis. We suggest that essentially three successive mitoses take place, with a decreasing fraction of cells showing mitotic activity. Only a small fraction of cells goes through a fourth or even a fifth mitosis. Marked non-Minute clones induced in Minute heterozygotes are more frequent, but are not larger than non-Minute clones in wild-type background. Therefore, compartment boundaries cannot be recognized by this method. However, frequencies of marked cells found simultaneously in MA and MP pairs or in several single tubules of the same individuals are significantly higher than frequencies of multiple recombination events predicted by the Poisson distribution. From this, we conclude that neither the MA pair nor the MP pair nor single tubules represent compartments of the MT anlage.On the occasion of his 60th birthday, this work is dedicated to Prof. Dr. H.J. Becker, who initiated cell lineage studies in Drosophila 相似文献
2.
A strictly determined number of external sensory organs, macrochaetes, acting as mechanoreceptors, are orderly located on drosophila head and body. Totally, they form the bristle pattern, which is a species-specific characteristic of drosophila. 相似文献
3.
Maternal haploinsufficiency for a third chromosome Minute, M(3)i55, lowers rates of protein synthesis by approximately 30% during the syncytial nuclear cycles of early embryogenesis. The maternal effect of Mi55 also produces segmentation defects (denticle belt fusions) in the posterior abdomen of larvae. Furthermore, embryos from Minute mothers show abnormal expression patterns of the segmentation gene fushi tarazu (ftz) at the cellular blastoderm stage of embryogenesis. We developed a computer-aided analysis to describe the deviations in ftz expression which demonstrates that abnormally narrow ftz stripes occur in segment primordia that become fused in the larva. Unexpectedly, an abnormally wide ftz stripe occurs in segment primordia which do not develop abnormally. In addition, Mi55 produces a general narrowing of all ftz- interstripes. We phenocopied the Minute mutation by injecting wild-type embryos with cycloheximide concentrations which decreased protein synthesis rates to levels comparable with those of Minute embryos. Thus, a general decrease in protein synthesis during early embryogenesis leads to abnormal determination of posterior abdominal segment primordia. 相似文献
4.
Lava lamp, a novel peripheral golgi protein, is required for Drosophila melanogaster cellularization
Drosophila cellularization and animal cell cytokinesis rely on the coordinated functions of the microfilament and microtubule cytoskeletal systems. To identify new proteins involved in cellularization and cytokinesis, we have conducted a biochemical screen for microfilament/microtubule-associated proteins (MMAPs). 17 MMAPs were identified; seven have been previously implicated in cellularization and/or cytokinesis, including KLP3A, Anillin, Septins, and Dynamin. We now show that a novel MMAP, Lava Lamp (Lva), is also required for cellularization. Lva is a coiled-coil protein and, unlike other proteins previously implicated in cellularization or cytokinesis, it is Golgi associated. Our functional analysis shows that cellularization is dramatically inhibited upon injecting anti-Lva antibodies (IgG and Fab) into embryos. In addition, we show that brefeldin A, a potent inhibitor of membrane trafficking, also inhibits cellularization. Biochemical analysis demonstrates that Lva physically interacts with the MMAPs Spectrin and CLIP190. We suggest that Lva and Spectrin may form a Golgi-based scaffold that mediates the interaction of Golgi bodies with microtubules and facilitates Golgi-derived membrane secretion required for the formation of furrows during cellularization. Our results are consistent with the idea that animal cell cytokinesis depends on both actomyosin-based contraction and Golgi-derived membrane secretion. 相似文献
5.
6.
7.
Summary The distribution and arrangement of cytoskeletal components in the early embryo ofDrosophila melanogaster were examined by thin-section electron microscopy to elucidate their involvement in the formation of the cellular blastoderm, a process called cellularization. During the final nuclear division in the cortex of the syncytial blastoderm bundles of astral microtubules were closely associated with the surface plasma membrane along the midline where a new gutter was initiated. Thus the new gutter together with the pre-formed ones compartmentalized the embryo surface to reflect underlying individual daughter nuclei. Subsequently such gutters became deeper by further invagination of the plasma membrane between adjacent nuclei to form so-called cleavage furrows. Nuclei simultaneously elongated in the direction perpendicular to the embryo surface and numerous microtubules from the centrosomes ran longitudinally between the nucleus and the cleavage furrow. Microtubules often appeared to be in close association with the nuclear envelope and the cleavage furrow membrane. The plasma membrane at the advancing tip of the furrow was always undercoated with an electron-dense layer, which could be shown to be mainly composed of 5–6 nm microfilaments. These microfilaments were decorated with H-meromyosin to be identified as actin filaments. As cleavage proceeded, each nucleus with its perikaryon became demarcated by the furrow membrane, which then extended laterally to constrict the cytoplasmic connection between each newly forming cell and the central yolk region. The cytoplasmic strand thus formed possessed a prominent circular bundle of microfilaments which were also decorated with H-meromyosin and bidirectionally arranged, similar in structure to the contractile ring in cytokinesis. These observations strongly suggest that both microtubules and actin filaments play a crucial role in cellularization ofDrosophila embryos. 相似文献
8.
9.
Cristian Pasquaretta Marine Battesti Elizabeth Klenschi Christophe A. H. Bousquet Cedric Sueur Frederic Mery 《Proceedings. Biological sciences / The Royal Society》2016,283(1826)
Animals use a number of different mechanisms to acquire crucial information. During social encounters, animals can pass information from one to another but, ideally, they would only use information that benefits survival and reproduction. Therefore, individuals need to be able to determine the value of the information they receive. One cue can come from the behaviour of other individuals that are already using the information. Using a previous extended dataset, we studied how individual decision-making is influenced by the behaviour of conspecifics in Drosophila melanogaster. We analysed how uninformed flies acquire and later use information about oviposition site choice they learn from informed flies. Our results suggest that uninformed flies adjust their future choices based on how coordinated the behaviours of the informed individuals they encounter are. Following social interaction, uninformed flies tended either to collectively follow the choice of the informed flies or to avoid it. Using social network analysis, we show that this selective information use seems to be based on the level of homogeneity of the social network. In particular, we found that the variance of individual centrality parameters among informed flies was lower in the case of a ‘follow’ outcome compared with the case of an ‘avoid’ outcome. 相似文献
10.
Mary LaLonde Hilde Janssens Suyong Yun Juan Crosby Olga Redina Virginie Olive Yelena M Altshuller Seok-Yong Choi Guangwei Du Peter J Gergen Michael A Frohman 《BMC developmental biology》2006,6(1):1-13
Background
Cellularization of the Drosophila embryo is an unusually synchronous form of cytokinesis in which polarized membrane extension proceeds in part through incorporation of new membrane via fusion of apically-translocated Golgi-derived vesicles.Results
We describe here involvement of the signaling enzyme Phospholipase D (Pld) in regulation of this developmental step. Functional analysis using gene targeting revealed that cellularization is hindered by the loss of Pld, resulting frequently in early embryonic developmental arrest. Mechanistically, chronic Pld deficiency causes abnormal Golgi structure and secretory vesicle trafficking.Conclusion
Our results suggest that Pld functions to promote trafficking of Golgi-derived fusion-competent vesicles during cellularization. 相似文献11.
《Fly》2013,7(3-4):191-198
ABSTRACTIn this extra view, we comment on our recent work concerning the mRNA localization of the gene slow as molasses (slam). slam is a gene essential for the polarized invagination of the plasma membrane and separation of basal and lateral cortical domains during cellularization as well as for germ cell migration in later embryogenesis. We have demonstrated an intimate relationship between slam RNA and its encoded protein. Slam RNA co-localizes and forms a complex with its encoded protein. Slam mRNA localization not only is required for reaching full levels of functional Slam protein but also depends on Slam protein. The translation of slam mRNA is subject to tight spatio-temporal regulation leading to a rapid accumulation of Slam protein and zygotic slam RNA at the furrow canal. In this extra view, we first discuss the mechanism controlling localization and translation of slam RNA. In addition, we document in detail the maternal and zygotic expression of slam RNA and protein and provide data for a function in membrane stabilization. Furthermore, we mapped the region of Slam protein mediating cortical localization in cultured cells. 相似文献
12.
The spider Achaearanea tepidariorum is emerging as a non-insect model for studying developmental biology. However, the availability of microinjection into early embryos of this spider has not been reported. We defined the early embryonic stages in A. tepidariorum and applied microinjection to its embryos. During the preblastoderm 16- and 32-nucleus stages, the energids were moving toward the egg periphery. When fluorochrome-conjugated dextran was microinjected into the peripheral region of 16-nucleus stage embryos, it was often incorporated into a single energid and inherited in the progeny without leaking out to surrounding energids. This suggested that 16-nucleus stage embryos consisted of compartments, each containing a single energid. These compartments were considered to be separate cells. Fluorochrome-conjugated dextran could be introduced into single cells of 16- to 128-nucleus stage embryos, allowing us to track cell fate and movement. Injection with mRNA encoding a nuclear localization signal/green fluorescent protein fusion construct demonstrated exogenous expression of the protein in live spider embryos. We propose that use of microinjection will facilitate studies of spider development. Furthermore, these data imply that in contrast to the Drosophila syncytial blastoderm embryo, the cell-based structure of the Achaearanea blastoderm embryo restricts diffusion of cytoplasmic gene products. 相似文献
13.
14.
15.
16.
Kinesin and dynein molecular motor proteins generate the movement of a wide variety of materials in cells. Such movements are crucial for many different cellular and developmental functions, including organelle movement, localization of developmental determinants, mitosis, meiosis and possibly long-range signaling in neurons. Kinesins that control the dynamics of microtubules have also been discovered. Recent work has begun to identify processes in which defective molecular motor function can cause human disease. 相似文献
17.
18.
Studies of "dead-on-arrival" transposable elements in Drosophila melanogaster found that deletions outnumber insertions approximately 8:1 with a median size for deletions of approximately 10 bp. These results are consistent with the deletion and insertion profiles found in most other Drosophila pseudogenes. In contrast, a recent study of D. melanogaster introns found a deletion/insertion ratio of 1.35:1, with 84% of deletions being shorter than 10 bp. This discrepancy could be explained if deletions, especially long deletions, are more frequently strongly deleterious than insertions and are eliminated disproportionately from intron sequences. To test this possibility, we use analysis and simulations to examine how deletions and insertions of different lengths affect different components of splicing and determine the distribution of deletions and insertions that preserve the original exons. We find that, consistent with our predictions, longer deletions affect splicing at a much higher rate compared to insertions and short deletions. We also explore other potential constraints in introns and show that most of these also disproportionately affect large deletions. Altogether we demonstrate that constraints in introns may explain much of the difference in the pattern of deletions and insertions observed in Drosophila introns and pseudogenes. 相似文献
19.
Chromosome pairing during meiosis I in D. melanogaster males was investigated ultrastructurally by examining complete bivalents in electron micrographs of serial thin sections. The XY bivalent is characterized by the presence of unique material located between the two half-bivalents at the site of synapsis. The material has a fibrillar appearance and is less electron dense than the surrounding chromatin. YY bivalents in XYY males and XY bivalents containing the X chromosome, In(1)sc
4Lsc8R, where the pairing sites of the X chromosome are inverted and partially deleted also possess this material. The material is not associated with autosomal bivalents and may represent a morphological manifestation of the hypothetical cohesive elements (collochores) which are thought to function in conjunction of the X and Y chromosomes (Cooper, 1964). 相似文献
20.