首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Na+–H+ exchange activity in renal brush border membrane vesicles isolated from hyperthyroid rats was increased. When examined as a function of [Na+], treatment altered the initial rate of Na+ uptake by increasingV m (hyperthyroid, 18.9±1.1 nmol Na+ · mg–1 · 2 sec–1; normal, 8.9±0.3 nmol Na+ · mg–1 · 2 sec–1), and not the apparent affinityK Na + (hyperthyroid, 7.3±1.7mm; normal, 6.5±0.9mm). When examined as a function of [H+] and at a subsaturating [Na+] (1mm), hyperthyroidism resulted in the proportional increase in Na+ uptake at every intravesicular pH measured. A positive cooperative effect on Na+ uptake was found with increased intravesicular acidity in vesicles from both normal and hyperthyroid rats. When the data were analyzed by the Hill equation, it was found that hyperthyroidism did not change then (hyperthyroid, 1.2±0.06; normal, 1.2±0.07) or the [H+]0.5 (hyperthyroid, 0.39±0.08 m; normal, 0.44±0.07 m) but increased the apparentV m (hyperthyroid, 1.68±0.14 nmol Na+ · mg–1 · 2 sec–1; normal 0.96±0.10 nmol Na+ · mg–1 · 2 sec–1). The uptake of Na+ in exchange for H+ in membrane vesicles from normal and hyperthyroid animals was not influenced by membrane potential. H+ translocation or debinding was rate limiting for Na+–H+ exchange since Na+–Na+ exchange activity was greater than Na+–H+ exchange activity. Hyperthyroidism caused a proportional increase and hypothyroidism caused a proportional decrease in Na+–Na+ and Na+–H+ exchange. We conclude that hyperthyroidism leads to either an increase in the number of functional exchangers in the membrane or exactly proportional increases in the rate-limiting steps for Na+–Na+ and Na+–H+ exchange activity.  相似文献   

2.
Sulfate transport processes and its regulation were studied in roots of poplar trees (Populus tremula x P. alba). From the exponential increase in sulfate uptake with temperature an activation energy (Ea) of 9.0±0.8 kJ mol–1 was calculated. In the concentration range 0.005–10 mM sulfate uptake showed biphasic Michaelis-Menten kinetics with a Km of 3.2±3.4 M and a Vmax of 49±11 nmol SO42– g–1 FW h–1 for the high-affinity uptake system (phase 1) and a Km of 1.33±0.41 mM and a Vmax of 255±25 nmol SO42– g–1 FW h–1 for the low-affinity system (phase 2). Xylem loading decreased linearly with temperature and remained unchanged within the sulfate concentration range studied. Regulation of sulfate uptake and xylem loading by O-acetyl serine (OAS), Cys, reduced glutathione (GSH), Met and S-methylmethionine (SMM) were tested by perfusion into the xylem sap with the pressure probe and by addition to the incubation medium. When added directly to the transport medium, Cys and GSH repressed, and OAS stimulated sulfate uptake; xylem loading was stimulated by Cys, repressed by GSH and only slightly affected by OAS. When perfused into the xylem, none of the compounds tested affected sulfate uptake of excised roots, but xylem loading was stimulated by SMM and OAS and repressed by Met. Apparently, the site of application strongly determined the effect of regulatory compounds of sulfate transport processes.  相似文献   

3.
We used ion-sensitive, double-barrel microelectrodes to measure changes in hepatocyte transmembrane potential (V m), intracellular K+, Cl-, and Na+ activities (a i k, a Cl i and a Na i ), and water volume during l-alanine uptake. Mouse liver slices were superfused with control and experimental Krebs physiological salt solutions. The experimental solution contained 20 m l-alanine, and the control solution was adjusted to the same osmolality (305 mOsm) with added sucrose. Hepatocytes also were loaded with 50 mm tetramethylammonium ion (TMA+) for 10 min. Changes in cell water volume during l-alanine uptake were determined by changes in intracellular, steady-state TMA+ activity measured with the K+ electrode. Hepatocyte control V m was -33±1 mV. l-alanine uptake first depolarized V m by 2±0.2 mV and then hyperpolarized V m by 5 mV to-38±1 mV (n = 16) over 6 to 13 min. During this hyperpolarization, a Na i increased by 30% from 19±2 to 25±3 mm (P < 0.01), and a K i did not change significantly from 83±3 mm. However, with added ouabain (1 mm) l-alanine caused only a 2-mV increase in V m, but now a K i decreased from 61±3 to 54±5 mm (P < 0.05). Hyperpolarization of V m by l-alanine uptake also resulted in a 38% decrease of a Cl i from 20±2 to 12±3 mm (P < 0.001). Changes in V m and V ClV m voltage traces were parallel during the time of l-alanine hyperpolarization, which is consistent with passive distribution of intracellular Cl with the V m in hepatocytes. Added Ba2+ abolished the l-alanineinduced hyperpolarization, and a Cl i remained unchanged. Hepatocyte water volume during l-alanine uptake increased by 12±3%. This swelling did not account for any changes in ion activities following l-alanine uptake. We conclude that hepatocyte a K i is regulated by increased Na+-K+ pump activity during l-alanine uptake in spite of cell swelling and increased V m due to increased K+ conductance. The hyperpolarization of V m during l-alanine uptake provides electromotive force to decrease a Cl i . The latter may contribute to hepatocyte volume regulation during organic solute transport.This work was supported by grant AA-08867 from the Alcohol, Drug Abuse, and Mental Health Association.  相似文献   

4.
An immobilized d-hydantoinase was characterized and employed to produce n-carbamoyl-d-p-hydroxyphenylglycine (CpHPG) in a repeated batch process. The Vmax and Km of the immobilized d-hydantoinase at 50°C were 6.28 mm min−1 g−1 biocatalyst and 71.6 mm, respectively. The product CpHPG did not inhibit the activity of d-hydantoinase. Optimal reaction temperature was 60°C. A decrease in activity of immobilized d-hydantoinase due to thermal inactivation could be described as first-order decay; the deactivation energy was 23.97Kcal mol−1. Under process conditions (50°C, 10% w/v substrate, and pH 8.5), the half-life of the immobilized d-hydantoinase was eight batches. The attrition of immobilized d-hydantoinase particles with a large amount of insoluble substrate particles during stirring resulted in fine biocatalyst particles. In addition to the thermal inactivation, the loss of fine biocatalyst particles during the recovery step contributed to the low operational stability.  相似文献   

5.
Analysis in mouse brain slices of the uptake of acetyl-l-[N-methyl-14C]carnitine with time showed it to be concentrative, and kinetic analysis gave aK m of 1.92 mM and aV max of 1.96 mol/min per ml, indicating the presence of a low-affinity carrier system. The uptake was energy-requiring and sodium-dependent, being inhibited in the presence of nitrogen (absence of O2), sodium cyanide, low temperature (4°C), and ouabain, and in the absence of Na+. The uptake of acetyl-l-carnitine was not strictly substrate-specific; -butyrobetaine,l-carnitine,l-DABA, and GABA were potent inhibitors, hypotaurine andl-glutamate were moderate inhibitors, and glycine and -alanine were only weakly inhibitory. In vivo, acetyl-l-carnitine transport across the blood-brain barrier had a brain uptake index of 2.4±0.2, which was similar to that of GABA. These results indicate an affinity of acetyl-l-carnitine to the GABA transport system.  相似文献   

6.
Summary The transport ofl-histidine has been characterized in skin derived diploid human fibroblasts, cultured under strictly controlled conditions. The transport measurements were made on cells grown to subconfluency after 60 to 90 min timed preincubation. The data, at substrate concentrations ranging from 0.050 to 10 mmol/l, were analyzed by a computer program. A saturable transport system (K m =0.25 mmol/l, V max =17 nmol/mg protein per min) and a nonsaturable component of influx (K d =1.6±0.4 nmol/mg protein/min per mmol) were found.l-Histidine displayed no Na+ requirement at either low or high concentrations. Inhibition analysis demonstrated thatl-histidine uptake at low concentration was poorly inhibited by amino acids known to be effective inhibitors of system A. The largest fraction ofl-histidine uptake was inhibited by 2-amino-bicyclo (2,2,1)-heptane-2-carboxylic acid (BCH), leucine, and tryptophan. These results indicated thatl-histidine is transported in human fibroblasts, mainly by the Na+ independent system L. The differences between this cell type and others studied previously are discussed. This work was supported in part by Grant 773 from UER de Médecine, Université Paris XI (France).  相似文献   

7.
We examined the relative contributory roles of extracellular vs. intracellular l-arginine (ARG) toward cellular activation of endothelial nitric oxide synthase (eNOS) in human endothelial cells. EA.hy926 human endothelial cells were incubated with different concentrations of 15N4-ARG, ARG, or l-arginine ethyl ester (ARG-EE) for 2 h. To modulate ARG transport, siRNA for ARG transporter (CAT-1) vs. sham siRNA were transfected into cells. ARG transport activity was assessed by cellular fluxes of ARG, 15N4-ARG, dimethylarginines, and l-citrulline by an LC–MS/MS assay. eNOS activity was determined by nitrite/nitrate accumulation, either via a fluorometric assay or by15N-nitrite or estimated 15N3-citrulline concentrations when 15N4-ARG was used to challenge the cells. We found that ARG-EE incubation increased cellular ARG concentration but no increase in nitrite/nitrate was observed, while ARG incubation increased both cellular ARG concentration and nitrite accumulation. Cellular nitrite/nitrate production did not correlate with cellular total ARG concentration. Reduced 15N4-ARG cellular uptake in CAT-1 siRNA transfected cells vs. control was accompanied by reduced eNOS activity, as determined by 15N-nitrite, total nitrite and 15N3-citrulline formation. Our data suggest that extracellular ARG, not intracellular ARG, is the major determinant of NO production in endothelial cells. It is likely that once transported inside the cell, ARG can no longer gain access to the membrane-bound eNOS. These observations indicate that the “l-arginine paradox” should not consider intracellular ARG concentration as a reference point.  相似文献   

8.
The O-specific polysaccharide (OPS) obtained by mild-acid degradation of the lipopolysaccharide isolated from Mesorhizobium huakuii strain S-52 was studied by sugar and ethylation analyses along with 1H and 13C NMR spectroscopy. It was concluded that the OPS was composed of trisaccharide repeating units containing two residues of 6-deoxy-l-talose (6dTal) and one l-rhamnose (Rha), whose sequence in the OPS was determined by NOESY and HMBC experiments. The minor 3-O-acetylation (about 10%) of 6-deoxytalose glycosidically substituted at position-2 was judged by relative signal intensities of corresponding O-acetylated and non-acetylated 6dTal residues. Moreover, it was found that the non-reducing end of the OPS repeating unit was occupied by 3-O-methyl-d-fucose, which terminated the O-chain as a cap-residue. These data defined the structure of the OPS as:α-3-OMe-d-Fucp-(1→[2)-α-l-6dTalp-(1→3)-α-l-6dTalp-(1→2)-α-l-Rhap-(1→]n  相似文献   

9.
The adenosine transport in cultured chromaffin cells was increased by the presence of triiodo-l-thyronine (T3) throughout the prolonged period studied. The Vmax values of this transport obtained in absence and presence of 1 M T3 were 36.21±2.1 and 44.17±3.5 (means±SD) pmol/106cells/min respectively for 26 hours incubation-time with the hormone. The Km values were not significantly modified. The number of adenosine transporters in cultured chromaffin cells, measured by [3H]nitrobenzylthioinosine (NBTI) binding, was increased by 1 M T3 for 26 hours incubation-time. The values of binding sites per cell were 33,500±3,000 and 40,153±3,700 in absence and presence of T3 respectively, without changing the Kd constant. When the transport studies were carried out in presence of cycloheximide, an inhibitor of protein synthesis, the adenosine transport capacity decreased with a half-life values of 23.9±2.8 and 24.3±2.1 hours both in the presence or absence of T3 respectively. When cells were incubated in the presence of both T3 and cycloheximide, not only the activatory effect of T3 was completely abolished but also adenosine transport was decreased to the same extent as with cycloheximide alone. These results indicated that T3 activation of adenosine transport in chromaffin cells required the protein-synthesizing mechanism.  相似文献   

10.
It is proposed that the activity of an epidermal cotransport system for Na+ and dicarboxylic amino acids accounts for the small amounts of L-glutamate and L-aspartate in the otherwise amino-acid-rich blood plasma of insects. This Na+-dependent transport system is responsible for more than 95% of the uptake of these amino acids into the larval epidermis of the beetle Tenebrio molitor. Kinetic analysis of uptake showed that the Na+-dependent co-transporter has medium affinity for L-glutamate and L-aspartate. The K m for L-glutamate uptake was 146 mol·l-1, and the maximum velocity of uptake (V max) was 12.1 pmol·mm-2 of epidermal sheet per minute. The corresponding values for L-aspartate were 191 mol·l-1 and 8.4 pmol·mm-2·min-1. The Na+/L-glutamate co-transporter has a stoichiometry of at least two Na+ ions for each L-glutamate-ion transported (n=217). The co-transporter has an affinity for Na+ equivalent to a K m of 21 mmol · l-1 Na+. Na+ is the only external ion apparently required to drive L-glutamate uptake. Li+ substitutes weakly for Na+. Removal of external K+ or addition of ouabain decreases uptake slowly over 1 h, suggesting that these treatments dissipate the Na+/K+ gradient by inhibiting epidermal Na+/K+ ATPase. Several structural analogues of L-glutamate inhibit the medium-affinity uptake of L-glutamate. The order of potency with which these competitive inhibitors block glutamate uptake is L-cysteatethreo-3-hydroxy-Dl-aspartate > D-aspartateL-aspartate> L-cysteine sulphinate > L-homocysteateD-glutamate. L-trans-Pyrrolidine-2,4-dicarboxylate, a potent inhibitor of L-glutamate uptake in mammalian synaptosomes, is a relatively weak blocker of epidermal uptake. The epidermis takes up substantially more L-glutamate by this Na+-dependent system than tissues such as skeletal muscle and ventral nerve cord. The epidermis may be a main site regulating blood L-glutamate levels in insects with high blood [Na+]. Because L-glutamate and L-aspartate stimulate skeletal muscle in insects, a likely role for epidermal L-glutamate/L-aspartate transporter is to keep the level of these excitatory amino acids in the blood below the postsynaptic activation thresholds.Abbreviation ac acetate - Ch choline - CNS central nervous system - cpm counts per minute - CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetic acids - HPLC high performance liquid chromatography - K m Michaelis constant - n app apparent number - NMG N-methyl-D-glucamine - Pipes Piperazine-N,N-bis-[2-ethanesulfonic acid] - SD standard deviation - TEA tetraethyl-ammonium - V velocity of uptake - V max maximum velocity of uptake  相似文献   

11.
The gene encoding an α-l-arabinofuranosidase from Geobacillus caldoxylolyticus TK4, AbfATK4, was isolated, cloned, and sequenced. The deduced protein had a molecular mass of about 58 kDa, and analysis of its amino acid sequence revealed significant homology and conservation of different catalytic residues with α-l-arabinofuranosidases belonging to family 51 of the glycoside hydrolases. A histidine tag was introduced at the N-terminal end of AbfATK4, and the recombinant protein was expressed in Escherichia coli BL21, under control of isopropyl-β-D-thiogalactopyranoside-inducible T7 promoter. The enzyme was purified by nickel affinity chromatography. The molecular mass of the native protein, as determined by gel filtration, was about 236 kDa, suggesting a homotetrameric structure. AbfATK4 was active at a broad pH range (pH 5.0–10.0) and at a broad temperature range (40–85°C), and it had an optimum pH of 6.0 and an optimum temperature of 75–80°C. The enzyme was more thermostable than previously described arabinofuranosidases and did not lose any activity after 48 h incubation at 70°C. The protein exhibited a high level of activity with p-nitrophenyl-α-l-arabinofuranoside, with apparent K m and V max values of 0.17 mM and 588.2 U/mg, respectively. AbfATK4 also exhibited a low level of activity with p-nitrophenyl-β-d-xylopyranoside, with apparent K m and V max values of 1.57 mM and 151.5 U/mg, respectively. AbfATK4 released l-arabinose only from arabinan and arabinooligosaccharides. No endoarabinanase activity was detected. These findings suggest that AbfATK4 is an exo-acting enzyme.  相似文献   

12.
Penicillium ulaiense is a post-harvest pathogenic fungus that attacks citrus fruits. The objective of this work was to study this microorganism as an α-l-rhamnosidase producer and to characterize it from P. ulaiense. The enzyme under study is used for different applications in food and beverage industries. α-l-Rhamnosidase was produced in a stirred-batch reactor using rhamnose as the main carbon source. The kinetic parameters for the growth of the fungi and for the enzyme production were calculated from the experimental values. A method for partial purification, including (NH4)2SO4 precipitation, incubation at pH 12 and DEAE-sepharose chromatography yielded an enzyme with very low β-glucosidase activity. The pH and temperature optima were 5.0 and 60°C, respectively. The Michaelis–Menten constants for the hydrolysis of p-nitrophenyl-α-l-rhamnoside were V max = 26 ± 4 IU ml−1 and K m  = 11 ± 2 mM. The enzyme showed good thermostability up to 60°C and good operational stability in white wine. Co2+ affected positively the activity; EDTA, Mn2+, Mg2+, dithiotreitol and Cu2+ reduced the activity by different amounts, and Hg2+ completely inhibited the enzyme. The enzyme showed more activity on p-nitrophenyl-α-l-rhamnoside than on naringin. According to these results, this enzyme has potential for use in the food and pharmacy industries since P. ulaiense does not produce mycotoxins.  相似文献   

13.
Postnatal development changes in mechanisms of synaptosomal amino acid transport have been studied in rat cerebral cortex. Specific uptake of radiolabeled l-serine was examined and compared with that of radiolabeled GABA using synaptosomes-enriched fractions freshly prepared from cerebral cortex at different postnatal days from the birth to young adulthood. The preparations were incubated with 10 nM of [3H]l-serine and 10 nM of [3H]-GABA in either the presence or absence of NaCl, KCl or choline chloride, at 2 and 30 °C, for different periods up to 30 min. The uptake of [3H]l-serine was temperature dependent in synaptosomal fractions prepared from cerebral cortex of rats in postnatal days 5, 7, 13 and 21, but stronger dependence was observed in adult brain, irrespective of the presence of Na+, K+ or choline ions. At all postnatal ages studied, [3H]-GABA uptake showed a high activity in the presence of Na+ ions and at 30 °C. The values of Km were 90–489 μM in l-serine uptake. However, in the uptake of GABA the values of Km were 80–150 μM. The highest values of Vmax were obtained at 5 and 21 postnatal days for both transport systems. These results indicate that the uptake of l-serine and GABA are regulated differentially during postnatal development.  相似文献   

14.
Although the dehydration of α-d-glucose monohydrate is an important aspect of several industrial processes, there is uncertainty with regard to the applicable rate law and other factors that affect dehydration. Therefore, the dehydration of three glucose monohydrate samples has been studied using isothermal gravimetric analysis. Dehydration follows a one-dimensional contraction (R1) rate law for the majority of kinetic runs, and an activation energy of 65.0 ± 3.9 kJ mol−1 results when the rate constants are fitted to the Arrhenius equation. Fitting the rate constants to the Eyring equation results in values of 62.1 ± 3.7 kJ mol−1 and −77.8 ± 4.7 J mol−1 K−1 for ΔH and ΔS, respectively. The impedance effect on the loss of water vapor has also been investigated to determine the values for activation energy, enthalpy, and entropy for diffusion of water. The results obtained for the activation parameters are interpreted in terms of the absolute entropies of anhydrous glucose and the monohydrate.  相似文献   

15.
The crystal structures of α-d-glucopyranosyl β-d-psicofuranoside and α-d-galactopyranosyl β-d-psicofuranoside were determined by a single-crystal X-ray diffraction analysis, refined to R1 = 0.0307 and 0.0438, respectively. Both disaccharides have a similar molecular structure, in which psicofuranose rings adopt an intermediate form between 4E and 4T3. Unique molecular packing of the disaccharides was found in crystals, with the molecules forming a layered structure stacked along the y-axis.  相似文献   

16.
The transport of l-leucine by two human breast cancer cell lines has been examined. l-Leucine uptake by MDA-MB-231 and MCF-7 cells was via a BCH-sensitive, Na+-independent pathway. l-Leucine uptake by both cell lines was inhibited by l-alanine, d-leucine and to a lesser extent by l-lysine but not by l-proline. Estrogen (17β-estradiol) stimulated l-leucine uptake by MCF-7 but not by MDA-MB-231 cells. l-Leucine efflux from MDA-MB-231 and MCF-7 cells was trans-stimulated by BCH in a dose-dependent fashion. The effect of external BCH on l-leucine efflux from both cell types was almost abolished by reducing the temperature from 37 to 4 °C. There was, however, a significant efflux of l-leucine under zero-trans conditions which was also temperature-sensitive. l-Glutamine, l-leucine, d-leucine, l-alanine, AIB and l-lysine all trans-stimulated l-leucine release from MDA-MB-231 and MCF-7 cells. In contrast, d-alanine and l-proline had little or no effect. The anti-cancer agent melphalan inhibited l-leucine uptake by MDA-MB-231 cells but had no effect on l-leucine efflux. Quantitative real-time PCR revealed that LAT1 mRNA was approximately 200 times more abundant than LAT2 mRNA in MCF-7 cells and confirmed that MDA-MB-231 cells express LAT1 but not LAT2 mRNA. LAT1 mRNA levels were higher in MCF-7 cells than in MDA-MB-231 cells. Furthermore, LAT1 mRNA was more abundant than CD98hc mRNA in both MDA-MB-231 and MCF-7 cells. The results suggest that system L is the major transporter for l-leucine in both MDA-MB-231 and MCF-7 cells. It is possible that LAT1 may be the major molecular correlate of system L in both cell types. However, not all of the properties of system L reflected those of LAT1/LAT2/CD98hc.  相似文献   

17.
18.
l-Galactono-1,4-lactone (GalL) dehydrogenase (GLDH) is an enzyme that catalyzes the last step of l-ascorbate (AsA) biosynthesis in plants. To re-evaluate the importance of the enzyme and the possibility of manipulating the AsA content in plants, a cDNA encoding GLDH from sweet potato was introduced into tobacco plants by Agrobacterium-mediated transformation under the control of a CaMV 35S promoter. Protein blot analysis revealed the elevation of GLDH protein contents in three GLDH-transformed lines. Furthermore, these transgenic lines showed 6- to 10-fold higher GLDH activities in the roots than the non-transformed plants, SR1. Despite the elevated GLDH activity, the AsA content in the leaves did not change in all lines; i.e., the AsA content in GLDH-transformed lines was 3–7 μmol g−1 FW, comparable to that in the non-transformed plants. Incubation of leaf discs in a GalL solution led to a rapid 2- to 3-fold increase in the AsA content in both GLDH-transformed and non-transformed plants in the same manner. These results suggest that the supply of GalL is a crucial factor for determining the AsA pool size and that the upstream genes in the AsA biosynthetic pathway are responsible for enhancing the AsA content in plants.  相似文献   

19.
The occurrence of four l-alanine:2-oxoglutarate aminotransferase (AOAT) isoenzymes (AOAT-like proteins): alanine aminotransferase 1 and 2 (AlaAT1 and AlaAT2, EC 2.6.1.2) and l-glutamate:glyoxylate aminotransferase 1 and 2 (GGAT1 and GGAT2, EC 2.6.1.4) was demonstrated in Arabidopsis thaliana leaves. These enzymes differed in their substrate specificity, susceptibility to pyridoxal phosphate inhibitors and behaviour during molecular sieving on Zorbax SE-250 column. A difference was observed in the electrostatic charge values at pH 9.1 between GGAT1 and GGAT2 as well as between AlaAT1 and AlaAT2, despite high levels of amino acid sequence identity (93 % and 85 %, respectively). The unprecedented evidence for the monomeric structure of both AlaAT1 and AlaAT2 is presented. The molecular mass of each enzyme estimated by molecular sieving on Sephadex G-150 and Zorbax SE-250 columns and SDS/PAGE was approximately 60 kDa. The kinetic parameters: Km (Ala)=1.53 mM, Km (2-oxoglutarate)=0.18 mM, kcat=124.6 s−1, kcat/Km=8.1 × 104 M−1·s−1 of AlaAT1 were comparable to those determined for other AlaATs isolated from different sources. The two studied GGATs also consisted of a single subunit with molecular mass of 47.3–70 kDa. The estimated Km values for l-glutamate (1.2 mM) and glyoxylate (0.42 mM) in the transamination catalyzed by putative GGAT1 contributed to indentification of the enzyme. Based on these results we concluded that each of four AOAT genes in Arabidopsis thaliana leaves expresses different AOAT isoenzyme, functioning in a native state as a monomer.  相似文献   

20.
The gene, AbfAC26Sari, encoding an α-l-arabinofuranosidase from Anoxybacillus kestanbolensis AC26Sari, was isolated, cloned, sequenced, and characterizated. On the basis of amino acid sequence similarities, this 57-kDa enzyme could be assigned to family 51 of the glycosyl hydrolase classification system. Characterization of the purified recombinant α-l-arabinofuranosidase produced in Escherichia coli BL21 revealed that it is active at a broad pH range (pH 4.5 to 9.0) and at a broad temperature range (45–85°C) and it has an optimum pH of 5.5 and an optimum temperature of 65°C. Kinetic experiment at 65°C with p-nitrophenyl α-l-arabinofuranoside as a substrate gave a V max and K m values of 1,019 U/mg and 0.139 mM, respectively. The enzyme had no apparent requirement of metal ions for activity, and its activity was strongly inhibited by 1 mM Cu2+ and Hg2+. The recombinant arabinofuranosidase released l-arabinose from arabinan, arabinoxylan, oat spelt xylan, arabinobiose, arabinotriose, arabinotetraose, and arabinopentaose. Endoarabinanase activity was not detected. These findings suggest that AbfAC26Sari is an exo-acting enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号