首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Few issues in evolutionary biology have received as much attention over the years or have generated as much controversy as those involving evolutionary rates. One unresolved issue is whether or not shifts in speclation and/or extinction rates are closely tied to the origin of 'key' innovations in evolution. This discussion has long been dominated by 'time-based' methods using data from the fossil record. Recently, however, attention has shifted to 'tree-based' methods, in which time, if It plays any role at all, is incorporated secondarily, usually based on molecular data. Tests of hypotheses about key innovations do require Information about phylogenetic relationships, and some of these tests can be implemented without any information about time. However, every effort should be made to obtain information about time, which greatly increases the power of such tests.  相似文献   

2.
We derive an invertible transform linking two widely used measures of species diversity: phylogenetic diversity and the expected proportions of segregating (non-constant) sites. We assume a bi-allelic (two-state), symmetric, finite site model of substitution. Like the Hadamard transform of Hendy and Penny, the transform can be expressed independently of the underlying phylogeny. Our results bridge work on diversity from two quite distinct scientific communities.  相似文献   

3.
Given a distance matrix M that specifies the pairwise evolutionary distances between n species, the phylogenetic tree reconstruction problem asks for an edge-weighted phylogenetic tree that satisfies M, if one exists. We study some extensions of this problem to rooted phylogenetic networks. Our main result is an O(n(2) log n)-time algorithm for determining whether there is an ultrametric galled network that satisfies M, and if so, constructing one. In fact, if such an ultrametric galled network exists, our algorithm is guaranteed to construct one containing the minimum possible number of nodes with more than one parent (hybrid nodes). We also prove that finding a largest possible submatrix M' of M such that there exists an ultrametric galled network that satisfies M' is NP-hard. Furthermore, we show that given an incomplete distance matrix (i.e. where some matrix entries are missing), it is also NP-hard to determine whether there exists an ultrametric galled network which satisfies it.  相似文献   

4.
5.
V Demoulin 《Bio Systems》1985,18(3-4):347-356
The review of the red algal theory for ancestry of Ascomycetes and Basidiomycetes published 10 years ago by the author is updated. Criticisms are answered and new data are discussed. The production of choline sulfate, lenthionine and lanosol are added to the biochemical similarities between red algae and higher fungi. Distribution of polyols is shown to be in favour of the origin of higher fungi from parasitic red algae. As predicted, NADP-linked glutamate dehydrogenase has been found in red algae, and additional reports of chitin in various algae have been published. New supporting data come from the ultrastructure of red algae: mitosis outside the Ceramiales and ultrastructure of vegetative cells and tetrasporocysts of Corallinaceae. On the other hand, the discovery of proplastids in Holmsella makes it less fungus-like. However, no decisive argument has yet been produced for or against the theory. Further light should be expected from protein and nucleic acid sequences. Promising partial sequences of cytochrome c have indeed been published for red algae but the published 5 S ribosomal RNA sequences have not proven relevant to the problem. Sequences of the slower-evolving large rRNA and cytochrome c of red algae could provide convincing evidence and are urgently needed.  相似文献   

6.
Only decades after the introduction of organophosphate pesticides, bacterial phosphotriesterases (PTEs) have evolved to catalyze their degradation with remarkable efficiency. Their closest known relatives, lactonases, with promiscuous phosphotriasterase activity, dubbed PTE-like lactonases (PLLs), share only 30% sequence identity and also differ in the configuration of their active-site loops. PTE was therefore presumed to have evolved from a yet unknown PLL whose primary activity was the hydrolysis of quorum sensing homoserine lactones (HSLs) (Afriat et al. (2006) Biochemistry45, 13677-13686). However, how PTEs diverged from this presumed PLL remains a mystery. In this study we investigated loop remodeling as a means of reconstructing a homoserine lactonase ancestor that relates to PTE by few mutational steps. Although, in nature, loop remodeling is a common mechanism of divergence of enzymatic functions, reproducing this process in the laboratory is a challenge. Structural and phylogenetic analyses enabled us to remodel one of PTE's active-site loops into a PLL-like configuration. A deletion in loop 7, combined with an adjacent, highly epistatic, point mutation led to the emergence of an HSLase activity that is undetectable in PTE (k(cat)/K(M) values of up to 2 × 10(4)). The appearance of the HSLase activity was accompanied by only a minor decrease in PTE's paraoxonase activity. This specificity change demonstrates the potential role of bifunctional intermediates in the divergence of new enzymatic functions and highlights the critical contribution of loop remodeling to the rapid divergence of new enzyme functions.  相似文献   

7.
In decay analyses the support for a particular split in most-parsimonious trees is its decay index, that is, the extra steps required of the shortest trees that do not include the split. By focusing solely on the support for splits, traditional decay analysis may provide an incomplete and potentially misleading summary of the support for phylogenetic relationships common to the most-parsimonious tree or trees. Here, we introduce double decay analysis, a new approach to assessing support for phylogenetic relationships. Double decay analysis is the determination of the decay indices of all n-taxon statements/partitions common to the most-parsimonious tree. The results of double decay analyses are presented in a partition table, but various approaches to graphical representation of the results, including the use of reduced consensus support trees, are also discussed. Double decay analysis provides a more comprehensive summary and facilitates a better understanding of the strengths and weaknesses of complex phylogenetic hypotheses than does traditional decay analysis. The limitations of traditional decay analyses and the utility of double decay analyses are illustrated with both contrived data and real data for sauropod dinosaurs.  相似文献   

8.
Odorant signal transduction and neurogenesis are fundamental properties of the olfactory epithelium. Many preparations have been used to elucidate some of the mechanisms underlying these properties. In this article, we briefly review these research areas and describe some of the techniques used to obtain the data. We focus specifically on the cell-culture paradigm and the data obtained from various immortal cell lines in their attempts to reconstruct the olfactory epithelium in vitro.  相似文献   

9.
10.
11.
Novel approaches to bio-imaging and automated computational image processing allow the design of truly quantitative studies in developmental biology. Cell behavior, cell fate decisions, cell interactions during tissue morphogenesis, and gene expression dynamics can be analyzed in vivo for entire complex organisms and throughout embryonic development. We review state-of-the-art technology for live imaging, focusing on fluorescence light microscopy techniques for system-level investigations of animal development, and discuss computational approaches to image segmentation, cell tracking, automated data annotation, and biophysical modeling. We argue that the substantial increase in data complexity and size requires sophisticated new strategies to data analysis to exploit the enormous potential of these new resources.  相似文献   

12.
13.
MOTIVATION: Duplication of genomic sequences is a common phenomenon in tumor cells. While many duplications associated with tumors have been identified (e.g. via techniques such as CGH), both the organization of the duplicated sequences and the process that leads to these duplications are less clear. One mechanism that has been observed to lead to duplication is the extraction of DNA from the chromosomes and aggregation of this DNA into small, independently replicating linear or circular DNA sequences (amplisomes). Parts of these amplisomes may later be reinserted back into the main chromosomes leading to duplication. Although amplisomes are known to play an important role in tumorigenesis, their architecture and even size remain largely unknown. RESULTS: We reconstruct the structure of tumor amplisomes by analyzing duplications in the tumor genome. Our approach relies on recently generated data from End Sequence Profiling (ESP) experiments, which allow us to examine the fine structure of duplications in a tumor on a genome-wide scale. Using ESP data, we formulate the Amplisome Reconstruction Problem, describe an algorithm for its solution, and derive a putative architecture of a tumor amplisome that is the source for duplicated material in the MCF7 breast tumor cell line.  相似文献   

14.
15.
分子生物学的主要挑战是如何更好的理解基因间的调控机理。重建基因网络有助于探索生命系统的本质问题。这里对研究基因调控网络的起源、发展动向、目的和方法及目前所面临的挑战进行了综述。  相似文献   

16.
17.
Reconstructing eukaryotic NAD metabolism   总被引:5,自引:0,他引:5  
In addition to its well-known role as a coenzyme in oxidation-reduction reactions, the distinct role of NAD as a precursor for molecules involved in cell regulation has been clearly established. The involvement of NAD in these regulatory processes is based on its ability to function as a donor of ADP-ribose; NAD synthesis is therefore required to avoid depletion of the intracellular pool. The rising interest in the biosynthetic routes leading to NAD formation and the highly conserved nature of the enzymes involved prompted us to reconstruct the NAD biosynthetic routes operating in distinct eukaryotic organisms. The evidence obtained from biochemical and computational analysis provides a good example of how complex metabolic pathways may evolve. In particular, it is proposed that the development of several NAD biosynthetic routes during evolution has led to partial functional redundancy, allowing a given pathway to freely acquire novel functions unrelated to NAD biosynthesis.  相似文献   

18.
Although cancer progression is often associated with genome rearrangements, little is known about the detailed genomic architecture of tumor genomes. The attempt to reconstruct the genomic organization of a tumor genome recently resulted in the development of the End Sequence Profiling (ESP) technique, and the application of this technique to human MCF7 tumor cells. We formulate the ESP Genome Reconstruction Problem, and develop an algorithm to solve this problem in the case of sparse ESP data. We apply our algorithm to analyze human MCF7 tumor cells, and obtain the first reconstruction of the putative architecture of human MCF7 tumor genome. Our results assist in the ongoing ESP analysis of MCF7 tumors by suggesting additional ESP experiments for the completion of a reliable reconstruction of the MCF7 tumor genome, and by focusing BAC re-sequencing efforts.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号