首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
曹春雨  王清  王艳林 《生命科学》2013,(11):1105-1108
肿瘤相关巨噬细胞是肿瘤组织局部浸润的巨噬细胞,在肿瘤组织微环境中,这些巨噬细胞发生M2型极化,从而发挥免疫抑制效应,促进肿瘤增殖。而M2型极化的肿瘤相关巨噬细胞也能够被再次诱导逆向极化形成具有抗肿瘤效应的M1型肿瘤相关巨噬细胞,激发机体产生特异性抗肿瘤免疫应答。促进肿瘤相关巨噬细胞M1型极化由此成为当前抗肿瘤免疫防治研究的热点。将对有关肿瘤相关巨噬细胞极化的新进展进行综述,为抗肿瘤免疫研究提供新的思路。  相似文献   

2.
肿瘤微环境(tumor microenvironment,TME)不仅促进了肿瘤的早期形成和远处转移,而且随着肿瘤的进展,其自身也不断地发生变化。作为TME的重要组成部分,肿瘤相关巨噬细胞(tumor associated macrophages,TAMs)可通过分泌多种细胞因子激活IL-6/STAT3、TGF-β、Wnt/β-catenin等信号通路促进肿瘤干细胞(cancer stem cells,CSCs)的存活、自我更新和化疗耐药等。同时,CSCs也可通过分泌多种细胞因子和趋化因子等募集巨噬细胞,并将其诱导为TAMs重塑CSCs特定的生态位,维持CSCs表型并促进肿瘤进展。TAMs与CSCs的相互作用在促进肿瘤生长、转移及化疗耐药等方面发挥了重要作用。本文对TME中CSCs与TAMs相互作用的研究进行综述,并总结了以CSCs与TAMs相互作用为靶点在新型癌症治疗以及增强化疗效果等方面的重要潜力。  相似文献   

3.
肿瘤相关巨噬细胞(TAMs)存在于肿瘤微环境中,分为经典活化的M1型和交替活化的M2型。M1型巨噬细胞通过释放促炎细胞因子来抑制肿瘤的生长,而M2型巨噬细胞通过促进肿瘤的增殖、血管生成和转移来促进肿瘤的进展。由于巨噬细胞对肿瘤的影响具有双重性,TAMs一直是肿瘤研究的热点。本文就TAMs的异质性和可塑性、TAMs与其他免疫细胞之间的串扰和TAMs对肿瘤的作用等问题进行了综述,并对TAMs的多种靶向治疗策略进行了总结和讨论。这些治疗策略包含抑制TAMs的招募、消耗TAMs以及调控TAMs的极化等方法和手段。这些研究有助于深入理解TAMs与肿瘤相互作用的机理,并为肿瘤的联合治疗提供借鉴和参考。  相似文献   

4.
小檗碱的研究进展   总被引:1,自引:0,他引:1  
小檗碱是从黄连和小檗碱属类等植物中提取分离得到的一种异喹啉类生物碱。在中国传统药方中,这些中药已广泛用于湿热症。许多治疗风湿性疾病的药方的重要成分皆是小檗碱属类的提取物。作为这些提取物中的主要活性成分,小檗碱被证实在治疗自身免疫性疾病、糖尿病、肿瘤、腹泻等方面可发挥重要作用。由于小檗碱生物学作用广泛,其潜在的应用价值巨大。为了认识这种重要中药成分的具体潜能,我们需要更多的动物和人类实验研究。  相似文献   

5.
肿瘤相关巨噬细胞(TAM)是由血液循环中的单核细胞募集进入肿瘤微环境后分化而成的巨噬细胞,它与肿瘤的形成、发展、侵袭和转移密切相关。miRNA是一种内源性非编码小分子RNA,参与多种肿瘤的发生、发展进程。研究表明,特定miRNA在控制TAM的极化方向和功能表型中发挥重要作用,有可能成为抗肿瘤靶向治疗的潜在分子靶点。本文综述了本领域的研究新进展。  相似文献   

6.
肿瘤是一种与机体免疫系统功能密切相关的疾病,是人类迄今为止仅次于心血管疾病的主要死亡原因。肿瘤相关巨噬细胞(tumor associated macrophage,TAM)作为肿瘤微环境(tumor microenvironment,TME)中主要的免疫细胞亚群发挥着重要的作用。M2样TAM的高浸润与实体肿瘤患者的低生存率密切相关。了解复杂的TME中TAM所经历的一系列代谢变化以及功能可塑性,有助于将TAM作为肿瘤免疫治疗的靶点,开发更有效的肿瘤治疗策略。该综述总结了TAM的来源、功能状态、代谢变化等最新研究,并着重讨论了TAM在实体肿瘤中的靶向治疗方法。  相似文献   

7.
肿瘤免疫微环境是肿瘤发生发展的重要微生态,肿瘤相关巨噬细胞是肿瘤免疫微环境中最丰富的免疫细胞,具有高度可塑性和异质性。受各种环境因素的调控,肿瘤相关巨噬细胞可分化为肿瘤促进或肿瘤抑制的不同亚群。这些环境因素复杂多变,但最终都是通过影响细胞内部组分、结构和功能的时间以及空间异质性来调控肿瘤相关巨噬细胞。线粒体是重要的细胞器,负责能量产生、物质代谢,也是多种信号传导的中枢。越来越多的研究发现,线粒体可以通过形态改变、代谢重编程、中间代谢产物或线粒体遗传物质等多种机制调控细胞功能。本文综述了线粒体调控巨噬细胞极化、重塑肿瘤免疫微环境的机制,并针对巨噬细胞线粒体相关肿瘤免疫治疗的现状进行了讨论和展望。  相似文献   

8.
二年生黄檗幼树的茎干中,韧皮部的小檗碱含量最高,周皮次之,木质部最低.韧皮部和周皮的小檗碱含量从基部到顶部呈近线性降低,木质部的小檗碱含量则始终在较低的水平上小幅度波动.韧皮部与周皮的小檗碱含量间存在线性相关性.  相似文献   

9.
炎症是公认的肿瘤十大特征之一,而肿瘤相关巨噬细胞是肿瘤微环境的重要组成部分,它影响肿瘤的生长、血管生成、免疫抑制、转移和药物抗性。最新研究表明,肿瘤相关巨噬细胞还会影响抗肿瘤治疗的临床疗效。鉴于肿瘤相关巨噬细胞在肿瘤演进中起重要作用,其作为潜在抗肿瘤靶点备受关注。基于最新的研究,对人类癌症中肿瘤相关巨噬细胞的主要功能、作用和特征以及用作新兴肿瘤治疗干预靶点作一综述。  相似文献   

10.
肝癌是全球范围内常见的恶性肿瘤之一,其病死率在各类恶性肿瘤中位居第2,其中肝细胞癌(hepatocellular carcinoma,HCC)是最主要的组织学亚型。肝癌的肿瘤微环境(tumor microenvironment,TME)具有独特性,其显著特征之一是肿瘤相关巨噬细胞(tumor-associated macrophages,TAMs)在TME浸润的免疫细胞中占据主导地位。大量研究表明,免疫细胞代谢表型与功能密切相关。本文重点探讨了TAMs能量代谢途径的改变及其对T细胞功能的影响,并深入分析了鞘磷脂代谢在其中的调控机制。系统解析巨噬细胞鞘磷脂代谢改变对免疫抑制微环境的影响将为TAMs作为肝癌治疗潜在靶点提供了新的理论依据。  相似文献   

11.
Our primary studies showed that berberine induced apoptosis in human tongue cancer SCC-4 cells in vitro. But there is no report to show berberine inhibited SCC-4 cancer cells in vivo on a murine xenograft animal model. SCC-4 tumor cells were implanted into mice and groups of mice were treated with vehicle, berberine (10 mg/kg of body weight) and doxorubicin (4 mg/kg of body weight). The tested agents were injected once per four days intraperitoneally (i.p.), with treatment starting 4 weeks prior to cells inoculation. Treatment with 4 mg/kg of doxorubicin or with 10 mg/kg of berberine resulted in a reduction in tumor incidence. Tumor size in xenograft mice treated with 10 mg/kg berberine was significantly smaller than that in the control group. Our findings indicated that berbeirne inhibits tumor growth in a xenograft animal model. Therefore, berberine may represent a tongue cancer preventive agent and can be used in clinic.  相似文献   

12.
 In order to better define the role played by tumor-cell-derived macrophage-colony-stimulating factor (M-CSF) in regulating the recruitment and phenotype of tumor-associated macrophages, Polyoma large T-transformed fibroblastoid cell lines, derived from M-CSF-deficient osteopetrotic op/op mice and their phenotypically normal op/+ littermate controls, were inoculated into SCID (severe combined immunodeficiency) recipients and both the proportion and phenotype of the macrophages present within the tumors generated were determined. The results obtained indicate that, although tumors derived from M-CSF-deficient and M-CSF-producing tumor cell inoculate contain a similar proportion of macrophages, the macrophages isolated from tumors lacking M-CSF appear morphologically less mature and express lower levels of interleukin 1β, tumor necrosis factor α and FcRγII mRNA. Taken together, these data suggest that, although M-CSF does not appear to play a critical role in determining the macrophage content of these tumors, it does play a role in modulating the phenotype, and potentially the functional activity of the macrophages present within the tumor microenvironment. Received: 30 August 1996 / Accepted: 7 February 1997  相似文献   

13.
Berberine is a plant ingredient that has anti-inflammatory and anti-oxidative effects. Matrix metalloproteinase-9 (MMP-9) and interleukin-6 (IL-6) are known to be highly induced by ultraviolet (UV) light and may play important roles in UV-induced skin inflammation and the skin aging process. In this study, we investigated the effects of berberine on MMP-9 and IL-6 expression in normal human keratinocytes (NHK). Our results demonstrated that berberine dose-dependently inhibited basal and TPA-induced expression and activity of MMP-9, and also suppressed TPA-induced IL-6 expression. Berberine prevented TPA-induced ERK activation and AP-1 DNA binding activity. Therefore, berberine may be used as an effective ingredient for anti-skin aging products, which can prevent skin inflammation and the degradation of extracellular matrix proteins, including collagen, by MMPs.  相似文献   

14.
Inflammatory bowel disease (IBD) results from dysregulation of intestinal mucosal immune responses to microflora in genetically susceptible hosts. A major challenge for IBD research is to develop new strategies for treating this disease. Berberine, an alkaloid derived from plants, is an alternative medicine for treating bacterial diarrhea and intestinal parasite infections. Recent studies suggest that berberine exerts several other beneficial effects, including inducing anti-inflammatory responses. This study determined the effect of berberine on treating dextran sulfate sodium (DSS)-induced intestinal injury and colitis in mice. Berberine was administered through gavage to mice with established DSS-induced intestinal injury and colitis. Clinical parameters, intestinal integrity, proinflammatory cytokine production, and signaling pathways in colonic macrophages and epithelial cells were determined. Berberine ameliorated DSS-induced body weight loss, myeloperoxidase activity, shortening of the colon, injury, and inflammation scores. DSS-upregulated proinflammatory cytokine levels in the colon, including TNF, IFN-γ, KC, and IL-17 were reduced by berberine. Berberine decreased DSS-induced disruption of barrier function and apoptosis in the colon epithelium. Furthermore, berberine inhibited proinflammatory cytokine production in colonic macrophages and epithelial cells in DSS-treated mice and promoted apoptosis of colonic macrophages. Activation of signaling pathways involved in stimulation of proinflammatory cytokine production, including MAPK and NF-κB, in colonic macrophages and epithelial cells from DSS-treated mice was decreased by berberine. In summary, berberine promotes recovery of DSS-induced colitis and exerts inhibitory effects on proinflammatory responses in colonic macrophages and epithelial cells. Thus berberine may represent a new therapeutic approach for treating gastrointestinal inflammatory disorders.  相似文献   

15.
Type 2 diabetes patients show defects in insulin signal transduction that include lack of insulin receptor, decrease in insulin stimulated receptor tyrosine kinase activity and receptor-mediated phosphorylation of insulin receptor substrates (IRSs). A small molecule that could target insulin signaling would be of significant advantage in the treatment of diabetes. Berberine (BBR) has recently been shown to lower blood glucose levels and to improve insulin resistance in db/db mice partly through the activation of AMP-activated protein kinase (AMPK) signaling and induction of phosphorylation of insulin receptor (IR). However, the underlying mechanism remains largely unknown. Here we report that BBR mimics insulin action by increasing glucose uptake ability by 3T3-L1 adipocytes and L6 myocytes in an insulin-independent manner, inhibiting phosphatase activity of protein tyrosine phosphatase 1B (PTP1B), and increasing phosphorylation of IR, IRS1 and Akt in 3T3-L1 adipocytes. In diabetic mice, BBR lowers hyperglycemia and improves impaired glucose tolerance, but does not increase insulin release and synthesis. The results suggest that BBR represents a different class of anti-hyperglycemic agents.  相似文献   

16.
Diabetic nephropathy (DN), one of the most serious microvascular complications of diabetes mellitus, is a major cause of end-stage renal disease. Berberine is one of the main constituents of Coptidis rhizoma and Cortex phellodendri. In the present study, we examined effects of berberine (BBR) on renal injury in streptozotocin-induced diabetic rats, and on the changes of aldose reductase (AR) and oxidative stress in cultured rat mesangial cells exposed to high glucose. Fasting blood glucose, blood urea nitrogen, creatinine, and urine protein over 24 h were detected by using the commercially available kits. Cell proliferation, collagen synthesis, aldose reductase (AR), superoxide anion, superoxide dismutase (SOD), and malondialdehyde (MDA) were detected, respectively, by different methods. In streptozotocin-induced diabetic rats, fasting blood glucose, blood urea nitrogen, creatinine, and urine protein over 24 h were significantly decreased in rats treated with 200 mg/kg berberine for 12 weeks compared with diabetic control rats (P < 0.05). This was accompanied by a reduced AR activity and gene expression at both mRNA and protein levels. In cultured rat mesangial cells exposed to high glucose, incubation of BBR significantly decreased cell proliferation, collagen synthesis and AR activity as well as its mRNA and protein levels compared with control cells (P < 0.05). In vitro, BBR also significantly increased SOD activity and decreased superoxide anion and MDA compared with control cells (P < 0.05). These results suggested that BBR could ameliorate renal dysfunction in DN rats, which may be ascribed to inhibition of AR in mesangium, reduction of oxidative stress, and amelioration of extracellular matrix synthesis and cell proliferation. Further studies are warranted to explore the role of AR in DN and the therapeutic implications by AR inhibitors such as BBR.  相似文献   

17.
Summary We developed a high-titer polyclonal antiserum to a glycoprotein tumor-associated antigen (TAA) by immunization of a baboon with the purified glycoprotein antigen. The baboon serum was fractionated into IgG and IgM components by DEAE Affi-Gel blue chromatography. The ability of the baboon IgM anti-TAA antibody to effect tumor cell lysis in the presence of complement was tested using a chromium-release assay. The baboon antibody was able to lyse melanoma target cells (20.8%–71.4% cytolysis), breast carcinoma cells (36.5%–38.9% cytolysis), and a neuroblastoma cell line (35.5% cytolysis) in the presence of complement but did not effect significant lysis of autologous lymphoblastoid cell lines (4.9% cytolysis) or peripheral blood lymphocytes from healthy volunteers (12.6% cytolysis). Cytolysis of melanoma target cells was completely inhibited by preabsorption of the IgM anti-TAA antibody with UCLA-SO-M14 (M14) cells and partially inhibited by preabsorption with several other melanoma cell lines. There was no significant inhibition of tumor cell lysis after preabsorption of the antibody with lymphoblastoid cell lines. Complement-dependent lysis of M14 targets could be blocked by addition of the purified antigen to the antibody prior to incubation with the tumor cells. Our results suggest that the glycoprotein TAA resides on the tumor cell surface and that the baboon IgM anti-TAA antibody recognizes the antigen on the cell surface and is able to fix complement and effect the lysis of the tumor cells.  相似文献   

18.
Obesity is accompanied by adipocyte death and accumulation of macrophages and mast cells in expanding adipose tissues. Considering the differences in biological behavior of fat found in different anatomical locations, we explored the distribution of mast cells, solitary macrophages, and crown-like structures (CLS), the surrogates for dead adipocytes, in subcutaneous and abdominal visceral fat of lean and diet-induced obese C57BL/6 mice. In fat depots of lean mice, mast cells were far less prevalent than solitary macrophages. Subcutaneous fat contained more mast cells, but fewer solitary macrophages and CLS, than visceral fat. Whereas no significant change in mast cell density of subcutaneous fat was observed, obesity was accompanied by a substantial increase in mast cells in visceral fat. CLS became prevalent in visceral fat of obese mice, and the distribution paralleled mast cells. Adipose tissue mast cells contained and released preformed TNF-α, the cytokine implicated in the pathogenesis of obesity-linked insulin resistance. In summary, subcutaneous fat differed from visceral fat by immune cell composition and a lower prevalence of CLS both in lean and obese mice. The increase in mast cells in visceral fat of obese mice suggests their role in the pathogenesis of obesity and insulin resistance.  相似文献   

19.
Macrophages play a major role in the immune defense against pathogenic factors; however, they can lead to tumor exacerbation and metastasis, as the tumor microenvironment (TME) polarizes tumor-associated macrophages (TAMs) into the M2 subtype. Lactate, a metabolite produced by carcinoma cells at high concentrations in the TME, induces an M2-polarization in macrophages, which ultimately leads to the secretion of factors, such as vascular endothelial growth factor (VEGF), and promotes tumor progression. However, the effect of TAM lactate import on tumor progression has not been fully elucidated. Aquaporin 9 (AQP9) is a transporter of water and glycerol expressed in macrophages. Here, we used a tumor allograft mouse model to show that AQP9 knockout (AQP9?/?) mice were more resistant against tumor cell growth and exhibited a suppressive M2-like polarization in tumor tissue than wild-type mice. Moreover, we discovered that the primary bone marrow-derived macrophages from AQP9?/? mice were less sensitive to lactate stimulation and exhibited reduced M2-like polarization as well as decreased VEGF production. To further investigate the role of AQP9 in macrophage polarization, we overexpressed AQP9 in Chinese hamster ovary cells and found that AQP9 functioned in lactate import. In contrast, primary AQP9?/? macrophages and AQP9 knockdown RAW264.7 cells exhibited a reduced lactate transport rate, suggesting the involvement of AQP9 in lactate transport in macrophages. Together, our results reveal the mechanism by which the TME modifies the polarization and function of tumor-infiltrating macrophages via AQP9 transport function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号