首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

[Purpose]

The purpose of this study was to investigate the effect that muscle contraction induced NAD metabolism via NAMPT has on mitochondrial biogenesis.

[Methods]

Primary skeletal muscle cells were isolated from the gastrocnemius in C57BL/6 mice. The muscle cells were stimulated by electrical current at 1Hz for 3 minutes in conditions of normal or NAD metabolism related inhibitor treatment. NAD/NADH level, Sirt1 and mitochondria biogenesis related signal factor’s changes were examined in normal or NAD metabolism related inhibitor treated cells.

[Results]

Electrical stimulation (ES) induced muscle contractions significantly increased NAD/NADH levels, NAMPT inhibitor FK-866 inhibited ES-induced NAD formation, which caused SIRT1 expression and PGC-1α deacetylation to decrease. Moreover, NAMPT inhibition decreased mitochondrial biogenesis related mRNA, COX-1 and Tfam levels. Along with AMPK inhibitor, compound C decreases SIRT1 expression, PGC-1α deacetylation and muscle contraction induced mitochondrial biogenesis related mRNA increment. These results indicated that the AMPK-NAMPT signal is a key player for muscle contraction induced SIRT1 expression and PGC-1α deacetylation, which influences mitochondrial biogenesis. Inhibition of the AMPK upregulator, Camkkβ, STO-609 decreased AMPK phosphorylation and SIRT1 expression but did not decrease PGC-1α deacetylation. However, CAMKII inhibition via AIP decreased PGC-1α deacetylation.

[Conclusion]

In conclusion, the results indicate that NAMPT plays an important role in NAD metabolism and mitochondrial biogenesis. However, mitochondrial biogenesis is also controlled by different calcium binding protein signals including Camkkβ and CAMKII. [Keyword] Muscle contraction, NAD metabolism, SIRT1, PGC-1 α, mitochondria biogenesis.  相似文献   

2.
To address whether mitochondrial biogenesis is essential for skeletal myogenesis, C2C12 myogenesis was investigated after knockdown of NADH dehydrogenase (ubiquintone) flavoprotein 1 (NDUFV1), which is an oxidative phosphorylation complex I subunit that is the first subunit to accept electrons from NADH. The NDUFVI knockdown enhanced C2C12 myogenesis by decreasing the NAD+/NADH ratio and subsequently inactivating SIRT1 and SIRT1 activators (pyruvate, SRT1720, and resveratrol) abolished the NDUFV1 knockdown-induced myogenesis enhancement. However, the insulin-elicited activation of insulin receptor β (IRβ) and insulin receptor substrate-1 (IRS-1) was reduced with elevated levels of protein-tyrosine phosphatase 1B after NDUFV1 knockdown in C2C12 myotubes. The NDUFV1 knockdown-induced blockage of insulin signaling was released by protein-tyrosine phosphatase 1B knockdown in C2C12 myotubes, and we found that NDUFV1 or SIRT1 knockdown did not affect mitochondria biogenesis during C2C12 myogenesis. Based on these data, we can conclude that complex I dysfunction-induced SIRT1 inactivation leads to myogenesis enhancement but blocks insulin signaling without affecting mitochondria biogenesis.  相似文献   

3.
Mitochondrial uncoupling proteins (UCPs) uncouple oxidative phosphorylation from ATP synthesis. We explored the neuroprotective role of UCP4 with its stable overexpression in SH-SY5Y cells, after exposure to either MPP+ or dopamine to induce ATP deficiency and oxidative stress. Cells overexpressing UCP4 proliferated faster in normal cultures and after exposure to MPP+ and dopamine. Differentiated UCP4-overexpressing cells survived better when exposed to MPP+ with decreased LDH release. Contrary to the mild uncoupling hypothesis, UCP4 overexpression resulted in increased absolute ATP levels (with ADP/ATP ratios similar to those of controls under normal conditions and ADP supplementation) associated with increased respiration rate. Under MPP+ toxicity, UCP4 overexpression preserved ATP levels and mitochondrial membrane potential (MMP) and reduced oxidative stress; the preserved ATP level was not due to increased glycolysis. Under MPP+ toxicity, the induction of UCP2 expression in vector controls was absent in UCP4-overexpressing cells, suggesting that UCP4 may compensate for UCP2 expression. UCP4 function does not seem to adhere to the mild uncoupling hypothesis in its neuroprotective mechanisms under oxidative stress and ATP deficiency. UCP4 overexpression increases cell survival by inducing oxidative phosphorylation, preserving ATP synthesis and MMP, and reducing oxidative stress.  相似文献   

4.
Parkinson's disease (PD) is a progressive neurodegenerative disease, leading to tremor, rigidity, bradykinesia, and gait impairment. Salidroside has been reported to exhibit antioxidative and neuroprotective properties in PD. However, the underlying neuroprotective mechanisms effects of salidroside are poorly understood. Recently, a growing body of evidences suggest that silent information regulator 1 (SIRT1) plays important roles in the pathophysiology of PD. Hence, the present study investigated the roles of SIRT1 in neuroprotective effect of salidroside against N‐methyl‐4‐phenylpyridinium (MPP+)‐induced SH‐SY5Y cell injury. Our findings revealed that salidroside attenuates MPP+‐induced neurotoxicity as evidenced by the increase in cell viability, and the decreases in the caspase‐3 activity and apoptosis ratio. Simultaneously, salidroside pretreatment remarkably increased SIRT1 activity, SIRT1 mRNA and protein levels in MPP+‐treated SH‐SY5Y cell. However, sirtinol, a SIRT1 activation inhibitor, significantly blocked the inhibitory effects of salidroside on MPP+‐induced cytotoxicity and apoptosis. In addition, salidroside abolished MPP+‐induced the production of reactive oxygen species (ROS), the up‐regulation of NADPH oxidase 2 (NOX2) expression, the down‐regulations of superoxide dismutase (SOD) activity and glutathione (GSH) level in SH‐SY5Y cells, while these effects were also blocked by sirtinol. Finally, we found that the inhibition of salidroside on MPP+‐induced phosphorylation of p38, extracellular signal‐regulated kinase (ERK) and c‐Jun NH2‐terminal kinase (JNK) were also reversed by sirtinol in SH‐SY5Y cells. Taken together, these results indicated that SIRT1 contributes to the neuroprotection of salidroside against MPP+‐induced apoptosis and oxidative stress, in part through suppressing of mitogen‐activated protein kinase (MAPK) pathways.  相似文献   

5.
Although several reports demonstrated that accumulation of excess lipid in adipose tissue produces defects in adipocyte which leads to the disruption of energy homeostasis causing severe metabolic problems, underlying mechanism of this event remains yet unclear. Here we demonstrate that FetuinA (FetA) plays a critical role in the impairment of two metabolic sensors, SIRT1 and AMPK, in inflamed adipocytes of high fat diet (HFD) mice. A linear increase in adipocyte hypertrophy from 10 to 16 week was in tandem with the increase in FetA and that coincided with SIRT1 cleavage and decrease in pAMPK which adversely affects PGC1α activation. Knock down (KD) of FetA gene in HFD mice could significantly improve this situation indicating FetA's contribution in the damage of energy sensors in inflamed adipocyte. However, FetA effect was not direct, it was mediated through TNF-α which again is dependent on FetA as FetA augments TNF-α expression. FetA being an upstream regulator of TNF-α, its suppression prevented TNF-α mediated Caspase-1 activation and cleavage of SIRT1. FetA induced inactivation of PGC1α due to SIRT1 cleavage decreased PPARϒ, adiponectin, NRF1 and Tfam expression. All these together caused a significant fall in mitochondrial biogenesis and bioenergetics that disrupted energy homeostasis resulting loss of insulin sensitivity. Taken together, our findings revealed a new dimension of FetA, it not only induced inflammation in adipocyte but also acts as an upstream regulator of SIRT1 cleavage and AMPK activation. Intervention of FetA may be worthwhile to prevent metabolic imbalance that causes insulin resistance and type 2 diabetes.  相似文献   

6.
Adenosine monophosphate-activated protein kinase (AMPK), silent mating type information regulation 2 homologue 1 (SIRT 1), and peroxisome proliferator-activated receptor γ co-activator α (PGC1α) constitute an energy sensing cellular network that controls mitochondrial biogenesis. Caloric restriction activates both AMPK and SIRT-1 to increase ATP production from fat oxidation. We characterized AMPK and SIRT 1 expression and activity in human skeletal muscle in response to dietary fat or carbohydrate intake on the background of either overfeeding or caloric restriction. AMPK phosphorylation and acetylation of PGC1α (as a measure of SIRT activity) were determined. Euglycemic-hyperinsulinemic clamp and muscle biopsies were performed in human subjects participating in 2 separate studies. In study 1, 21 lean healthy individuals were overfed for 5 days, while in study 2, 18 obese otherwise healthy individuals consumed a calorie-restricted diet for 5 days. Under both conditions - overfeeding and caloric restriction - high fat/low carbohydrate (HF/LC) diet significantly increased phosphorylation of AMPK and deacetylation of PGC1α in skeletal muscle without affecting total amounts of AMPK, PGC1α, or SIRT 1. In contrast, low fat/high carbohydrate (LF/HC) hypocaloric diet reduced phosphorylation of AMPK and deacetylation of PGC1α. Our data indicate that a relative deficiency in carbohydrate intake or, albeit less likely, a relative excess of fat intake even in the absence of caloric deprivation is sufficient to activate the AMPK-SIRT 1-PGC1α energy-sensing cellular network in human skeletal muscle.  相似文献   

7.
Parkinson disease (PD) is a multifactorial disease resulting in preferential death of the dopaminergic neurons in the substantia nigra. Studies of PD-linked genes and toxin-induced models of PD have implicated mitochondrial dysfunction, oxidative stress, and the misfolding and aggregation of α-synuclein (α-syn) as key factors in disease initiation and progression. Many of these features of PD may be modeled in cells or animal models using the neurotoxin 1-methyl-4-phenylpyridinium (MPP+). Reducing oxidative stress and nitric oxide synthase (NOS) activity has been shown to be protective in cell or animal models of MPP+ toxicity. We have previously demonstrated that siRNA-mediated knockdown of α-syn lowers the activity of both dopamine transporter and NOS activity and protects dopaminergic neuron-like cells from MPP+ toxicity. Here, we demonstrate that α-syn knockdown and modulators of oxidative stress/NOS activation protect cells from MPP+-induced toxicity via postmitochondrial mechanisms rather than by a rescue of the decrease in mitochondrial oxidative phosphorylation caused by MPP+ exposure. We demonstrate that MPP+ significantly decreases the synthesis of the antioxidant and obligate cofactor of NOS and TH tetrahydrobiopterin (BH4) through decreased cellular GTP/ATP levels. Furthermore, we demonstrate that RNAi knockdown of α-syn results in a nearly twofold increase in GTP cyclohydrolase I activity and a concomitant increase in basal BH4 levels. Together, these results demonstrate that both mitochondrial activity and α-syn play roles in modulating cellular BH4 levels.  相似文献   

8.
The protein deacetylase, sirtuin 1 (SIRT1), is a proposed master regulator of exercise-induced mitochondrial biogenesis in skeletal muscle, primarily via its ability to deacetylate and activate peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). To investigate regulation of mitochondrial biogenesis by SIRT1 in vivo, we generated mice lacking SIRT1 deacetylase activity in skeletal muscle (mKO). We hypothesized that deacetylation of PGC-1α and mitochondrial biogenesis in sedentary mice and after endurance exercise would be impaired in mKO mice. Skeletal muscle contractile characteristics were determined in extensor digitorum longus muscle ex vivo. Mitochondrial biogenesis was assessed after 20 days of voluntary wheel running by measuring electron transport chain protein content, enzyme activity, and mitochondrial DNA expression. PGC-1α expression, nuclear localization, acetylation, and interacting protein association were determined following an acute bout of treadmill exercise (AEX) using co-immunoprecipitation and immunoblotting. Contrary to our hypothesis, skeletal muscle endurance, electron transport chain activity, and voluntary wheel running-induced mitochondrial biogenesis were not impaired in mKO versus wild-type (WT) mice. Moreover, PGC-1α expression, nuclear translocation, activity, and deacetylation after AEX were similar in mKO versus WT mice. Alternatively, we made the novel observation that deacetylation of PGC-1α after AEX occurs in parallel with reduced nuclear abundance of the acetyltransferase, general control of amino-acid synthesis 5 (GCN5), as well as reduced association between GCN5 and nuclear PGC-1α. These findings demonstrate that SIRT1 deacetylase activity is not required for exercise-induced deacetylation of PGC-1α or mitochondrial biogenesis in skeletal muscle and suggest that changes in GCN5 acetyltransferase activity may be an important regulator of PGC-1α activity after exercise.  相似文献   

9.
10.
11.
The NAD+-dependent protein deacetylase sirtuin 1 (SIRT1), a member of the sirtuin family, may have a neuroprotective effect in multiple neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS). Many studies have suggested that overexpression-induced or resveratrol-treated activation of SIRT1 could significantly ameliorate several neurodegenerative diseases in mouse models. However, the type of SIRT1, protein expression levels and underlying mechanisms remain unclear, especially in PD. In this study, the results demonstrated that SIRT1 knockout markedly worsened the movement function in MPTP-lesioned animal model of PD. SIRT1 expression was found to be markedly decreased not only in environmental factor PD models, neurotoxin MPP+-treated primary culture neurons and MPTP-induced mice but also in genetic factor PD models, overexpressed α-synuclein-A30PA53T SH-SY5Y stable cell line and hm2α-SYN-39 transgenic mouse strain. Importantly, the degradation of SIRT1 during MPP+ treatment was mediated by the ubiquitin-proteasome pathway. Furthermore, the results indicated that cyclin-dependent kinase 5 (Cdk5) was also involved in the decrease of SIRT1 expression, which could be efficiently blocked by the inhibition of Cdk5. In conclusion, our findings revealed that the Cdk5-dependent ubiquitin-proteasome pathway mediated degradation of SIRT1 plays a vital role in the progression of PD.  相似文献   

12.
13.
The process of store-operated calcium entry (SOCE), whereby the release of intracellular Ca2+ from endoplasmic reticulum (ER) activates Ca2+ influx channels in the plasma membrane, has been demonstrated to impact a diverse range of cell functions. In the present study, we investigated the potential protective effect of SOCE inhibition against 1-methyl-4-phenylpyridinium (MPP+) injury by using pharmacological antagonists or specific small interfering RNA (siRNA) in PC12 cells. The results showed that both antagonists (15 μM MRS-1845 and 50 μM ML-9) and stromal interacting molecule-1 (STIM1) targeted siRNA (Si-STIM1) significantly increased cell viability, decreased apoptotic cell death and reduced intracellular reactive oxygen species (ROS) production and lipid peroxidation in MPP+ injured PC12 cells. SOCE inhibition also prevented MPP+ induced mitochondrial dysfunction and activation of mitochondrial related apoptotic factors, while had no effect on mitochondrial biogenesis. Moreover, inhibition of SOCE by antagonists and siRNA increased the expression levels of Homer1a mRNA and protein, and knockdown of Homer1a expression by specific siRNA partly reversed the protective effects induced by SOCE inhibition in PC12 cells. All these results indicated that SOCE inhibition protected PC12 cells against MPP+ insult through upregulation of Homer1a expression, and SOCE might be an ideal target for investigating therapeutic strategy against neuronal injury in PD patients.  相似文献   

14.
Active autophagy coupled with rapid mitochondrial fusion and fission constitutes an important mitochondrial quality control mechanism and is critical to cellular health. In our previous studies, we found that exposure of cells to nicotinamide causes a decrease in mitochondrial content and an increase in mitochondrial membrane potential (MMP) by activating autophagy and inducing mitochondrial fragmentation. Here, we present evidence to show that the effect of nicotinamide is mediated through an increase of the [NAD(+)]/[NADH] ratio and the activation of SIRT1, an NAD(+)-dependent deacetylase that plays a role in autophagy flux. The [NAD(+)]/[NADH] ratio was inversely correlated with the mitochondrial content, and an increase in the ratio by the mobilization of the malate-aspartate shuttle resulted in autophagy activation and mitochondrial transformation from lengthy filaments to short dots. Furthermore, treatment of cells with SIRT1 activators, fisetin or SRT1720, induced similar changes in the mitochondrial content. Importantly, the activators induced mitochondrial fragmentation only when SIRT1 expression was intact. Meanwhile, MMP did not increase when the cells were treated with the activators, suggesting that the change in MMP is not induced by the mitochondrial turnover per se and that elevation of the [NAD(+)]/[NADH] ratio may activate additional mechanisms that cause MMP augmentation. Together, our results indicate that a metabolic state resulting in an elevated [NAD(+)]/[NADH] ratio can modulate mitochondrial quantity and quality via pathways that may include SIRT1-mediated mitochondrial autophagy.  相似文献   

15.
Sirtuin (SIRT1) inactivation underlies the pathogenesis of insulin resistance and hyperglycaemia-associated vascular complications, but its role in diabetic neuropathy (DN) has not been yet explored. We have evaluated hyperglycaemia-induced alteration of SIRT1 signalling and the effect of isoliquiritigenin (ILQ) on SIRT1-directed AMP kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) signalling in peripheral nerves of streptozotocin (STZ) (55 mg/kg, ip)-induced diabetic rats and in high glucose (30 mM)-exposed neuro2a (N2A) cells. Diabetic rats and high glucose-exposed N2A cells showed reduction in SIRT1 expression with consequent decline in mitochondrial biogenesis and autophagy. ILQ (10 & 20 mg/kg, po) administration to diabetic rats for 2 weeks and exposure to glucose-insulted N2A cells resulted in significant SIRT1 activation with concurrent increase in mitochondrial biogenesis and autophagy. ILQ administration also enhanced NAD+/NADH ratio in peripheral sciatic nerves which explains its possible SIRT1 modulatory effect. Functional and behavioural studies show beneficial effect of ILQ as it alleviated nerve conduction and nerve blood flow deficits in diabetic rats along with improvement in behavioural parameters (hyperalgesia and allodynia). ILQ treatment to N2A cells reduced high glucose-driven ROS production and mitochondrial membrane depolarization. Further, ILQ-mediated SIRT1 activation facilitated the Nrf2-directed antioxidant signalling. Overall, results from this study suggest that SIRT1 activation by ILQ mimic effects of calorie restriction, that is, PGC-1α-mediated mitochondrial biogenesis, FOXO3a mediated stress resistance and AMPK mediated autophagy effects to counteract the multiple manifestations in experimental DN.  相似文献   

16.
Resveratrol induces mitochondrial biogenesis and protects against metabolic decline, but whether SIRT1 mediates these benefits is the subject of debate. To circumvent the developmental defects of germline SIRT1 knockouts, we have developed an inducible system that permits whole-body deletion of SIRT1 in adult mice. Mice treated with a moderate dose of resveratrol showed increased mitochondrial biogenesis and function, AMPK activation, and increased NAD(+) levels in skeletal muscle, whereas SIRT1 knockouts displayed none of these benefits. A mouse overexpressing SIRT1 mimicked these effects. A high dose of resveratrol activated AMPK in a SIRT1-independent manner, demonstrating that resveratrol dosage is a critical factor. Importantly, at both doses of resveratrol no improvements in mitochondrial function were observed in animals lacking SIRT1. Together these data indicate that SIRT1 plays an essential role in the ability of moderate doses of resveratrol to stimulate AMPK and improve mitochondrial function both in vitro and in vivo.  相似文献   

17.
Park G  Jeong JW  Kim JE 《FEBS letters》2011,(1):219-224
One of the functions mediated by sirtuin 1 (SIRT1), the NAD+-dependent protein deacetylase, has been suggested to be neuroprotective since resveratrol, a SIRT1 activator, inhibits 1-methyl-4-phenylpyridinium ion (MPP+)-induced cytotoxicity. In this study, we show that SIRT1 siRNA transfection blocks MPP+-induced apoptosis in SH-SY5Y cells. The ratio of potential pro-apoptotic BNIP2 to antiapoptotic BCL-xL was attenuated in SIRT1-deficient cells following MPP+ treatment. In addition, BNIP2 shRNA-transfected cells showed reduced cleavage of PARP-1, while BNIP2 overexpression intensified the cleavage in MPP+-treated SH-SY5Y cells, suggesting that BNIP2 participates in the MPP+-induced apoptosis. Overall, these data imply that SIRT1 may mediate MPP+-induced cytotoxicity, possibly through the regulation of BNIP2.  相似文献   

18.
19.
Parkinson's disease (PD) is a frequent progressive neurodegenerative disorder. Impaired mitochondrial function is a major feature of sporadic PD. Some susceptibility or causative genes detected in PD are strongly associated with mitochondrial dysfunction including PGC1α, TFAM and GSK3β. microRNAs (miRNAs) are non‐coding RNAs whose altered levels are proven in disparate PD models and human brains. Therefore, the aim of this study was to detect modulations of miRs upstream of PGC1α, TFAM and GSK3β in association with PD onset and progress. In this study, a total of 33 PD subjects and 25 healthy volunteers were recruited. Candidate miRNA (miR‐376a) was selected through target prediction tools and literature survey. Chronic and acute in vitro PD models were created by MPP+‐intoxicated SHSY5Y cells. The levels of miR‐376a and aforementioned genes were assessed by RT‐qPCR. The expression of target genes was decreased in chronic model while there were dramatically up‐regulated levels of those genes in acute model of PD. miR‐376a was strongly altered in both acute and chronic PD models as well as PBMCs of PD patients. Our results also showed overexpression of PGC1α, and TFAM in PBMCs is inversely correlated with down‐regulation of miR‐376a, suggesting that miR‐376a possibly has an impact on PD pathogenesis through regulation of these genes which are involved in mitochondrial function. miR‐376a expression in PD‐derived PBMCs was also correlated with disease severity and may serve as a potential biomarker for PD diagnosis. This is the first study showing altered levels of miR‐376a in PD models and PBMCs, suggesting the probable role of this miRNA in PD pathogenesis. The present study also proposed TFAM and PGC1α as target genes of miR‐376a for the first time, through which it possibly can exert its impact on PD pathogenesis.  相似文献   

20.
The aim of this study was to investigate the neuroprotective effects of quercetin in mouse models of traumatic brain injury (TBI) and the potential role of the PGC‐1α pathway in putative neuroprotection. Wild‐type mice were randomly assigned to four groups: the sham group, the TBI group, the TBI+vehicle group and the TBI+quercetin group. Quercetin, a dietary flavonoid used as a food supplement, significantly reduced TBI‐induced neuronal apoptosis and ameliorated mitochondrial lesions. It significantly accelerated the translocation of PGC‐1α protein from the cytoplasm to the nucleus. In addition, quercetin restored the level of cytochrome c, malondialdehyde and superoxide dismutase in mitochondria. Therefore, quercetin administration can potentially attenuate brain injury in a TBI model by increasing the activities of mitochondrial biogenesis via the mediation of the PGC‐1α pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号