首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several neurodegenerative diseases and brain injury involve reactive oxygen species and implicate oxidative stress in disease mechanisms. Hydrogen peroxide (H2O2) formation due to mitochondrial superoxide leakage perpetuates oxidative stress in neuronal injury. Catalase, an H2O2-degrading enzyme, thus remains an important antioxidant therapy target. However, catalase therapy is restricted by its labile nature and inadequate delivery. Here, a nanotechnology approach was evaluated using catalase-loaded, poly(lactic co-glycolic acid) nanoparticles (NPs) in human neuronal protection against oxidative damage. This study showed highly efficient catalase encapsulation capable of retaining∼99% enzymatic activity. NPs released catalase rapidly, and antioxidant activity was sustained for over a month. NP uptake in human neurons was rapid and nontoxic. Although human neurons were highly sensitive to H2O2, NP-mediated catalase delivery successfully protected cultured neurons from H2O2-induced oxidative stress. Catalase-loaded NPs significantly reduced H2O2-induced protein oxidation, DNA damage, mitochondrial membrane transition pore opening and loss of cell membrane integrity and restored neuronal morphology, neurite network and microtubule-associated protein-2 levels. Further, catalase-loaded NPs improved neuronal recovery from H2O2 pre-exposure better than free catalase, suggesting possible applications in ameliorating stroke-relevant oxidative stress. Brain targeting of catalase-loaded NPs may find wide therapeutic applications for oxidative stress-associated acute and chronic neurodegenerative disorders.  相似文献   

2.
Sodium butyrate (NaBu) is a by-product of microbial fermentation of dietary fiber in the gastrointestinal tract and has been shown to increase the activity of antioxidant enzymes, such as catalase or heme oxidase-1, in vivo. However, the mechanism of this effect is still unclear. This study investigated the antioxidant effect of NaBu on HepG2 cells under H2O2-induced oxidative stress. NaBu (0.3 mM) attenuated cell death and accumulation of reactive oxygen species and improved multiple antioxidant parameters in H2O2-injured HepG2 cells. NaBu inhibited glycogen synthase kinase-3 beta (GSK-3β) by increasing the p-GSK-3β (Ser9) level and promoted nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), which increased the expression of downstream antioxidant enzymes. Together with promotion of peroxisome proliferator-activated receptor gamma coactivator 1-alpha and mitochondrial DNA copy number, NaBu modulated energy metabolism and mitochondrial function, decreasing glycolysis, increasing β-oxidation, and enhancing the tricarboxylic acid cycle and oxidative phosphorylation. NaBu increased mitochondrial manganese-superoxide dismutase and glutathione peroxidase activity. In conclusion, NaBu protected HepG2 cells against oxidative stress by modulating Nrf2 pathway activity and mitochondrial function.  相似文献   

3.
The expression of morphological differences between the castes of social bees is triggered by dietary regimes that differentially activate nutrient-sensing pathways and the endocrine system, resulting in differential gene expression during larval development. In the honey bee, Apis mellifera, mitochondrial activity in the larval fat body has been postulated as a link that integrates nutrient-sensing via hypoxia signaling. To understand regulatory mechanisms in this link, we measured reactive oxygen species (ROS) levels, oxidative damage to proteins, the cellular redox environment, and the expression of genes encoding antioxidant factors in the fat body of queen and worker larvae. Despite higher mean H2O2 levels in queens, there were no differences in ROS-mediated protein carboxylation levels between the two castes. This can be explained by their higher expression of antioxidant genes (MnSOD, CuZnSOD, catalase, and Gst1) and the lower ratio between reduced and oxidized glutathione (GSH/GSSG). In worker larvae, the GSG/GSSH ratio is elevated and antioxidant gene expression is delayed. Hence, the higher ROS production resulting from the higher respiratory metabolism in queen larvae is effectively counterbalanced by the up-regulation of antioxidant genes, avoiding oxidative damage. In contrast, the delay in antioxidant gene expression in worker larvae may explain their endogenous hypoxia response.  相似文献   

4.
Oxidative stress is due to an imbalance of antioxidant/pro-oxidant homeostasis and is associated with the progression of several neurological diseases, including Parkinson''s and Alzheimer''s disease and amyotrophic lateral sclerosis. Furthermore, oxidative stress is responsible for the neuronal loss and dysfunction associated with disease pathogenesis. Survivin is a member of the inhibitors of the apoptosis (IAP) family of proteins, but its neuroprotective effects have not been studied. Here, we demonstrate that SurR9-C84A, a survivin mutant, has neuroprotective effects against H2O2-induced neurotoxicity. Our results show that H2O2 toxicity is associated with an increase in cell death, mitochondrial membrane depolarisation, and the expression of cyclin D1 and caspases 9 and 3. In addition, pre-treatment with SurR9-C84A reduces cell death by decreasing both the level of mitochondrial depolarisation and the expression of cyclin D1 and caspases 9 and 3. We further show that SurR9-C84A increases the antioxidant activity of GSH-peroxidase and catalase, and effectively counteracts oxidant activity following exposure to H2O2. These results suggest for the first time that SurR9-C84A is a promising treatment to protect neuronal cells against H2O2-induced neurotoxicity.  相似文献   

5.
6.
7.
Abstract

Adult patients undergoing cardiopulmonary bypass (CPB) surgery are subjected to increased oxidative stress and show a spectrum of lung injury. Increased levels of hydrogen peroxide (H2O2)are often seen during episodes of oxidative stress, such as the use of high FiO2s, and this molecule plays a key role in the formation of highly damaging oxidants such as the hydroxyl radical. Oxidative damage to plasma proteins was assessed by measuring free thiol groups, and antioxidant protection against H2O2 by measuring catalase activity. CPB patients (n =39) receiving either 100% or 50% oxygen at the end of bypass were studied by measuring levels of H2O2 in breath condensate and levels of catalase in their plasma, and comparing these to pre-bypass levels. Post-bypass, all CPB patients exhaled significantly lower levels of H2O2 (P < 0.0001) at a time when they had significantly increased activity (0.809 ± 0.11 versus 1.688 ±18 U/mg protein) of catalase in their plasma. There were no significant differences in these parameters between the 100% and 50% oxygen groups. At a time when oxidative stress is greatest, there appears to be a corresponding plasma increase in the antioxidant catalase. Whether this change is fortuitous or a response to oxidative stress is at present under consideration.  相似文献   

8.
9.
10.
11.
The overproduction of reactive oxygen species (ROS) causes oxidative stress, such as Hydrogen peroxide (H2O2). Acute oxidative stress is one of the main reasons for cell death. In this study, the antioxidant properties of vanillic acid- a polyphenolic compound was evaluated. Therefore, this study aims to check the effectiveness of vanillic acid in H2O2-induced oxidative stress in D. Mel-2 cell line. The efficacy was determined by biochemical tests to check the ROS production. The cytotoxicity of H2O2 and vanillic acid was checked by MTT assay. The DNA fragmentation was visualized by gel electrophoresis. Protein biomarkers of oxidative stress were analyzed by western blotting. The results depict a promising antioxidant effect of vanillic acid. The IC50 value of vanillic acid and H2O2 was found 250 μg/ml and 125 μg/ml, respectively. The catalase activity, SOF, GPx, and PC was seen less in H2O2 treated group compared with the control and vanillic acid treated group. However, the TBRAS activity was hight in H2O2 treated group. The effect of H2O2 on DNA fragmentation was high as compared with vanillic acid-treated cells. The protein expression of Hsp70, IL-6 and iNOS was seen significant in a vanillic acid-treated group as compared with H2O2 treated group. These results reinforce that at low concentration, vanillic acid could be used as an antioxidant agent in the food and pharmaceutical industries.  相似文献   

12.
13.
Microglial cells, resident macrophage-like immune cells in the brain, are exposed to intense oxidative stress under various pathophysiological conditions. For self-defense against oxidative injuries, microglial cells must be equipped with antioxidative mechanisms. In this study, we investigated the regulation of antioxidant enzyme systems in microglial cells by interferon-γ (IFN-γ) and found that pretreatment with IFN-γ for 20 h protected microglial cells from the toxicity of various reactive species such as hydrogen peroxide (H2O2), superoxide anion, 4-hydroxy-2(E)-nonenal, and peroxynitrite. The cytoprotective effect of IFN-γ pretreatment was abolished by the protein synthesis inhibitor cycloheximide. In addition, treatment of microglial cells with both IFN-γ and H2O2 together did not protect them from the H2O2-evoked toxicity. These results imply that protein synthesis is required for the protection by IFN-γ. Among various antioxidant enzymes such as manganese or copper/zinc superoxide dismutase (Mn-SOD or Cu/Zn-SOD), catalase, and glutathione peroxidase (GPx), only Mn-SOD was up-regulated in IFN-γ-pretreated microglial cells. Transfection with siRNA of Mn-SOD abolished both up-regulation of Mn-SOD expression and protection from H2O2 toxicity by IFN-γ pretreatment. Furthermore, whereas the activities of Mn-SOD and catalase were up-regulated by IFN-γ pretreatment, those of Cu/Zn-SOD and GPx were not. These results indicate that IFN-γ pretreatment protects microglial cells from oxidative stress via selective up-regulation of the level of Mn-SOD and activity of Mn-SOD and catalase.  相似文献   

14.
The aim was to study the effects of a scuba diving session on the lymphocyte antioxidant system, NO synthesis, the capability to produce reactive oxygen species and the antioxidant response in neutrophils. For that purpose seven male divers performed an immersion at a depth of 40 m for 25 min. The same parameters were measured after an hyperbaric oxygen (HBO) treatment at resting conditions in a hyperbaric chamber. Lymphocyte H2O2 production rose after diving and after HBO treatment. Glutathione peroxidase (GPx) and catalase activities increased after diving in lymphocytes, while after HBO exposure only increased GPx activity. Lymphocyte HO-1 mRNA expression increased after diving and after HBO exposure, while iNOS levels and nitrite levels significantly increased after diving. The hyperoxia associated to scuba diving leads to a condition of oxidative stress with increased lymphocyte H2O2 production, HO-1 expression, NO synthesis and antioxidant enzyme adaptations in order to avoid oxidative damage.  相似文献   

15.
Mitochondrial aldehyde dehydrogenase ALD5 of Saccharomyces cerevisiae is involved in the biosynthesis of mitochondrial electron transport chain, and the ald5 mutant is incompetent for respiration. With use of the mutant, we examined the detoxication of H2O2 generation by fatty acid -oxidation in peroxisome. The ald5 mutant (AKD321), as well as the 746 0 mutant, was more resistant to H2O2 stress than the wild type. However, overexpression of the MDH3 gene that was involved in the reoxidation of NADH during fatty acid -oxidation caused a decrease in cell viability of AKD321 to H2O2 stress, while the 746 0 mutant had no such effect. Intracellular H2O2 concentration increased approximately fourfold in MDH3 overexpressing ald5 strain (MD3-AKD321), compared with AKD321. The peroxisomal catalase activity of MD3-AKD321 decreased by 83% to that of AKD321. And also, the overexpression of MDH3 had only a weak effect in MDH3 overexpressing 746 0 strain, decreasing by 14% to that of 746 0 mutant. The increased palmitoyl CoA oxidation by overexpression of MDH3 gene was the same in both strains. Under conditions of MDH3 overexpression, peroxisomal catalase (CTA1) appears to be a limiting factor to oxidative stress. These observations point to an important, as yet unidentified, role of mitochondrial aldehyde dehydrogenase (ALD5) to endogeneous oxidative stress in peroxisome.Received: 23 September 2002 / Accepted: 24 October 2002  相似文献   

16.
17.
We induced an oxidative stress by means of exogenous hydrogen peroxide in two wheat genotypes, C 306 (tolerant to water stress) and Hira (susceptible to water stress), and investigated oxidative injury and changes in antioxidant enzymes activity. H2O2 treatment caused chlorophyll degradation, lipid peroxidation, decreased membrane stability and activity of nitrate reductase. Hydrogen peroxide increased the activity of antioxidant enzymes, glutathione reductase and catalase. These effects increased with increasing H2O2 concentrations. However, no change was observed in the activity of superoxide dismutase and proline accumulation.  相似文献   

18.
A potent analog (HNG) of the endogenous peptide humanin protects against myocardial ischemia–reperfusion (MI–R) injury in vivo, decreasing infarct size and improving cardiac function. Since oxidative stress contributes to the damage from MI–R we tested the hypotheses that: (1) HNG offers cardioprotection through activation of antioxidant defense mechanisms leading to preservation of mitochondrial structure and that, (2) the activity of either of a pair of non-receptor tyrosine kinases, c-Abl and Arg is required for this protection. Rat cardiac myoblasts (H9C2 cells) were exposed to nanomolar concentrations of HNG and to hydrogen peroxide (H2O2). Cells treated with HNG in the presence of H2O2 demonstrated reduced intracellular reactive oxygen species (ROS), preserved mitochondrial membrane potential, ATP levels and mitochondrial structure. HNG induced activation of catalase and glutathione peroxidase (GPx) within 5 min and decreased the ratio of oxidized to reduced glutathione within 30 min. siRNA knockdown of both Abl and Arg, but neither alone, abolished the HNG-mediated reduction of ROS in myoblasts exposed to H2O2. These findings demonstrate an HNG-mediated, Abl- and Arg-dependent, rapid and sustained activation of critical cellular defense systems and attenuation of oxidative stress, providing mechanistic insights into the observed HNG-mediated cardioprotection in vivo.  相似文献   

19.
The effect of hydrogen peroxide on the survival and activity of antioxidant and associated enzymes in Saccharomyces cerevisiae has been studied. A difference found in the response of wild-type yeast strains treated with hydrogen peroxide was probably related to the different protective effects of antioxidant enzymes in these strains. Exposure of wild-type YPH250 cells to 0.25 mM H2O2 for 30 min increased activities of catalase and superoxide dismutase (SOD) by 3.4-and 2-fold, respectively. However, no activation of catalase in the EG103 strain, as well as of SOD in the YPH98 and EG103 wild strains was detected, which was in parallel to lower survival of these strains under oxidative stress. There is a strong positive correlation (R 2 = 0.95) between activities of catalase and SOD in YPH250 cells treated with different concentrations of hydrogen peroxide. It is conceivable that catalase would protect SOD against inactivation caused by oxidative stress and vice versa. Finally, yeast cell treatment with hydrogen peroxide can lead to either a H2O2-induced increase in activities of antioxidant and associated enzymes or their decrease depending on the H2O2 concentration used or the yeast strain specificity. Published in Russion in Biokhimiya, 2006, Vol. 71, No. 9, pp. 1243–1252.  相似文献   

20.
Oxidative stress can cause injury in retinal endothelial cells. Salidroside is a strong antioxidative and cytoprotective supplement in Chinese traditional medicine. In this study, we investigated the effects of salidroside on H2O2-induced primary retinal endothelial cells injury. Salidroside decreased H2O2-induced cell death, and efficiently suppressed cellular ROS production, malondialdehyde generation, and cell apoptosis induced by H2O2 treatment. Salidroside induced the intracellular mRNA expression, protein expression, and enzymatic activities of catalase and Mn-SOD and increased the ratio of Bcl2/Bax. Our results demonstrated that salidroside protected retinal endothelial cells against oxidative injury through increasing the Bcl2/Bax signaling pathway and activation of endogenous antioxidant enzymes. This finding presents salidroside as an attractive agent with potential to attenuate retinopathic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号