首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Burrows of fishes are important to their creators, but knowledge of burrowing behaviour, structure and utilization are poorly understood. We report the burrowing behaviour of the amphibious mudskipper, Periophthalmus chysospilos, from estuarine and coastal sites within the Mekong Delta (Vietnam). Activities at and around the burrow were observed over 12 months (April 2020 to March 2021). Burrow casts were recovered monthly to determine burrow structure and utilization in this species. Observations revealed that males excavate burrows with their mouths during the ebb tide. Burrows were J-, Y- and U-shaped, with 1–2 openings to the surface and a bulbous egg chamber. The burrow depth (BD) and total length (BL) varied with shape and site, but not season. The BD and BL ranged from 15.1 ± 0.9 to 18.6 ± 0.80 SE cm and from 22.1 ± 1.2 to 25.7 ± 1.0 SE (standard error of mean) cm, respectively. These results provide insights into the burrowing ability and better understand the ecology of these fishes in the Mekong Delta.Running head: Burrow behaviour, structure and utilization of Periophthalmus chrysospilos.  相似文献   

2.
幼龄柠条细根的空间分布和季节动态   总被引:2,自引:0,他引:2  
张帆  陈建文  王孟本 《生态学报》2012,32(17):5484-5493
以晋西北黄土高原区5年生柠条(Caragana korshinskii)人工林为研究对象,应用Minirhizotron技术,分别在距茎干水平距离0 cm和50 cm处设点(以下简称为0 cm位点和50 cm位点),对林地0—100 cm土层深度范围内的柠条细根进行了观测。以2009年生长季(4—10月)的细根根长密度(RLD,mm/cm2)和表面积密度(RAD,mm2/cm2)数据为基础,结合同期环境因子(气温、降雨量、土壤温度和土壤含水量等)数据,对0 cm和50 cm两个位点的细根动态特点进行了比较研究。结果表明:(1)两个水平位点的细根垂直分布和季节变化趋势均具有一定差异,主要差异是0 cm位点0—60 cm各土层的RLD均大于50 cm位点,前者各测定期的RLD(RAD)均大于后者。因此,0 cm位点的细根分布量(4.04 mm/cm2和4.67 mm2/cm2)显著大于50 cm位点(3.07 mm/cm2和2.99 mm2/cm2)。(2)就整体(两个位点平均值)而言,RLD(RAD)的垂直分布以40—50cm土层最大,以60—70cm土层最小。RLD(RAD)的季节变化具有由小变大再变小的趋势。年生长季幼龄柠条细根的RLD和RAD总平均值分别为3.55 mm/cm2和3.83 mm2/cm2。(3)就0 cm位点、50 cm位点或整个林地而言,细根RLD的季节变化与气温和土壤温度的季节变化均具有显著正相关性。以上结果表明,幼龄柠条细根的水平分布具有"近主根"特点;RLD的季节变化与温度因子的季节变化具有高度一致性。  相似文献   

3.
柠条细根的空间分布特征及其季节动态   总被引:3,自引:0,他引:3  
以晋西北黄土区30年生柠条(Caragana korshinskii Kom.)人工林为研究对象,2007年应用Minirhizotron技术,分别在距茎干水平距离0、50、100 cm处设点,对林地0-100 cm土层深度范围内的柠条细根空间分布及其生长季的动态进行了研究。结果表明:(1)生长季柠条细根根长密度(RLD)总平均值为1.3423 mm/cm2。在水平方向上,距茎干水平距离50 cm处分布最多(1.5369 mm/cm2),其次为0 cm处(1.3855 mm/cm2), 100cm处分布最少(1.1044 mm/cm2)。在垂直深度上,各土层RLD平均值大小顺序为40-60 cm>60-80 cm>20-40 cm>0-20 cm>80-100 cm;(2)在0-100 cm土层范围内,月平均RLD在生长季的波动范围为0.4405 2.1040 mm/cm2,其中9月份最多,4月份最少;RLD在5个土层深度3个水平距离处随季节变化均表现先增加后减少的趋势,且不同空间位置RLD峰值变化均在秋季(8 10月份)波动。细根的这种时空分布差异,可能主要受林下土壤资源空间异质性及其季节性变化的影响,但也不排除其它因素的影响(如真菌,植食性昆虫)。  相似文献   

4.
刘美霞  刘秀  赵燕  董雯怡  刘恩科 《生态学报》2022,42(22):9213-9225
土壤微生物碳源代谢特征是评价土壤质量变化的重要指标。依托山西省东部晋中市寿阳县农业环境与作物高效用水科学观测试验站,采用Biolog-ECO微孔板技术探究覆膜(FM)与裸地不覆膜处理(LD)对旱作春玉米拔节期、灌浆期和收获期3个关键生育期不同土层深度下(0-10 cm、10-20 cm和20-30 cm)土壤微生物碳源代谢的影响。结果表明:1) FM措施可以显著增加土壤微生物对碳源的利用能力,显著提高了土壤微生物的优势度指数,但降低了土壤微生物的均匀度指数。2)在0-10 cm和10-20 cm土层,FM与LD处理土壤微生物碳源利用情况均表现为灌浆期较高,而20-30 cm土层,表现为收获期较高,差异均主要体现在碳水类、羧酸类、氨基酸类3大类碳源上。3)拔节期和灌浆期0-10 cm土层中FM处理的土壤微生物碳源利用能力显著高于LD处理;然而收获期0-10 cm土层中恰好相反,呈现出LD处理下土壤微生物碳源利用能力显著高于FM处理。4)此外,Pearson相关分析表明,FM处理土壤微生物对碳水类碳源和羧酸类碳源2大类碳源的利用能力主要与土壤有机碳(SOC)和全氮(TN)含量相关性较好,呈现出正相关关系;对氨基酸类碳源的利用能力主要与土壤含水量、pH、SOC、NH4+-N和NO3--N含量相关性较好。LD处理下,土壤微生物对碳水类、羧酸类和氨基酸类碳源的利用能力与土壤中TN含量的相关性较好,且呈现正相关关系。  相似文献   

5.
Age changes in utilization of glucose and galactose were studied in primary cultures of rat hepatocytes. (1) With increasing age of donor from 2 to 10 weeks, the rate of galactose utilization fell while that of glucose utilization increased from a negative value (net production) to a level approximately double that of galactose. Glucose production could account for about 80% of the galactose taken up by cells from 2- to 3-week-old rats. (2) With increasing time of culture there was a fall in galactose utilization and an increase in glucose utilization comparable to the changes with increasing age in vivo. (3) The change in utilization of each sugar was independent of the change in utilization or availability of the other. It is suggested that the switch from galactose to glucose as the preferred substrate in vivo is not determined by dietary availability of these hexoses. (4) The increased utilization of glucose by cells of older animals was associated with a decrease in responsiveness to the glycogenic action of insulin. The change in responsiveness was not due to a decrease in insulin binding capacity of the cells.  相似文献   

6.
Hou L  Lei R D  Liu J J  Shang L B 《农业工程》2008,28(9):4070-4077
Soil CO2 efflux in forest ecosystems during dormant season is one of the key components of the forest ecosystem carbon balance. Little work has been done to quantify soil CO2 efflux in most forests in China in special time because of difficulty in taking measurements. Soil respiration in a natural secondary Pinus tabulaeformis forest at Huoditang in the Qinling Mountains was measured from October to December in 2006 by means of open-path dynamic chamber technique. Relationships of soil respiration rate (Rs) with mean soil temperature (MST) and mean volumetric soil moisture content (MVSC) in different depths (0-5 cm and 5-10 cm) were examined in the current study. We found that (1) At the same observation site (upper-part, middle-part or under-part), there were tremendous temporal and spatial variations in Rs with variation coefficients of 48.38%, 82.51% and 81.88% in October, November and December, respectively; (2) There was a significant exponent relationship between diurnal mean soil respiration rate (Fc) and diurnal mean soil temperature (DMST) when DMST > 8.5°C for both soil depths (0-5 cm and 5-10 cm) examined. The temperature sensitivity of soil respiration, known as the Q10 value, was 1.297 and 1.323 in soil depths of 0-5 cm and 5-10 cm, respectively; (3) Relationship between Rs and MVSC was complex in soil depths of 0-5 cm and 5-10 cm; (4) Soil CO2 efflux from October to December in 2006 in the experimental area was (977.37 ± 88.43) to (997.19 ± 80.73) gCm−2 (p = 0.005).  相似文献   

7.
Bacterial speck of tomato, caused by Pseudomonas syringae pv. tomato, was used to determine whether similarity in carbon source utilization between a preemptive biological control agent and the pathogen was significant in determining the ability of the bacterium to suppress disease. Similarity in carbon source utilization was quantified as the ratio of the number of tomato carbon sources utilized in vitro by the biological control agent to the number of tomato carbon sources utilized in vitro by the target pathogen (the niche overlap index [NOI]). Suppression of the disease was quantified as the percent reduction in disease severity compared to the pathogen-only control when nonpathogenic bacteria were applied to foliage 48 h prior to the pathogen. In the collection of 36 nonpathogenic bacterial strains, there was a significant (P < 0.01), but weak (r2 = 0.25), correlation between reduction in disease severity and similarity in carbon source utilization, suggesting that similarity in carbon source use was significant in determining ability to suppress disease. The relationship was investigated further using catabolic mutants of P. syringae strain TLP2, an effective biological control agent of speck. Catabolic mutants exhibited lower levels of similarity (NOI = 0.07 to 0.90) than did wild-type TLP2 (NOI = 0.93). With these catabolic mutants there was a significant (P < 0.01), and stronger (r2 = 0.42), correlation between reduction in disease severity and similarity in carbon source utilization. This suggests that similarity in carbon source utilization was a more important component of biological control ability for the catabolic mutants than for the nonpathogenic bacteria. Together, these studies indicate that suppression of bacterial speck of tomato was correlated with nutritional similarity between the pathogenic and nonpathogenic bacteria and suggest that preemptive utilization of carbon sources was probably involved in the biological control of the disease by both the naturally occurring nonpathogenic bacteria and the catabolic mutants.  相似文献   

8.

Background and Aims

Two main strategies that allow plants to cope with soil waterlogging or deeper submergence are: (1) escaping by means of upward shoot elongation or (2) remaining quiescent underwater. This study investigates these strategies in Lotus tenuis, a forage legume of increasing importance in areas prone to soil waterlogging, shallow submergence or complete submergence.

Methods

Plants of L. tenuis were subjected for 30 d to well-drained (control), waterlogged (water-saturated soil), partially submerged (6 cm water depth) and completely submerged conditions. Plant responses assessed were tissue porosity, shoot number and length, biomass and utilization of water-soluble carbohydrates (WSCs) and starch in the crown.

Key Results

Lotus tenuis adjusted its strategy depending on the depth of submergence. Root growth of partially submerged plants ceased and carbon allocation prioritized shoot lengthening (32 cm vs. 24·5 cm under other treatments), without depleting carbohydrate reserves to sustain the faster growth. These plants also developed more shoot and root porosity. In contrast, completely submerged plants became quiescent, with no associated biomass accumulation, new shoot production or shoot elongation. In addition, tissue porosity was not enhanced. The survival of completely submerged plants is attributed to consumption of WSCs and starch reserves from crowns (concentrations 50–75 % less than in other treatments).

Conclusions

The forage legume L. tenuis has the flexibility either to escape from partial submergence by elongating its shoot more vigorously to avoid becoming totally submerged or to adopt a non-elongating quiescent strategy when completely immersed that is based on utilizing stored reserves. The possession of these alternative survival strategies helps to explain the success of L. tenuis in environments subjected to unpredictable flooding depths.  相似文献   

9.
The Kalahari of southern Africa is characterised by sparse vegetation interspersed with microbe-dominated biological soil crusts (BSC) which deliver a range of ecosystem services including soil stabilisation and carbon fixation. We characterised the bacterial communities of BSCs (0–1 cm depth) and the subsurface soil (1–2 cm depth) in an area typical of lightly grazed Kalahari rangelands, composed of grasses, shrubs, and trees. Our data add substantially to the limited amount of existing knowledge concerning BSC microbial community structure, by providing the first bacterial community analyses of both BSCs and subsurface soils of the Kalahari region based on a high throughput 16S ribosomal RNA gene sequencing approach. BSC bacterial communities were distinct with respect to vegetation type and soil depth, and varied in relation to soil carbon, nitrogen, and surface temperature. Cyanobacteria were predominant in the grass interspaces at the soil surface (0–1 cm) but rare in subsurface soils (1–2 cm depth) and under the shrubs and trees. Bacteroidetes were significantly more abundant in surface soils of all areas even in the absence of a consolidated crust, whilst subsurface soils yielded more sequences affiliated to Acidobacteria, Actinobacteria, Chloroflexi, and Firmicutes. The common detection of vertical stratification, even in disturbed sites, suggests a strong potential for BSC recovery after physical disruption, however severe depletion of Cyanobacteria near trees and shrubs may limit the potential for natural BSC regeneration in heavily shrub-encroached areas.  相似文献   

10.
氮磷添加对亚热带常绿阔叶林土壤微生物群落特征的影响   总被引:7,自引:0,他引:7  
王晶晶  樊伟  崔珺  许崇华  王泽夫  徐小牛 《生态学报》2017,37(24):8361-8373
为了探讨氮磷添加对土壤微生物特点的影响,选择安徽省池州仙寓山常绿阔叶老龄林,设定了4个水平的氮磷添加试验,即对照(CK,0 kg N/hm~2)、低氮(LN,50 kg N/hm~2)、高氮(HN,100 kg N/hm~2)、高氮+磷(HN+P,100 kg N/hm~2+50 kg P/hm~2)。利用氯仿熏蒸法和Biolog微平板技术,分析不同水平氮磷添加对不同土层(0-10 cm、10-20 cm和20-30 cm)土壤微生物生物量C(MBC)、N(MBN)和微生物群落功能多样性的影响。结果表明:MBC、MBN随土层加深而降低,且差异性极显著,MBC与MBC/MBN比在氮磷添加后均表现出显著性差异;土壤微生物群落的代谢活性随土层加深而降低,HN与LN处理的土壤微生物活性最高;Mc Intosh、Shannon和Simpson多样性指数在不同土层和不同N、P添加水平上都存在差异,表层土壤微生物多样性指数差异性较为显著。土壤微生物对羧酸类、氨基酸类和碳水类碳源利用率最高;主成分分析显示不同土层的土壤微生物碳源利用上有明显的变化,表层土壤微生物碳源利用在不同N、P添加水平上有明显的空间变异性,其他土层分布较为集中,空间差异性主要表现在对碳水类与羧酸类碳源的利用上。土层与氮、磷添加剂量对土壤微生物生物量C、N及功能多样性都有显著影响,其中高氮处理对表层土壤微生物影响最大。  相似文献   

11.
In China, narrow-wide row planting pattern has been advocated for maize (Zea mays L.) production. However, no previous study has clearly elucidated the complexity of factors affecting maize canopy such as the microclimatic factors, and the effect of photosynthesis in narrow-wide row planting pattern. The current study was undertaken to identify the planting patterns that influence microclimatic conditions and photosynthesis of two maize cultivars (Beiyu288 and Xianyu335) grown in three planting patterns: narrow-wide rows of (1) 30 cm + 170 cm (P1, 6.4 plants m?2), and (2) 40 cm + 90 cm (P2, 6.4 plants m?2), and (3) uniform row of 65 cm (CK, conventional row as control, 6.4 plants m?2). Light interception, temperature, relative humidity (RH), CO2 concentration, and leaf photosynthesis within the canopy were measured in each planting treatment at the grain-filling stage. The net photosynthetic rate (P N), intercellular CO2 concentration (C i), stomatal conductance (g s), transpiration rate (E), and temperature of the narrow-wide row exceeded that of the conventional row. The CO2 concentration and RH of the narrow-wide row were lower than CK by 50 cm strata. The narrow-wide row had a more uniform light intercepted at the whole canopy profile. The results of the current study suggest that narrow-wide row-planting pattern has a positive effect on canopy microclimate factors and promotes photosynthesis.  相似文献   

12.
Twenty gilts were used in a study to determine local utilization of space by fetuses in the uterus under crowded or roomy conditions. Between Days 2 and 4 after onset of estrus and mating, the uterus was ligated to leave one and one-half times as much space for embryos in one side of the uterus (roomy) as in the other (crowded). At a second surgery on Day 28, serosal sutures were placed to mark the placental boundaries and every third embryo in the crowded side was crushed. Gilts were slaughtered on Day 100 and measurements taken on the uterus and fetuses. Survival from Day 28 to Day 100 of fetuses that were not crushed was 57% in the roomy side of the uterus versus 40% in the crowded side (P = 0.42). No differences were found between crowded and roomy sides for fetal crown rump length, weight or placental surface area. The length of segment occupied on Day 28 by fetuses surviving to Day 100 in both crowded and roomy sides was greater than the mean length occupied by all embryos present on Day 28. The length of segment occupied by surviving fetuses increased by 9.4 ± 1.4 cm from Day 28 to Day 100, and the length of segment on Day 28 occupied by a fetus that was crushed decreased by 2.0 ± 0.8 cm. The internal vascular area of the uterus associated with a surviving fetus on Day 100 did not extend beyond the suture placed in the serosa on Day 28, indicating that the surviving fetuses did not make use of space vacated by nonsurviving littermates.  相似文献   

13.
徐满厚  薛娴 《生态学报》2013,33(10):3158-3168
以广布于青藏高原的高寒草甸为研究对象,进行模拟增温实验,探讨高寒草甸植被特征与温度、水分因子关系,并试图论证高寒草甸植被是否符合生物多样性代谢理论.结果表明:①高寒草甸植被物种多样性的对数与绝对温度的倒数呈显著线性递减关系,空气-地表-浅层土壤(0-20 cm)温度(R2 >0.6,P<0.01)较深层土壤(40-100 cm)温度(R2<0.5,P<0.05)对物种多样性影响大;其植被新陈代谢平均活化能为0.998-1.85 eV,高于生物多样性代谢理论预测值0.6-0.7 eV,这是高寒草甸植被对长期低温环境适应进化的结果.②除趋势对应分析和冗余分析显示,温度对植被地上部分影响较大,而土壤水分对全株影响均较大,适当的增温与降水均可极显著促进高寒草甸植被生长.③逐步回归和通径分析显示,40 cm、60 cm深度土壤水分对植被地上部分产生直接影响,20 cm高度空气相对湿度和40 cm深度土壤温度对其产生间接影响;40 cm深度土壤温度和60 cm深度土壤水分对植被地下部分产生直接影响,红外地表温度对其产生间接影响.深层土壤温度和水分对高寒草甸植被具有影响作用,这可能与增温后冻土的融化有关,但其机理尚待进一步研究.  相似文献   

14.
《农业工程》2022,42(3):162-170
Pinus armandii is one of the local dominant trees in forest lines of Li mountains. The population pattern of Pinus armandii in the forest line is greatly influenced by individual size, and individual size has effect on ecological process. Sampling plot 50 m × 50 m was established in Shunwangping Scenic spot of Li Mountains to obtain location and diameter at breast height (DBH), and spatial point pattern method was applied to explore spatial pattern and ecological process of individuals at different sizes. The results showed: (1) Individual size of Pinus armandii had a parabolic distribution, 10–15 cm DBH individuals had most aggregation scales, < 5 cm DBH individuals had least aggregation scales, and the common scale of individual aggregation is r < 10 m. (2) Homogeneous Thomas null model and Inhomogeneous Thomas null model analysis showed that seed dispersal and interaction between seed dispersal and environmental heterogeneity had significant impact on the pattern of all individuals, seed yield of Pinus armandii was the key to the development of the population, Inhomogeneous Poisson null model analysis showed that environmental heterogeneity more significantly affected the pattern of 5–10 cm DBH individuals, the 5–10 cm population was the more critical stage of the survival of Pinus armandii in the forest line. (3) Intra-specific correlation analysis showed that significant positive correlation happened between four size groups (< 5 cm, 5–10 cm, 10–15 cm, > 15 cm), individuals at 10–15 cm had wider positive correlation scales with other three groups, it might be that quantity of individuals in 10–15 cm was greatest. The size difference of individual in species population had a great influence on the pattern, the results could help to understand the significant impact factors and regeneration obstacles of Pinus armandii in the forest line at different stages.  相似文献   

15.
A greenhouse experiment was performed to investigate growth and physiological responses to water depth in completely submerged condition of a wetland plant Carex schmidtii Meinsh., one of the dominant species in the Longwan Crater Lake wetlands (China). Growth and physiological responses of C. schmidtii were investigated by growing under control (non-submerged) and three submerged conditions (5 cm, 15 cm and 25 cm water level). Total biomass was highest in control, intermediate in 5 cm treatment and lowest in the other two submerged treatments. Water depth prominently affected the first-order lateral root to main root mass ratio. Alcohol dehydrogenase (ADH) activity decreased but malondialdehyde (MDA) content increased as water depth increased. The starch contents showed no differences among the various treatments at the end of the experiment. However, soluble sugar contents were highest in control, intermediate in 5 cm and 15 cm treatments and lowest in 25 cm treatment. Our data suggest that submergence depth affected some aspects of growth and physiology of C. schmidtii, which can reduce anoxia damage not only through maintaining the non-elongation strategy in shoot part but also by adjusting biomass allocation to different root orders rather than adjusting root-shoot biomass allocation.  相似文献   

16.
王梓  韩晓增  张志明  郝翔翔 《生态学报》2016,36(23):7740-7748
利用Biolog Eco微平板培养法,对中国科学院海伦农田生态系统国家野外科学观测研究站农田(CL)、恢复草地(GL)和人工林地(FL)土壤剖面不同深度土壤中微生物群落碳源代谢特征进行研究。理化性质结果显示,有机碳、全氮和碱解氮含量随深度增加逐渐减少,p H则是上层土壤低于底层。可培养微生物数量从表层(0—20 cm)到底层(180—200 cm)逐渐减少,在表层(0—20 cm)3种可培养微生物数量均为草地农田林地。可培养微生物主要生活在近地表0—60 cm土层中,在60—200cm土层中3种利用方式下可培养细菌、真菌和放线菌数量基本相同。Biolog结果显示,在0—40 cm土层中微生物群落活性最大,底层(180—200 cm)土壤微生物群落活性最小。3种利用方式剖面微生物群落Shannon多样性指数和碳源利用数量从表层到底层逐渐减少,并且与SOC和TN呈极显著正相关关系(P0.05)。与农田相比恢复草地和人工林地剖面20—40 cm土层中微生物群落对各类碳源的利用强度都较高,说明没有农业机械作业的植被自然生长条件下根系会打破原来农田中的犁底层,促进表层(0—20 cm)以下微生物群落活性。碳源利用率和主成分分析结果表明长期不同植被覆盖已经改变了剖面微生物群落碳源代谢特征,而且根系已经影响到100 cm的微生物群落,但还没有影响到180—200cm中的微生物群落。  相似文献   

17.
Soil organic carbon (soil C) sequestration in forests is often higher under nitrogen (N2)-fixing than under non-N2-fixing tree species. Here, we examined whether soil C could be increased using mixed-species plantations compared to monocultures, which are less productive aboveground than mixtures. In addition, we compared soil C sequestration under N2-fixing trees with non-N2-fixing trees that received N fertilizer. Monocultures of Eucalyptus globulus (E) and the N2-fixing Acacia mearnsii (A) and mixtures of these species were planted in a replacement series: 100%E, 75%E + 25%A, 50%E + 50%A, 25%E + 75%A and 100%A. Soil samples were also collected from fertilized monoculture treatments (100%EFer) of E. globulus (250 kg N ha?1). Total organic C, N and phosphorus were determined at age 8 years at two soil depths (0–10 cm and 10–30 cm) and three density fractions of soil organic matter (SOM) were quantified for 0–5 cm depth. Soil C was highest in the 50%E + 50%A mixed stand and was highly correlated with aboveground biomass, not to the percentage of A. mearnsii in mixtures. This was largely due to soil C at 10–30 cm because there were no treatment effects on soil C at 0–10 cm. All density fractions of SOM at 0–5 cm increased with the percentage of A. mearnsii. In E. globulus monocultures, N fertilization did not increase soil C when compared with unfertilized stands. These results indicate that the inclusion of N2-fixing trees into eucalypt plantations may increase soil C stocks through increased productivity.  相似文献   

18.
彭海英  李小雁  童绍玉 《生态学报》2014,34(9):2256-2265
灌丛化是全球草原地区存在的主要环境问题。通过对内蒙古典型草原区小叶锦鸡儿灌丛和草地斑块冠层降雨再分配、地表径流、土壤含水量的对比观测,研究了小叶锦鸡儿灌丛化对该区水分再分配和利用的影响。结果表明,灌丛和草地斑块的冠层截留量分别占降雨量的20.86%和7.88%,灌丛和草地斑块的平均地表径流系数分别为5.95%和17.19%。土壤含水量观测结果显示,0—60 cm土层中,降雨事件过程中,灌丛斑块较草地斑块能捕获更多水分,灌丛斑块植被冠层下方土壤含水量高于草地斑块;而在雨后无有效降水补充土壤水分的前提下,0—60 cm土层中,灌丛斑块土壤水分蒸散发量高于草地斑块,其中0—10cm土层中灌丛斑块土壤水分蒸散发速率低于草地斑块,10—60 cm土层中灌丛斑块土壤水分蒸散发速率高于草地斑块。研究认为,在水分为关键性限制因子的干旱半干旱区,小叶锦鸡儿灌丛化过程增加草原生态系统中水分分布的空间异质性,灌丛斑块能捕获、利用更多水分以维持更多的生物量。  相似文献   

19.
Plant-parasitic nematodes (PPN) are harmful pests that have become a severe threat to crop production worldwide. Diversity of PPN at horizontal and spatial scales influence the effectiveness of control strategies. This study evaluated the vertical distribution of PPN genera at 0 cm to 30 cm and 30 cm to 60 cm in sweet potato fields in Central, Manyatta, and Nembure regions of Embu County, Kenya. A significant region × depth interaction was observed for Tylenchus. For all the other nematode genera, there were no significant variations in the abundance at 0 cm to 30 cm and 30 cm to 60 cm depths. However, Helicotylenchus, Meloidogyne, and Scutellonema occurred in greater numbers at both depths in all regions. Shannon and Simpson diversity indices were higher at 0 cm to 30 cm depth while Pielou’s evenness was similar at both depths in the three regions. Diversity partitioning of genus richness, Shannon, and Simpson diversities across all regions at 0 cm to 30 cm, indicated that β component contributed 61.9%, 35.6%, and 22.6% of γ diversity, respectively. Coinertia analysis indicated a significant covariation between nematode genera and soil properties. The results show that management of PPN in sweet potato fields should be targeted at soil depths that are not less than 60 cm.  相似文献   

20.
This paper reports the development of a proximal sensing technique used to predict maize root density, soil carbon (C) and nitrogen (N) content from the visible and near-infrared (Vis-NIR) spectral reflectance of soil cores. Eighteen soil cores (0?C60?cm depth with a 4.6?cm diameter) were collected from two sites within a field of 90-day-old maize silage; Kairanga silt loam and Kairanga fine sandy loam (Gley Soils). At each site, three replicate soil cores were taken at 0, 15 and 30?cm distance from the row of maize plants (rows were 60?cm apart). Each soil core was sectioned at 5 depths (7.5, 15, 30, 45, and 60?cm) and soil reflectance spectra were acquired from the freshly cut surface at each depth. A 1.5?cm soil slice was taken at each surface to obtain root mass and total soil C and N reference (measured) data. Root densities decreased with depth and distance from plant and were lower in the silt loam, which had the higher total C and N contents. Calibration models, developed using partial least squares regression (PLSR) between the first derivative of soil reflectance and the reference data, were able to predict with moderate accuracy the soil profile root density (r 2?=?0.75; ratio of prediction to deviation [RPD]?=?2.03; root mean square error of cross-validation [RMSECV]?=?1.68?mg/cm3), soil% C (r 2?=?0.86; RPD?=?2.66; RMSECV?=?0.48%) and soil% N (r 2?=?0.81; RPD?=?2.32; RMSECV?=?0.05%) distribution patterns. The important wavelengths chosen by the PLSR model to predict root density were different to those chosen to predict soil C or N. In addition, predicted root densities were not strongly autocorrelated to soil C (r?=?0.60) or N (r?=?0.53) values, indicating that root density can be predicted independently from soil C. This research has identified a potential method for assessing root densities in field soils enabling study of their role in soil organic matter synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号