共查询到20条相似文献,搜索用时 15 毫秒
1.
Erythrocyte-ghost Ca2+-stimulated Mg2+-dependent adenosine triphosphatase in Duchenne muscular dystrophy. 总被引:1,自引:0,他引:1
下载免费PDF全文

The Ca2+-stimulated Mg2-dependent ATPase activities (Ca2+-ATPase) of erythrocyte-ghost membranes from patients with Duchenne muscular dystrophy (DMD) and carriers of DMD were compared with activities of normal controls. The Ca2+-ATPase activity of DMD-patient ghost preparations was found to follow the same pattern of activation by Ca2+ as the control membranes. However, the Ca2+-ATPase activity in DMD and some DMD-carrier preparations was substantially elevated compared with controls. To characterize further the elevated Ca2+-ATPase activity found in DMD-patient ghost membrane preparations, we estimated kinetic parameters using both fine adjustment and weighting methods to analyse our experimental data. It was established that in both DMD and DMD-carrier preparations the increase in Ca2+-ATPase activity was reflected by a significant increase in Vmax. rather than by any change in Km. The response of the membrane Ca2+-ATPase activity to changes in temperature was also investigated. In all preparations a break in the Arrhenius plot occurred at 20 degrees C, and in DMD and DMD-carrier preparations an elevated Ca2+-ATPase activity was detected at all temperatures. Above 20 degrees C the activation energy for all types of preparation was the same, whereas below this temperature there appeared to be an elevated activation in DMD and DMD-carrier preparations compared with normal controls. The concept that a generalized alteration in the physicochemical nature of the membrane lipid domain may be responsible for the many abnormal membrane properties reported in DMD is discussed. 相似文献
2.
V. Battaglia S. Grancara J. Satriano S. Saccoccio E. Agostinelli A. Toninello 《Amino acids》2010,38(2):431-437
The arginine metabolite agmatine is able to protect brain mitochondria against the drop in energy capacity by the Ca2+-dependent induction of permeability transition (MPT) in rat brain mitochondria. At normal levels, the amine maintains the
respiratory control index and ADP/O ratio and prevents mitochondrial colloid-osmotic swelling and any electrical potential
(ΔΨ) drop. MPT is due to oxidative stress induced by the interaction of Ca2+ with the mitochondrial membrane, leading to the production of hydrogen peroxide and, subsequently, other reactive oxygen
species (ROS) such as hydroxyl radicals. This production of ROS induces oxidation of sulfhydryl groups, in particular those
of two critical cysteines, most probably located on adenine nucleotide translocase, and also oxidation of pyridine nucleotides,
resulting in transition pore opening. The protective effect of agmatine is attributable to a scavenging effect on the most
toxic ROS, i.e., the hydroxyl radical, thus preventing oxidative stress and consequent bioenergetic collapse. 相似文献
3.
Marianne S. Jurkowitz Gerald P. Brierley 《Journal of bioenergetics and biomembranes》1982,14(5-6):435-449
A rapid loss of accumulated Ca2+ is produced by addition of H+ to isolated heart mitochondria. The H+-dependent Ca+ efflux requires that either (a) the NAD(P)H pool of the mitochondrion be oxidized, or (b) the endogenous adenine nucleotides be depleted. The loss of Ca2+ is accompanied by swelling and loss of endogenous Mg2–. The rate of H+-dependent Ca2+ efflux depends on the amount of Ca2+ and Pi taken up and the extent of the pH drop imposed. In the absence of ruthenium red the H+-induced Ca2+-efflux is partially offset by a spontaneous re-accumulation of released Ca2+. The H+-induced Ca2+ efflux is inhibited when the Pi transporter is blocked withN-ethylmaleimide, is strongly opposed by oligomycin and exogenous adenine nucleotides (particularly ADP), and inhibited by nupercaine. The H+-dependent Ca2+ efflux is decreased markedly when Na+ replaces the K+ of the suspending medium or when the exogenous K+/H+ exchanger nigericin is present. These results suggest that the H+-dependent loss of accumulated Ca2+ results from relatively nonspecific changes in membrane permeability and is not a reflection of a Ca2+/H+ exchange reaction. 相似文献
4.
The Na+-induced release of accumulated Ca2+ from heart mitochondria is inhibited by amiloride, benzamil and several other amiloride analogues. These drugs do not affect uptake or release of Ca2+ mediated by the ruthenium red-sensitive uniporter and their effects, like those of diltiazem and other Ca2+-antagonists, appear to be localized principally at the Na+/Ca2+ antiporter of the mitochondrion. Benzamil inhibits Na+/Ca2+ antiport non-competitively with respect to [Na+] with a Ki of 167 microM. In the presence of 1.5 mM Pi the Ki for benzamil inhibition of this reaction is decreased to 87 microM. 相似文献
5.
Akopova OV 《Ukrainski? biokhimicheski? zhurnal》2008,80(3):40-47
Ca2+-uptake accompanied with mitochondrial permeability transition pore (MPTP) opening is studied in rat liver mitochondria. In conditions of MPTP opening, as well as in conditions of MPTP blockage by cyclosporine A (CsA), Ca2+-uptake in mitochondria is counterbalanced by proton efflux into incubation medium. Independent of MPTP opening, observed stoichiometry of this exchange is 1Ca2+ : 1H+. MPTP opening dramatically decreases Ca2+-uptake in mitochondria: from approximately 400 nmol/mg protein in the presence of CsA to approximately 80-100 nmol/mg protein due to the increased mitochondrial membrane permeability. In the absence of CsA Ca2+-uptake is accompanied by the insensitive to Ca2+-uniporter blocker, ruthenium red (RR), release of Ca2+ from mitochondria which corresponds to as well RR-insensitive, but sensitive to CsA uptake of H+ into mitochondrial matrix. This calcium-proton exchange resulting from MPTP opening is observed only when Ca2+ uptake into matrix exceeds some basal level. The data are consistent with an assumption that, contrary to Ca2+-uniporter, MPTP has its own proton conductance. MPTP opening provides exchange of Ca2+ between mitochondria and medium which is coupled to the counterflow of protons into matrix space. Obtained data elucidate the physiological role of MPTP as regulatory mechanism for control of Ca2+-uptake level and intramitochondrial pH. 相似文献
6.
Influence of Tl+ on mitochondrial permeability transition pore in Ca2+-loaded rat liver mitochondria
The Tl+-induced opening of the MPTP in Ca2+-loaded rat liver mitochondria energized by respiration on the substrates succinate or glutamate plus malate was recorded as increased swelling and dissipation of mitochondrial membrane potential as well as decreased state
4, or state 3, or 2,4-dinitrophenol-stimulated respiration. These effects of Tl+ increased in nitrate media containing monovalent cations in the order of Li+ < NH4+ ≤ Na+ < K+. They were potentiated by inorganic phosphate and diminished by the MPTP inhibitors (ADP, CsA, Mg2+, Li+, rotenone, EGTA, and ruthenium red) both individually and more potently in their combinations. Maximal swelling of both non-energized
and energized Ca2+-loaded mitochondria in rotenone-free media is an indication of Ca2+ uptake driven by respiration on mitochondrial endogenous substrates. It is suggested that Tl+ (distinct from Cd2+, Hg2+, and other heavy metals and regardless of the used respiratory substrates) can stimulate opening of the MPTP only in the
presence of Ca2+. We discuss the possible participation of Ca2+-binding sites, located near the respiratory complex I and the adenine nucleotide translocase, in inducing opening of the
MPTP. 相似文献
7.
Suhel Parvez Kirstin Winkler-Stuck Silvia Hertel Peter Schönfeld Detlef Siemen 《BBA》2010,1797(6-7):1245-1250
Ropinirole, an agonist of the post-synaptic dopamine D2-receptor, exerts neuroprotective activity. The mechanism is still under discussion. Assuming that this neuroprotection might be associated with inhibition of the apoptotic cascade underlying cell death, we examined a possible effect of ropinirole on the permeability transition pore (mtPTP) in the mitochondrial inner membrane. Using isolated rat liver mitochondria, the effect of ropinirole was studied on Ca2+-triggered large amplitude swelling, membrane depolarization and cytochrome c release. In addition, the effect of ropinirole on oxidation of added, membrane-impermeable NADH was investigated. The results revealed doubtlessly, that ropinirole can inhibit permeability transition. In patch-clamp experiments on mitoplasts, we show directly that ropinirole interacts with the mtPTP. Thus, ropinirole reversibly inhibits the opening of mtPTP with an IC50 of 3.4 µM and a Hill coefficient of 1.3. In both systems (i.e. energized mitochondria and mitoplasts) the inhibitory effect on permeability transition was attenuated by increasing concentrations of inorganic phosphate. In addition, we showed with antimycin A-treated mitochondria that ropinirole failed to suppress respiratory chain-linked reactive oxygen species release. In conclusion, our data suggest that the neuroprotective activity of ropinirole is due to the blockade of the Ca2+-triggered permeability transition. 相似文献
8.
The interaction of trifluoperazine and extramitochondrial Ca2+ with the heart mitochondrial Na+-Ca2+ carrier has been investigated. External Ca2+ inhibits the carrier equally in mitochondria and mitoplasts in which the outer membrane is lysed. Sensitivity to Ca2+ is not removed by washing mitoplasts under varied conditions. Trifluoperazine is a potent inhibitor of the carrier in mitoplasts but not in mitochondria. Trifluoperazine inhibition in mitoplasts depends markedly on the presence of extramitochondrial Ca2+ (2 microM). 相似文献
9.
A variety of stimuli utilize an increase of cytosolic free Ca2+ concentration as a second messenger to transmit signals, through Ca2+ release from the endoplasmic reticulum or opening of plasma membrane Ca2+ channels. Mitochondria contribute to the tight spatiotemporal control of this process by accumulating Ca2+, thus shaping the return of cytosolic Ca2+ to resting levels. The rise of mitochondrial matrix free Ca2+ concentration stimulates oxidative metabolism; yet, in the presence of a variety of sensitizing factors of pathophysiological relevance, the matrix Ca2+ increase can also lead to opening of the permeability transition pore (PTP), a high conductance inner membrane channel. While transient openings may serve the purpose of providing a fast Ca2+ release mechanism, persistent PTP opening is followed by deregulated release of matrix Ca2+, termination of oxidative phosphorylation, matrix swelling with inner membrane unfolding and eventually outer membrane rupture with release of apoptogenic proteins and cell death. Thus, a rise in mitochondrial Ca2+ can convey both apoptotic and necrotic death signals by inducing opening of the PTP. Understanding the signalling networks that govern changes in mitochondrial free Ca2+ concentration, their interplay with Ca2+ signalling in other subcellular compartments, and regulation of PTP has important implications in the fine comprehension of the main biological routines of the cell and in disease pathogenesis. 相似文献
10.
Ruthenium red and/or EGTA prevent cyclic uptake and release of Ca2+ in mitochondria. These compounds inhibit but do not prevent the swelling of liver mitochondria induced by Ca2+ plus t-butyl hydroperoxide or Ca2+ plus N-ethylmaleimide. Ruthenium red and/or EGTA have complex effects on the release rate of Ca2+ and other cations induced by t-butyl hydroperoxide or N-ethylmaleimide. To determine the relationship between permeability changes and Ca2+ release in the absence of Ca2+ cycling, a novel method of data collection and analysis is developed which allows the relative time courses of Ca2+ release and Mg2+ release or swelling to be accurately and quantitatively compared. This method eliminates errors in time course comparisons which arise from the aging of mitochondrial preparations and allows data from different preparations to be directly contrasted. Using the method, it is shown that permeability changes caused by Ca2+-releasing agents are not secondary effects arising from Ca2+ cycling between uptake and release carriers. In the absence of Ca2+-cycling inhibitors, Ca2+ release induced by t-butyl hydroperoxide or N-ethylmaleimide is, in part, carrier-mediated. In the presence of EGTA and ruthenium red, Ca2+ release induced by either agent is mediated solely by the permeability pathway. No differences are apparent in the solute selectivity of the inner membrane permeability defect induced by Ca2+ plus t-butyl hydroperoxide or Ca2+ plus N-ethylmaleimide. A novel type of Ca2+ release from energized liver mitochondria is reported. This release is induced by EGTA, occurs in the absence of other releasing agents or nonspecific permeability changes, and is rapid (greater than or equal to 50 nmol/min/mg protein). 相似文献
11.
J Nedergaard 《European journal of biochemistry》1984,144(1):159-168
The presence and significance of Na+-induced Ca2+ release from rat liver mitochondria was investigated by the arsenazo technique. Under the experimental conditions used, the mitochondria, as expected, avidly extracted Ca2+ from the medium. However, when the uptake pathway was blocked with ruthenium red, only a small rate of 'basal' release of Ca2+ was seen (0.3 nmol Ca2+ X min-1 X mg-1), in marked contrast to earlier reports on a rapid loss of sequestered Ca2+ from rat liver mitochondria. The addition of Na+ in 'cytosolic' levels (20 mM) led to an increase in the release rate by about 1 nmol Ca2+ X min-1 X mg-1. This effect was specific for Na+. The significance of this Na+-induced Ca2+ release, in relation to the Ca2+ uptake mechanism, was investigated (in the absence of uptake inhibitors) by following the change in the extramitochondrial Ca2+ steady-state level (set point) induced by Na+. A five-fold increase in this level, from less than 0.2 microM to more than 1 microM, was induced by less than 20 mM Na+. The presence of K+ increased the sensitivity of the Ca2+ homeostat to Na+. The effect of Na+ on the extramitochondrial level was equally well observed in an K+/organic-anion buffer as in a sucrose buffer. Liver mitochondria incubated under these circumstances actively counteracted a Ca2+ or EGTA challenge by taking up or releasing Ca2+, so that the initial level, as well as the Na+-controlled level, was regained. It was concluded that liver mitochondria should be considered Na+-sensitive, that the capacity of the Na+-induced efflux pathway was of sufficient magnitude to enable it to influence the extramitochondrial Ca2+ level biochemically and probably also physiologically, and that the mitochondria have the potential to act as active, Na+-dependent regulators of extramitochondrial ('cytosolic') Ca2+. It is suggested that changes of cytosolic Na+ could be a mediator between certain hormonal signals (notably alpha 1-adrenergic) and changes in this extramitochondrial ('cytosolic') Ca2+ steady state level. 相似文献
12.
Baranov SV Stavrovskaya IG Brown AM Tyryshkin AM Kristal BS 《The Journal of biological chemistry》2008,283(2):665-676
Cytotoxicity associated with pathophysiological Ca(2+) overload (e.g. in stroke) appears mediated by an event termed the mitochondrial permeability transition (mPT). We built and solved a kinetic model of the mPT in populations of isolated rat liver mitochondria that quantitatively describes Ca(2+)-induced mPT as a two-step sequence of pre-swelling induction followed by Ca(2+)-driven, positive feedback, autocatalytic propagation. The model was formulated as two differential equations, each directly related to experimental parameters (Ca(2+) flux/mitochondrial swelling). These parameters were simultaneously assessed using a spectroscopic approach to monitor multiple mitochondrial properties. The derived kinetic model correctly identifies a correlation between initial Ca(2+) concentration and delay interval prior to mPT induction. Within the model's framework, Ru-360 (a ruthenium complex) and Mg(2+) were shown to compete with the Ca(2+)-stimulated initiation phase of mPT induction, consistent with known inhibition at the phenomenological level of the Ca(2+) uniporter. The model further reveals that Mg(2+), but not Ru-360, inhibits Ca(2+)-induced effects on a downstream stage of mPT induction at a site distinct from the uniporter. The analytical approach was then applied to promethazine, an FDA-approved drug previously shown to inhibit both mPT and ischemia-reperfusion injury. Kinetic analysis revealed that promethazine delayed mPT induction in a manner qualitatively distinct from that of lower concentrations of Mg(2+). In summary, we have developed a kinetic model to aid in the quantitative characterization of mPT induction. This model is consistent with/informative about the biochemistry of several mPT inhibitors, and its success suggests that this kinetic approach can aid in the classification of agents or targets that modulate mPT induction. 相似文献
13.
14.
Picard M Csukly K Robillard ME Godin R Ascah A Bourcier-Lucas C Burelle Y 《American journal of physiology. Regulatory, integrative and comparative physiology》2008,295(2):R659-R668
This study determined whether susceptibility to opening of the permeability transition pore (PTP) varies according to muscle phenotype represented by the slow oxidative soleus (Sol) and superficial white gastrocnemius (WG). Threshold for Ca2+-induced mitochondrial Ca2+ release following PTP opening was determined with a novel approach using permeabilized ghost myofibers. Threshold values for PTP opening were approximately threefold higher in fibers from WG compared with those from Sol (124+/-47 vs. 30.4+/-6.8 pmol Ca2+/mU citrate synthase). A similar phenomenon was also observed in isolated mitochondria (threshold: 121+/-60 vs. 40+/-10 nmol Ca2+/mg protein in WG and Sol), indicating that this was linked to differences in mitochondrial factors between the two muscles. The resistance of WG fibers to PTP opening was not related to the expression of putative protein modulators (cyclophilin D, adenylate nucleotide translocator-1, and voltage-dependent anion channels) or to difference in respiratory properties and occurred despite the fact that production of reactive oxygen species, which promote pore opening, was higher than in the Sol. However, endogenous matrix Ca2+ measured in mitochondria isolated under resting baseline conditions was approximately twofold lower in the WG than in the Sol (56+/-4 vs. 111+/-11 nmol/mg protein), which significantly accounted for the resistance of WG. Together, these results reveal fiber type differences in the sensitivity to Ca2+-induced PTP opening, which may constitute a physiological mechanism to adapt mitochondria to the differences in Ca2+ dynamics between fiber types. 相似文献
15.
电压门控钙通道受钙依赖性易化和失活两种相互对立的反馈机制调节.不同浓度的钙离子,通过作为钙感受器的钙调蛋白的介导,主要与钙通道α1亚基羧基端的多个不连续片段发生复杂的相互作用,分别引发钙依赖性易化和失活.钙/钙调蛋白依赖性蛋白激酶Ⅱ及其它钙结合蛋白等也参与此调节过程.新近研究表明,钙通道的钙依赖性调节机制失衡与心律失常等的发病机制密切相关. 相似文献
16.
We have studied the effects of rotenone in myoblasts from healthy donors and from patients with Ullrich congenital muscular dystrophy (UCMD), a severe muscle disease due to mutations in the genes encoding the extracellular matrix protein collagen VI. Addition of rotenone to normal myoblasts caused a very limited mitochondrial depolarization because the membrane potential was maintained by the F1FO synthase, as indicated by full depolarization following the subsequent addition of oligomycin. In UCMD myoblasts rotenone instead caused complete mitochondrial depolarization, which was followed by faster ATP depletion than in healthy myoblasts. Mitochondrial depolarization could be prevented by treatment with cyclosporin A and intracellular Ca(2+) chelators, while it was worsened by depleting Ca(2+) stores with thapsigargin. Thus, in UCMD myoblasts rotenone-induced depolarization is due to opening of the permeability transition pore rather than to inhibition of electron flux as such. These findings indicate that in UCMD myoblasts the threshold for pore opening is very close to the resting membrane potential, so that even a small depolarization causes permeability transition pore opening and precipitates ATP depletion. 相似文献
17.
Distinct Ca2+ thresholds determine cytochrome c release or permeability transition pore opening in brain mitochondria. 总被引:8,自引:0,他引:8
In diseases associated with neuronal degeneration, such as Alzheimer's or cerebral ischemia, the cytosolic Ca2+ concentration ([Ca2+]cyt) is pathologically elevated. It is still unclear, however, under which conditions Ca2+ induces either apoptotic or necrotic neuronal cell death. Studying respiration and morphology of rat brain mitochondria, we found that extramitochondrial [Ca2+] above 1 M causes reversible release of cytochrome c, a key trigger of apoptosis. This event was NO-independent but required Ca2+ influx into the mitochondrial matrix. The mitochondrial permeability transition pore (PTP), widely thought to underlie cytochrome c release, was not involved. In contrast to noncerebral tissue, only relatively high [Ca2+] (is approximately equal to 200 M) opened PTP and ruptured mitochondria. Our findings might reflect a fundamental mechanism to protect postmitotic neuronal tissue against necrotic devastation and inflammation. 相似文献
18.
Michael J. Devinney Latha M. Malaiyandi Olga Vergun Donald B. DeFranco Teresa G. Hastings Kirk E. Dineley 《Cell calcium》2009,45(5):447-455
Intracellular Zn2+ toxicity is associated with mitochondrial dysfunction. Zn2+ depolarizes mitochondria in assays using isolated organelles as well as cultured cells. Some reports suggest that Zn2+-induced depolarization results from the opening of the mitochondrial permeability transition pore (mPTP). For a more detailed analysis of this relationship, we compared Zn2+-induced depolarization with the effects of Ca2+ in single isolated rat liver mitochondria monitored with the potentiometric probe rhodamine 123. Consistent with previous work, we found that relatively low levels of Ca2+ caused rapid, complete and irreversible loss of mitochondrial membrane potential, an effect that was diminished by classic inhibitors of mPT, including high Mg2+, ADP and cyclosporine A. Zn2+ also depolarized mitochondria, but only at relatively high concentrations. Furthermore Zn2+-induced depolarization was slower, partial and sometimes reversible, and was not affected by inhibitors of mPT. We also compared the effects of Ca2+ and Zn2+ in a calcein-retention assay. Consistent with the well-documented ability of Ca2+ to induce mPT, we found that it caused rapid and substantial loss of matrix calcein. In contrast, calcein remained in Zn2+-treated mitochondria. Considered together, our results suggest that Ca2+ and Zn2+ depolarize mitochondria by considerably different mechanisms, that opening of the mPTP is not a direct consequence of Zn2+-induced depolarization, and that Zn2+ is not a particularly potent mitochondrial inhibitor. 相似文献
19.
The positioning and dynamics of organelles depend on membrane-cytoskeleton interactions. Mitochondria relocate along microtubules (MT), but it is not clear whether MT have direct effects on mitochondrial function. Using two-photon microscopy and the mitochondrial fluorescent dyes rhodamine 123 and Rhod-2, we showed that Taxol and nocodazole, which correspondingly stabilize and disrupt MT, decreased potential and Ca(2+) in the mitochondria of brain stem pre-Botzinger complex neurons. Without changing basal cytoplasmic Ca(2+) ([Ca(2+)](i)), Taxol promoted the generation of [Ca(2+)](i) spikes in dendrites. These spikes were abolished after blockade of Ca(2+) influx and after depletion of internal Ca(2+) stores, indicating the involvement of Ca(2+)-induced Ca(2+) release. Nocodazole decreased mitochondrial potential and [Ca(2+)](m) and produced a long lasting increase in [Ca(2+)](i). MT-acting drugs depolarized single immobilized mitochondria and released previously stored Ca(2+). All of these effects were inhibited by pretreatment with blockers of mitochondrial permeability transition pore (mPTP), cyclosporin A, and 2-aminoethoxydiphenyl borate. Induction of mPTP by Taxol and nocodazole was confirmed by using a calcein/Co(2+) imaging technique. Electron and optical microscopy revealed tubulin bound to mitochondria. Mitochondria, MT, and endoplasmic reticulum (ER) showed strong co-localization, the degree of which decreased after MT were disrupted. We propose that changes in the structure of MT by Taxol and nocodazole promote the induction of mPTP. Subsequent Ca(2+) efflux stimulates the Ca(2+) release from the ER that drives spontaneous [Ca(2+)](i) transients. Thus, close positioning of mitochondria to the ER as determined by MT can be essential for the local [Ca](i) signaling in neurons. 相似文献
20.
The efflux of Ca2+ from mitochondria respiring at steady state, and much of uncoupler-induced Ca2+ efflux, is shown to be a consequence of the Ca2+-induced membrane transition (the Ca2+-induced transition is the Ca2+-dependent sudden increase in the nonspecific permeability of the mitochondrial inner membrane which occurs spontaneously when mitochondria are incubated under a variety of conditions (D. R. Hunter, R. A. Haworth, and J. H. Southard, 1976, J. Biol. Chem.251, 5069–5077)). Ca2+ release from mitochondria respiring at steady state is shown to be transitional by four criteria: (1) Ca2+ release is inhibited by Mg2+, ADP, and bovine serum albumin (BSA), all inhibitors of the transition; (2) release is selective for Ca2+ over Sr2+, a selectivity also found for the transition; (3) the time course of Ca2+ release is identical to the time course of the change in the mitochondrial population from the aggregated to the orthodox configuration; and (4) from kinetics, Ca2+ release from individual mitochondria is shown to occur suddenly, following a lag period during which no release occurs. Ca2+ release induced by uncoupler is shown to be mostly by a transitional mechanism, as judged by four criteria: (1) release of Ca2+ is ruthenium red-insensitive and is an order of magnitude faster than Sr2+ release which is ruthenium red-sensitive; (2) release of Ca2+ is strongly inhibited by keeping the mitochondrial NAD+ reduced; (3) the kinetics of Ca2+ release indicates a transitional release mechanism; and (4) uncoupler addition triggers the aggregated to orthodox configurational transition which, at higher levels of Ca2+ uptake, occurs in the whole mitochondrial population at a rate equal to the rate of Ca2+ release. Na2+-induced Ca2+ release was not accompanied by a configurational change; we therefore conclude that it is not mediated by the Ca2+-induced transition. 相似文献