首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The methanogenic strain MM isolated from an anaerobic microbial community degrading p-toluene sulfonate showed optimal values of temperature and pH for growth equal to 37°C and 6.3–6.9, respectively. The doubling times of the isolate grown on methanol, acetate, and methylamines under the optimal conditions were 8.8, 19.1, and 10.3–28.1 h, respectively. The growth of strain MM was observed only when the cultivation medium contained casamino acids or p-toluene sulfonate. The G+C content of the DNA of the isolate was 40.3 mol %. This, together with DNA–DNA hybridization data, allowed the new isolate to be identified as a strain of the species Methanosarcina mazei. The new isolate differed from the known representatives of this species in that it was resistant to alkylbenzene sulfonates and able to demethylate p-toluene sulfonate when grown on acetate.  相似文献   

2.
3.
Acclimatization of Methanogenic Consortia for Low pH Biomethanation Process   总被引:2,自引:0,他引:2  
Methanogenic cultures were acclimatized to operate at low pHs and the efficiency of methane production at pH 5.0, 4.5 and 4.0 was 67, 37 and 34% respectively, compared to biomethanation at pH 7.0 (100% yield) with 55–65% methane in the biogas composition. Above pH 5.0, the efficiency of methane production was more than 75%. The data for most of the experiments are based on the observations carried out for more than 60 and 100 days. The control experiments of direct pH shock of 4.5 and 4.0 did not show any gas production and even at pH 5.5 production of methane was marginal.  相似文献   

4.
A simple model (termed the syntrophy model) for simulating the contribution of coaggregation to interspecies hydrogen fluxes between syntrophic bacteria and methanogenic archaea is described. We applied it to analyzing partially aggregated syntrophic cocultures with various substrates, revealing that large fractions of hydrogen molecules were fluxed in aggregates.  相似文献   

5.
6.
Three strains of Clostridium sp., 14 (VKM B-2201), 42 (VKM B-2202), and 21 (VKM B-2279), two methanogens, Methanobacterium formicicum MH (VKM B-2198) and Methanosarcina mazei MM (VKM B-2199), and one sulfate-reducing bacterium, Desulfovibrio sp. SR1 (VKM B-2200), were isolated in pure cultures from an anaerobic microbial community capable of degrading p-toluene sulfonate. Strain 14 was able to degrade p-toluene sulfonate in the presence of yeast extract and bactotryptone and, like strain 42, to utilize p-toluene sulfonate as the sole sulfur source with the production of toluene. p-Toluene sulfonate stimulated the growth of Ms. mazei MM on acetate. The sulfate-reducing strain Desulfovibrio sp. SR1 utilized p-toluene sulfonate as an electron acceptor. The putative scheme of p-toluene sulfonate degradation by the anaerobic microbial community is discussed.  相似文献   

7.
为了解决养殖水体中抗菌药物磺胺甲恶唑残留污染的问题,以抗菌药物磺胺甲恶唑为唯一碳源,通过连续4次传代富集,获得了磺胺甲恶唑降解菌群。通过16S V3-V4区高通量测序分析了每个代次的群落组成和丰度变化,推测了与磺胺甲恶唑降解相关的菌株信息,进一步连续分离纯化到了磺胺甲恶唑降解菌株LLE3。经16S rDNA及生理生化鉴定,初步将LLE3鉴定为鞘氨醇杆菌属(Sphingobacterium)菌株。对该菌进行了降解条件优化,在最优降解条件下(30 ℃,pH 7,接种浓度为5×107 CFU·mL-1),该菌7 d内对50 mg·L-1的磺胺甲恶唑降解效率可达93.7%。运用高效液相色谱与质谱联用鉴定了菌株LLE3降解后的代谢产物为N-\[4-(1,2-恶唑-3-基氨磺酰基)苯基\]乙酰胺。研究结果为磺胺甲恶唑污染的水体和土壤环境修复提供了优良的微生物资源。  相似文献   

8.
Microbially enhanced coalbed methane technology must be used to increase the methane content in mining and generate secondary biogenic gas. In this technology, the metabolic processes of methanogenic consortia are the basis for the production of biomethane from some of the organic compounds in coal. Thus, culture nutrition plays an important role in remediating the nutritional deficiency of a coal seam. To enhance the methane production rates for microorganism consortia, different types of nutrition solutions were examined in this study. Emulsion nutrition solutions containing a novel nutritional supplement, called dystrophy optional modification latex, increased the methane yield for methanogenic consortia. This new nutritional supplement can help methanogenic consortia form an enhanced anaerobic environment, optimize the microbial balance in the consortia, and improve the methane biosynthesis rate.  相似文献   

9.
五氯苯酚厌氧生物降解及降解体系中细菌种群结构分析   总被引:1,自引:0,他引:1  
研究了不同外加碳源作为共代谢基质及氢气作为电子供体条件下PCP的厌氧生物降解特性,并借助末端限制性片段长度多态性技术(T-RFLP)分析了PCP降解菌群的微生物群落结构.结果表明,添加外加碳源及以氢气作为电子供体均对PCP降解有显著促进作用.添加葡萄糖、丙酮酸、酵母膏和氢气时的降解率分别为71%、56%、51%和74%.微生物群落结构分析表明,不同处理条件下PCP降解菌群微生物群落结构不同.PCP降解菌群中可能存在Clostridium.Frankia和Desulfitobacterium等属的微生物.  相似文献   

10.
Cellulose degradation, fermentation, sulfate reduction, and methanogenesis are microbial processes that coexist in a variety of natural and engineered anaerobic environments. Compared to the study of 16S rRNA genes, the study of the genes encoding the enzymes responsible for these phylogenetically diverse functions is advantageous because it provides direct functional information. However, no methods are available for the broad quantification of these genes from uncultured microbes characteristic of complex environments. In this study, consensus degenerate hybrid oligonucleotide primers were designed and validated to amplify both sequenced and unsequenced glycoside hydrolase genes of cellulose-degrading bacteria, hydA genes of fermentative bacteria, dsrA genes of sulfate-reducing bacteria, and mcrA genes of methanogenic archaea. Specificity was verified in silico and by cloning and sequencing of PCR products obtained from an environmental sample characterized by the target functions. The primer pairs were further adapted to quantitative PCR (Q-PCR), and the method was demonstrated on samples obtained from two sulfate-reducing bioreactors treating mine drainage, one lignocellulose based and the other ethanol fed. As expected, the Q-PCR analysis revealed that the lignocellulose-based bioreactor contained higher numbers of cellulose degraders, fermenters, and methanogens, while the ethanol-fed bioreactor was enriched in sulfate reducers. The suite of primers developed represents a significant advance over prior work, which, for the most part, has targeted only pure cultures or has suffered from low specificity. Furthermore, ensuring the suitability of the primers for Q-PCR provided broad quantitative access to genes that drive critical anaerobic catalytic processes.The gene encoding the 16S small ribosomal subunit has served as a highly suitable target for studying bacterial species. When one obtains 16S rRNA gene sequence information, it is sometimes possible to infer function from an identical match to a well-characterized pure culture. More commonly, however, the similarity to pure cultures is low, and/or the highest similarities correspond to 16S rRNA gene sequences identified without isolation or phenotypic characterization. In either case, care must be taken, because distinct phenotypes [e.g., dissimilatory Fe(III) reduction, chlorate reduction] are found in microorganisms with highly similar (e.g., 99.5%) 16S rRNA gene sequences (1). In addition, 16S rRNA gene surveys of broad phylogenetic groups can be time-, labor-, and cost-intensive. For example, it is estimated that the 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing bacteria (SRB) would require approximately 132 16S rRNA gene-targeted microarray probes (32).A more-direct approach for the study of microbes that span phylogenetic groups is to target them as a physiologically coherent guild by using specific genetic markers (functional genes) for the functions of interest. Functional genes have been successfully targeted in bioremediation studies to investigate microbial populations responsible for the degradation of various contaminants. Some examples include the use of the large alpha subunit of benzylsuccinate synthase to monitor anaerobic hydrocarbon-degrading bacteria (5), the monitoring of ars genes for the identification and quantification of arsenic-metabolizing bacteria (45), and the detection of catechol 1,2-dioxygenase in aromatic-hydrocarbon-degrading Rhodococcus spp. (48). In the field of mine drainage/metal remediation, functional genes have been used to target SRB (17, 26), but the methods have suffered both from a lack of broad specificity for SRB and from the inability to distinguish SRB from sulfur-oxidizing bacteria (SOB). A general challenge to the functional-gene approach has been the relative lack of characterization and unavailability of target sequences. As a consequence, the primer sets that are available tend to be more relevant to pure cultures than to complex environmental samples.Microbial communities in natural and engineered anaerobic environments that utilize cellulose as the primary carbon source, such as those in rumina (56), termite guts (54), decomposing wood (7), sulfate-reducing and methanogenic sediments (9, 22), wetlands (28), and sulfate-reducing bioreactors (26), are particularly challenging to characterize. 16S rRNA gene-based studies have revealed the complexity of these microbial communities and their high levels of phylogenetic and functional diversity. In such anaerobic environments, mineralization of complex organic matter occurs through the concerted action of a variety of microorganisms. Primary fermenters, such as cellulose degraders, break down the complex molecules and ferment the hydrolysis products. Secondary fermenters also ferment the hydrolysis products. When sulfate is available, SRB utilize the fermentation products as carbon and energy sources. In addition, methanogens can also utilize some of the fermentation products. In many cases, functionally important members, such as SRB, are present only as a small fraction of the community (36, 38), making them difficult to detect by use of 16S rRNA gene-targeted fingerprinting methods. Furthermore, the phylogenetic diversity of cellulose degraders, fermenters, and SRB prevents their quantification using a small number of 16S rRNA gene-targeted probes.In this study, degenerate PCR primers were developed, validated, and demonstrated for the amplification of key functional groups in anaerobic environments possessing genes encoding glycoside hydrolases of families 5 (collectively designated cel5 in this study) and 48 (collectively designated cel48 in this study) (cellulose degradation), the alpha subunit of iron hydrogenase (hydA) (fermentation), dissimilatory sulfite reductase (dsrA) (sulfate reduction), and methyl coenzyme M reductase (mcrA) (methanogenesis). This work is particularly novel considering that the vast majority of existing methods are suitable only for pure cultures, especially in the cases of cel5, cel48, and hydA (21, 44, 47). Thus, the approach provides access to uncultured and unsequenced markers, a critical feature for the study of key anaerobic processes in complex environments. Specificity was also enhanced where possible, notably in the case of dsrA, for which existing primers either do not distinguish SRB from SOB (14, 17) or have good alignment with only a narrow range of SRB (31, 52). Finally, all primers in this study were designed and validated for quantitative PCR (Q-PCR), in order to provide valuable quantitative functional information about complex anaerobic communities. The approach is demonstrated on mine drainage remediation systems and is expected to be of broad value to a variety of fields, including advancing the understanding of biohydrogen production, global carbon cycling, and other important biogeochemical processes.  相似文献   

11.
12.
Microorganisms in nature do not exist in isolation but rather interact with other species in their environment. Some microbes interact via syntrophic associations, in which the metabolic by-products of one species serve as nutrients for another. These associations sustain a variety of natural communities, including those involved in methanogenesis. In anaerobic syntrophic communities, energy is transferred from one species to another, either through direct contact and exchange of electrons, or through small molecule diffusion. Thermodynamics plays an important role in governing these interactions, as the oxidation reactions carried out by the first community member are only possible because degradation products are consumed by the second community member. This work presents the development and analysis of genome-scale network reconstructions of the bacterium Syntrophobacter fumaroxidans and the methanogenic archaeon Methanospirillum hungatei. The models were used to verify proposed mechanisms of ATP production within each species. We then identified additional constraints and the cellular objective function required to match experimental observations. The thermodynamic S. fumaroxidans model could not explain why S. fumaroxidans does not produce H2 in monoculture, indicating that current methods might not adequately estimate the thermodynamics, or that other cellular processes (e.g., regulation) play a role. We also developed a thermodynamic coculture model of the association between the organisms. The coculture model correctly predicted the exchange of both H2 and formate between the two species and suggested conditions under which H2 and formate produced by S. fumaroxidans would be fully consumed by M. hungatei.  相似文献   

13.
Abstract The biodegradation of a mixture of several creosote-related compounds, p-cresol, phenanthrene, fluorene, and carbazole was examined in columns containing aquifer sands. The aquifer material, itself, had an effect on the migration of the test compounds, with p-cresol being retarded the least, followed by carbazole, then fluorene, and finally phenanthrene. The biodegradation of all the compounds was greatly enhanced by the inclusion of p-cresol (10 ppm) in the substrate mixture. Associated with this enhanced degradation was a 100-fold increase in the total culturable bacterial population, and increases in the xylE- and ndoB-positive bacterial populations of more than three orders of magnitude. The products of these two genes are involved in the degradation of monocyclic and polycyclic aromatic compounds, respectively. In columns that did not receive p-cresol, there was no significant change in either the total culturable bacterial population density or the xylE-positive bacterial population, but there were significant increases of one to two orders of magnitude in the ndoB-positive bacterial populations. The results suggest that the ndoB gene probe can detect bacteria capable of utilizing phenanthrene, carbazole, and possibly fluorene. Received: 26 January 1996; Accepted: 20 June 1996  相似文献   

14.
Methanogenic bioreactor communities were used as model ecosystems to evaluate the relationship between functional stability and community structure. Replicated methanogenic bioreactor communities with two different community structures were established. The effect of a substrate loading shock on population dynamics in each microbial community was examined by using morphological analysis, small-subunit (SSU) rRNA oligonucleotide probes, amplified ribosomal DNA (rDNA) restriction analysis (ARDRA), and partial sequencing of SSU rDNA clones. One set of replicated communities, designated the high-spirochete (HS) set, was characterized by good replicability, a high proportion of spiral and short thin rod morphotypes, a dominance of spirochete-related SSU rDNA genes, and a high percentage of Methanosarcina-related SSU rRNA. The second set of communities, designated the low-spirochete (LS) set, was characterized by incomplete replicability, higher morphotype diversity dominated by cocci, a predominance of Streptococcus-related and deeply branching Spirochaetales-related SSU rDNA genes, and a high percentage of Methanosaeta-related SSU rRNA. In the HS communities, glucose perturbation caused a dramatic shift in the relative abundance of fermentative bacteria, with temporary displacement of spirochete-related ribotypes by Eubacterium-related ribotypes, followed by a return to the preperturbation community structure. The LS communities were less perturbed, with Streptococcus-related organisms remaining prevalent after the glucose shock, although changes in the relative abundance of minor members were detected by morphotype analysis. A companion paper demonstrates that the more stable LS communities were less functionally stable than the HS communities (S. A. Hashsham, A. S. Fernandez, S. L. Dollhopf, F. B. Dazzo, R. F. Hickey, J. M. Tiedje, and C. S. Criddle, Appl. Environ. Microbiol. 66:4050–4057, 2000).  相似文献   

15.
16.
油菜秸秆混合发酵降解菌的筛选   总被引:3,自引:0,他引:3  
油菜秸秆含有大量木质纤维素,该类物质结构稳定,不易降解,限制了其工业化应用.通过对10株包括细菌、酵母菌和白腐真菌的菌株产酶能力和特性进行比较,并进行共同培养试验,筛选出5株可共同生长的木质纤维素降解菌BS09、BL、PC、TS和KS.通过对这5个菌株单独发酵降解油菜秸秆的能力考察,结果表明:PC对木质纤维素的降解能力...  相似文献   

17.
This study was performed with a laboratory-scale fixed-bed bioreactor degrading a mixture of aromatic compounds (Solvesso100). The starter culture for the bioreactor was prepared in a fermentor with a wastewater sample of a car painting facility as the inoculum and Solvesso100 as the sole carbon source. The bacterial community dynamics in the fermentor and the bioreactor were examined by a conventional isolation procedure and in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotides. Two significant shifts in the bacterial community structure could be demonstrated. The original inoculum from the wastewater of the car factory was rich in proteobacteria of the alpha and beta subclasses, while the final fermentor enrichment was dominated by bacteria closely related to Pseudomonas putida or Pseudomonas mendocina, which both belong to the gamma subclass of the class Proteobacteria. A second significant shift was observed when the fermentor culture was transferred as inoculum to the trickle-bed bioreactor. The community structure in the bioreactor gradually returned to a higher complexity, with the dominance of beta and alpha subclass proteobacteria, whereas the gamma subclass proteobacteria sharply declined. Obviously, the preceded pollutant adaptant did not lead to a significant enrichment of bacteria that finally dominated in the trickle-bed bioreactor. In the course of experiments, three new 16S as well as 23S rRNA-targeted probes for beta subclass proteobacteria were designed, probe SUBU1237 for the genera Burkholderia and Sutterella, probe ALBO34a for the genera Alcaligenes and Bordetella, and probe Bcv13b for Burkholderia cepacia and Burkholderia vietnamiensis. Bacteria hybridizing with the probe Bcv13b represented the main Solvesso100-degrading population in the reactor.Many branches of industry produce waste gases which contain odorous organic and inorganic components. Apart from the conventional thermal and physicochemical techniques for removal of pollutants from exhaust air, biological waste gas treatment is becoming more and more important. This kind of treatment is advantageous in cases in which the recovery of the components (e.g., absorption in liquids and adsorption in solids) or the utilization of a thermal process (thermal or catalytic combustion) is not economical. Today three different process variations for biological waste gas treatment are used: biofilters, bioscrubbers, and trickle-bed bioreactors. In biofilters and trickle-bed reactors, the pollutant-degrading microorganisms are immobilized on a carrier material, whereas in bioscrubbers the microorganisms are dispersed in the liquid phase. Biofilters and bioscrubbers are preferred in industry, while biofilters are common in compost production and sewage plants (10).Biological waste gas treatment has a long tradition. Already in 1953, a soil system was employed for the treatment of odorous sewer exhaust gases in Long Beach, Calif. (25), and although up to now a lot of efforts have been funneled into process engineering (14, 17, 18, 24), current knowledge of the involved microorganisms is still very limited. Diversity of the microbial communities in the bioreactors for the exhaust gas purification have mostly been analyzed by culture-dependent methods (9, 12, 28, 31). However, there is a large discrepancy between the total (direct) microscopic cell counts and viable plate counts in many ecosystems and every cultivation medium selects for certain microorganisms. Therefore, cultivation-based studies of bacterial populations may give wrong impressions of the actual community structure in an ecosystem (35). A possible means of avoiding qualitative and quantitative errors in the analysis of microbial community structure in complex ecosystems is the use of fluorescently labeled, rRNA-targeted oligonucleotides (5) for the in situ identification and enumeration of bacteria. This method has already been used successfully in complex microbial communities, such as multispecies biofilms (6, 22, 26), trickling filters (27), and activated sludge (37).The current study was performed with a laboratory-scale trickle-bed bioreactor degrading a mixture of aromatic compounds (Solvesso100). The starter culture for the inoculation of the bioreactor was an enrichment prepared in a fermentor which was itself started with a wastewater sample from a car painting factory as the inoculum and Solvesso100 as the sole carbon source. The goal of our study was to use for the first time fluorescent in situ hybridization (FISH) to investigate the microbial community structure and dynamics in the fermentor and the bioreactor during start-up. One of the open questions was whether the fermentor enrichment, which is done in suspension, indeed selects for those bacteria that later are immobilized in the bioreactor. In the course of this study, new 16S as well as 23S rRNA-targeted probes for phylogenetic groups within the beta subclass of the class Proteobacteria have been developed and applied in order to obtain a higher taxonomic resolution of the molecular techniques. The molecular data were compared to those obtained by traditional cultivation-dependent techniques.  相似文献   

18.
Methanogenic degradation of organic matter is an important microbial process in lake sediments. Temperature may affect not only the rate but also the pathway of CH4 production by changing the activity and the abundance of individual microorganisms. Therefore, we studied the function and structure of a methanogenic community in anoxic sediment of Lake Dagow, a eutrophic lake in north-eastern Germany. Incubation of sediment samples (in situ 7.5°C) at increasing temperatures (4, 10, 15, 25, 30°C) resulted in increasing production rates of CH4 and CO2 and in increasing steady-state concentrations of H2. Thermodynamic conditions for H2/CO2 -dependent methanogenesis were only exergonic at 25 and 30°C. Inhibition of methanogenesis with chloroform resulted in the accumulation of methanogenic precursors, i.e., acetate, propionate, and isobutyrate. Mass balance calculations indicated that less CH4 was formed via H2 at 4°C than at 30°C. Conversion of 14CO2 to 14CH4 also showed that H2/CO2 -dependent methanogenesis contributed less to total CH4 production at 4°C than at 30°C. [2–14 C]Acetate turnover rates at 4°C accounted for a higher percentage of total CH4 production than at 30°C. Collectively, these results showed a higher contribution of H2-dependent methanogenesis and a lower contribution of acetate-dependent methanogenesis at high versus low temperature. The archaeal community was characterized by cloning, sequencing, and phylogenetic analysis of the 16S rRNA genes retrieved from the sediment. Sequences were affiliated with Methanosaetaceae, Methanomicrobiaceae, and three deeply branching euryarchaeotal clusters, i.e., group III, Rice cluster V, and a novel euryarchaeotal cluster, the LDS cluster. Terminal restriction fragment length polymorphism (T-RFLP) analysis showed that 16S rRNA genes affiliated to Methanosaetaceae (20–30%), Methanomicrobiaceae (35–55%), and group III (10–25%) contributed most to the archaeal community. Incubation of the sediment at different temperatures (4–30°C) did not result in a systematic change of the archaeal community composition, indicating that change of temperature primarily affected the activity rather than the structure of the methanogenic community.  相似文献   

19.
Temperature is an important factor controlling CH4 production in anoxic rice soils. Soil slurries, prepared from Italian rice field soil, were incubated anaerobically in the dark at six temperatures of between 10 to 37°C or in a temperature gradient block covering the same temperature range at intervals of 1°C. Methane production reached quasi-steady state after 60 to 90 days. Steady-state CH4 production rates increased with temperature, with an apparent activation energy of 61 kJ mol−1. Steady-state partial pressures of the methanogenic precursor H2 also increased with increasing temperature from <0.5 to 3.5 Pa, so that the Gibbs free energy change of H2 plus CO2-dependent methanogenesis was kept at −20 to −25 kJ mol of CH4−1 over the whole temperature range. Steady-state concentrations of the methanogenic precursor acetate, on the other hand, increased with decreasing temperature from <5 to 50 μM. Simultaneously, the relative contribution of H2 as methanogenic precursor decreased, as determined by the conversion of radioactive bicarbonate to 14CH4, so that the carbon and electron flow to CH4 was increasingly dominated by acetate, indicating that psychrotolerant homoacetogenesis was important. The relative composition of the archaeal community was determined by terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes (16S rDNA). T-RFLP analysis differentiated the archaeal Methanobacteriaceae, Methanomicrobiaceae, Methanosaetaceae, Methanosarcinaceae, and Rice clusters I, III, IV, V, and VI, which were all present in the rice field soil incubated at different temperatures. The 16S rRNA genes of Rice cluster I and Methanosaetaceae were the most frequent methanogenic groups. The relative abundance of Rice cluster I decreased with temperature. The substrates used by this microbial cluster, and thus its function in the microbial community, are unknown. The relative abundance of acetoclastic methanogens, on the other hand, was consistent with their physiology and the acetate concentrations observed at the different temperatures, i.e., the high-acetate-requiring Methanosarcinaceae decreased and the more modest Methanosaetaceae increased with increasing temperature. Our results demonstrate that temperature not only affected the activity but also changed the structure and the function (carbon and electron flow) of a complex methanogenic system.  相似文献   

20.
Soil temperatures in Italian rice fields typically range between about 15 and 30°C. A change in the incubation temperature of anoxic methanogenic soil slurry from 30°C to 15°C typically resulted in a decrease in the CH4 production rate, a decrease in the steady-state H2 partial pressure, and a transient accumulation of acetate. Previous experiments have shown that these changes were due to an alteration of the carbon and electron flow in the methanogenic degradation pathway of organic matter caused by the temperature shift (K. J. Chin and R. Conrad, FEMS Microbiol. Ecol. 18:85–102, 1995). To investigate how temperature affects the structure of the methanogenic archaeal community, total DNA was extracted from soil slurries incubated at 30 and 15°C. The archaeal small-subunit (SSU) rRNA-encoding genes (rDNA) of these environmental DNA samples were amplified by PCR with an archaeal-specific primer system and used for the generation of clone libraries. Representative rDNA clones (n = 90) were characterized by terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis. T-RFLP analysis produced for the clones terminally labeled fragments with a characteristic length of mostly 185, 284, or 392 bp. Sequence analysis allowed determination of the phylogenetic affiliation of the individual clones with their characteristic T-RFLP fragment lengths and showed that the archaeal community of the anoxic rice soil slurry was dominated by members of the families Methanosarcinaceae (185 bp) and Methanosaetaceae (284 bp), the kingdom Crenarchaeota (185 or 284 bp), and a novel, deeply branching lineage of the (probably methanogenic) kingdom Euryarchaeota (392 bp) that has recently been detected on rice roots (R. Großkopf, S. Stubner, and W. Liesack, Appl. Environ. Microbiol. 64:4983–4989, 1998). The structure of the archaeal community changed when the temperature was shifted from 30°C to 15°C. Before the temperature shift, the clones (n = 30) retrieved from the community were dominated by Crenarchaeota (70%), “novel Euryarchaeota” (23%), and Methanosarcinacaeae (7%). Further incubation at 30°C (n = 30 clones) resulted in a relative increase in members of the Methanosarcinaceae (77%), whereas further incubation at 15°C (n = 30 clones) resulted in a much more diverse community consisting of 33% Methanosarcinaceae, 23% Crenarchaeota, 20% Methanosaetaceae, and 17% novel Euryarchaeota. The appearance of Methanosaetaceae at 15°C was conspicuous. These results demonstrate that the structure of the archaeal community in anoxic rice field soil changed with time and incubation temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号