首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
纳冬梅  孙强  曹坪  张宏  徐波 《生物磁学》2011,(10):1847-1850
目的:通过检测SD大鼠脑缺血再灌注模型血清中血管内皮生长因子(VEGF)与神经元凋亡动态表迭变化的关系,以探讨两者之间的相关性。方法:将40只大鼠随机分为8组:对照组、假手术组和脑缺血30min再灌注12h组、1d组、3d组、5d组、7d组、及14d组,每组5只。采用ELISA双抗夹心法检测大鼠血清中血管内皮生长因子、原位细胞凋亡TUNEL法检测脑组织中的凋亡神经细胞数。结果:再灌注12h、1d、3d、5d、7d及14d大鼠血清VEGF表达和凋亡神经元百分比的变化均为负相关性(均为P〈0.05)。结论:在脑缺血再灌注大鼠模型中,缺血诱导使VEGF的表达发生变化,VEGF通过直接或间接的途径抑制神经元凋亡。  相似文献   

3.
目的研究大鼠局灶性脑缺血再灌注损伤后细胞周期蛋白依赖性激酶抑制因子P21cip1在神经元和星形胶质细胞的表达。方法建立大鼠大脑中动脉阻塞(MCAo)再灌注模型,应用流式细胞术检测各组MCAo再灌注后不同时期神经元和星形胶质细胞中的P21cip1的表达。结果缺血侧皮层区星形胶质细胞和神经元中的P21cip1的表达在再灌注3d、7d、14d后表达下调,与假手术组比较有显著性差异(P<0.05);神经元中的P21cip1的表达和星形胶质细胞中的P21cip1的表达无显著性差异(P>0.05)。结论局灶性脑缺血再灌注损伤后,缺血侧皮层区星形胶质细胞和神经元的p21cip1表达下调。  相似文献   

4.
The present study was designed to evaluate the potential role of miR-93 in cerebral ischemic/reperfusion (I/R) injury in mice. The stroke model was produced in C57BL/6 J mice via middle cerebral artery occlusion (MCAO) for 1 h followed by reperfusion. And miR-93 antagomir was transfected to down-regulate the miR-93 level. Our results showed that miR-93 levels in the cerebral cortex of mice increased at 24 and 48 h after reperfusion. Importantly, in vivo study demonstrated that treatment with miR-93 antagomir reduced cerebral infarction volume, neural apoptosis and restored the neurological scores. In vitro study demonstrated that miR-93 antagomir attenuated hydrogen peroxide (H2O2)-induced injury. Moreover, miR-93 antagomir suppressed oxidative stress in I/R brain and H2O2 treated cortical neurons. Furthermore, we founded that down-regulation of miR-93 increased the expression of nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase-1 (HO-1) and the luciferase reporter assay confirmed that miR-93 directly binds to the predicted 3′-UTR target sites of the nrf2 gene. Finally, we found that knockdown of Nrf2 or HO-1 abolished miR-93 antagomir-induced neuroprotection against oxidative stress in H2O2 treated neuronal cultures. These results suggested that miR-93 antagomir alleviates ischemic injury through the Nrf2/HO-1 antioxidant pathway.  相似文献   

5.
Peroxisome proliferator-activated receptor-γ (PPAR-γ) has recently emerged as potential therapeutic agents for cerebral ischemia-reperfusion (I/R) injury because of anti-neuronal apoptotic actions. However, whether PPAR-γ activation mediates neuronal autophagy in such conditions remains unclear. Therefore, in this study, we investigated the role of PPAR-γ agonist 15-PGJ2 on neuronal autophagy induced by I/R. The expression of autophagic-related protein in ischemic cortex such as LC3-II, Beclin 1, cathepsin-B and LAMP1 increased significantly after cerebral I/R injury. Furthermore, increased punctate LC3 labeling and cathepsin-B staining occurred in neurons. Treatment with PPAR-γ agonist 15d-PGJ2 decreased not only autophagic-related protein expression in ischemic cortex, but also immunoreactivity of LC3 and cathepsin-B in neurons. Autophagic inhibitor 3-methyladenine (3-MA) decreased LC3-II levels, reduced the infarct volume, and mimicked some protective effect of 15d-PGJ2 against cerebral I/R injury. These results indicate that PPAR-γ agonist 15d-PGJ2 exerts neuroprotection by inhibiting neuronal autophagy after cerebral I/R injury. Although the molecular mechanisms underlying PPAR-γ agonist in mediating neuronal autophagy remain to be determined, neuronal autophagy may be a new target for PPAR-γ agonist treatment in cerebral I/R injury.  相似文献   

6.
Zong XM  Zeng YM  Xu T  Lü JN 《生理学报》2003,55(5):565-570
实验应用开阔法、组织病理学方法、原位末端标记(in situ terminal deoxynucleotidyl transferase-metliated de-oxy-UTP mick end labeling,TUNEL)法及免疫组织化学等方法,探讨多巴胺D1、D2受体激动剂和拮抗剂对沙土鼠前脑缺血/再灌注损伤海马CA1区神经元凋亡及凋亡相关基因bcl-2、bax表达的影响。结果显示:前脑缺血5min可引起沙土鼠探索活动增加;再灌注3d,海马CA1区约95%的锥体细胞凋亡;再灌注7d,海马CA1区仅残存约2%—7%的存活锥体细胞;前脑缺血5min可抑制bcl-2的表达并诱导bax表达增高;预先应用D2受体激动剂培高利特可减轻缺血后沙土鼠行为学异常、抑制海马CA1区锥体细胞凋亡、提高锥体细胞存活数、显著诱导bcl-2的表达并抑制bax的表达。预先应用SKF38393、SCH23390及螺哌隆对以上结果无明显影响。实验结果提示,培高利特具有确切的脑保护作用,诱导bcl-2并抑制bax的表达可能是其脑保护作用机制之一。  相似文献   

7.
目的:探讨电针促进局灶脑缺血/再灌注后缺血海马区血管再生的机制。方法180只雄性SD大鼠随机分为假手术组、模型组、电针组、CXCR4特异性拮抗剂AMD3100药物组、AMD3100+电针组。线栓法制备右侧局灶脑缺血/再灌注模型。取大鼠“百会”穴( GV 20)及左侧“四关”穴(合谷LI 4/太冲LR 3)为电针穴位,刺激时间为30 min/d。采用逆转录聚合酶链反应法( RT-PCR)检测各组缺血海马区SDF-1α、CXCR4 mRNA表达,免疫荧光双标法检测CD34+VEGFR2+EPCs源性血管的表达。结果与假手术组比较,模型组与电针组SDF-1α、CX-CR4 mRNA表达明显增高(P<0.05),其中电针组各时间点相对模型组增高更为显著(P<0.05)。 AMD3100+电针组缺血海马SDF-1α、CXCR4 mRNA表达在再灌注后1 d时明显高于电针组( P<0.05),但后逐渐下降,7 d时明显低于电针组( P<0.01)。与模型组比较,电针组再灌注3 d、7 d海马CD34+VEGFR2+EPCs源性血管表达明显增多( P<0.05)。与电针组比较,AMD3100+电针组再灌注后7 d CD34+VEGFR2+EPCs源性血管表达明显下降( P<0.01)。 CD34+VEGFR2+血管表达变化与SDF-1α的表达变化显著相关(R=0.784,P<0.01)。结论电针可通过上调局灶脑缺血/再灌注大鼠缺血海马区SDF-1α/CXCR4的表达,促进血管再生。  相似文献   

8.
Although Butylphthalide (BP) has protective effects that reduce ischemia-induced brain damage and neuronal cell death, little is known about the precise mechanisms occurring during cerebral ischemia/reperfusion (I/R). Therefore, the aim of this study was to investigate the neuroprotective mechanisms of BP against ischemic brain injury induced by cerebral I/R through inhibition of the c-Jun N-terminal kinase (JNK)–Caspase3 signaling pathway. BP in distilled non-genetically modified Soybean oil was administered intragastrically three times a day at a dosage of 15 mg/(kg day) beginning at 20 min after I/R in Sprague–Dawley rats. Immunohistochemical staining and Western blotting were performed to examine the expression of related proteins, and TUNEL-staining was used to detect the percentage of neuronal apoptosis in the hippocampal CA1 region. The results showed that BP could significantly protect neurons against cerebral I/R-induced damage. Furthermore, the expression of p-JNK, p-Bcl2, p–c-Jun, FasL, and cleaved-caspase3 was also decreased in the rats treated with BP. In summary, our results imply that BP could remarkably improve the survival of CA1 pyramidal neurons in I/R-induced brain injury and inhibit the JNK–Caspase3 signaling pathway.  相似文献   

9.
目的:探讨大鼠脑缺血再灌注后线粒体通路第二种天冬氨酸特异性半胱氨酸蛋白酶激活物(Smac)、凋亡抑制蛋白(XIAP)和凋亡蛋白酶(caspase)-9的表达变化及活血通络方的干预作用机理。方法:将大鼠随机分成模型组、活血通络组,大脑中动脉栓塞再通法建立脑缺血再灌注模型。大鼠脑缺血再灌注6、12、24和48 h不同时间点进行神经功能评分,用免疫组化法检测Smac、XIAP和caspase-9阳性细胞数。结果:缺血再灌注后6 h模型组神经功能症状积分升高,缺血半暗带皮质内神经元凋亡增多,Smac、XIAP和caspase-9蛋白的表达亦有明显上升,再灌注12 h达高峰(P〈0.05,P〈0.01),随后出现下降。活血通络方能显著降低神经功能症状积分,减少神经元凋亡,促进XIAP表达,下调Smac和caspase-9表达(P〈0.01,P〈0.05)。结论:脑缺血再灌注后脑组织Smac、XIAP和caspase-9蛋白的表达均明显增加,提示它们可能在脑缺血再灌注损伤中发挥重要作用,活血通络方可能通过促进XIAP并抑制Smac、caspase-9表达保护神经元及神经功能。  相似文献   

10.
The molecular mechanism underlying the selective vulnerability of neurons to oxidative damage caused by ischemia—reperfusion (I/R) injury remains unknown. We sought to determine the role of NADPH oxidase 1 (Nox1) in cerebral I/R-induced brain injury and survival of newborn cells in the ischemic injured region. Male Wistar rats were subjected to 90 min middle cerebral artery occlusion (MCAO) followed by reperfusion. After reperfusion, infarction size, level of superoxide and 8-hydroxy-2′-deoxyguanosine (8-oxo-2dG), and Nox1 immunoreactivity were determined. RNAi-mediated knockdown of Nox1 was used to investigate the role of Nox1 in I/R-induced oxidative damage, neuronal death, motor function recovery, and ischemic neurogenesis. After I/R, Nox1 expression and 8-oxo-2dG immunoreactivity was increased in cortical neurons of the peri-infarct regions. Both infarction size and neuronal death in I/R injury were significantly reduced by adeno-associated virus (AAV)-mediated transduction of Nox1 short hairpin RNA (shRNA). AAV-mediated Nox1 knockdown enhanced functional recovery after MCAO. The level of survival and differentiation of newborn cells in the peri-infarct regions were increased by Nox1 inhibition. Our data suggest that Nox-1 may be responsible for oxidative damage to DNA, subsequent cortical neuronal degeneration, functional recovery, and regulation of ischemic neurogenesis in the peri-infarct regions after stroke.  相似文献   

11.
目的比较研究大鼠局灶性脑缺血再灌注后神经元和星形胶质细胞的凋亡规律。方法建立大鼠大脑中动脉阻塞(middle cerebral artery occlusion,MCAO)再灌注模型,在缺血再灌注后1、3、7、14d断头取脑,应用流式细胞分选技术和原位末端标记法分别检测各组MCAO后不同时期神经元和星形胶质细胞凋亡情况。结果局灶性脑缺血再灌注后,海马区星形胶质细胞凋亡数量超过神经元,其凋亡以再灌注3d最为显著,而神经元则以7d最为显著;而皮层区神经元凋亡数量超过星形胶质细胞,两种细胞凋亡均在再灌注后7d达高峰。结论脑缺血再灌注后,皮层和海马区的神经元及星形胶质细胞均可发生凋亡,海马区星形胶质细胞比皮层区更易凋亡,而皮层区神经元比海马区更易凋亡。  相似文献   

12.
目的:探讨姜黄素对自发性高血压大鼠(SHR)脑缺血/再灌注后认知功能及海马神经元损伤和调解活化正常T细胞表达和分泌的趋化因子(RANTES)表达的影响。方法:雄性Wistar-Kyoto大鼠(WKY)和SHR,随机分为5组:假手术组(W-Sham、S-Sham)、缺血/再灌注组(W-I/R、S-I/R)和姜黄素组(S-Cur),各组按再灌注时间分为3h、12 h、1 d、3 d、7 d 5个亚组(n=6)。采用四血管阻断法制备全脑缺血/再灌注模型,HE染色观察海马CA1区神经细胞形态,Nissl染色计数海马CA1区平均锥体细胞密度,ELISA法检测海马RANTES表达,于再灌注后7 d观察行为学。结果:与假手术组大鼠比较,缺血/再灌注组大鼠学习和记忆能力下降,海马CA1区神经元损伤加重,海马RANTES蛋白表达上调(P〈0.05);与W-I/R大鼠比较,S-I/R大鼠学习和记忆能力下降,海马CA1区神经元损伤加重,海马RANTES蛋白表达上调(P〈0.05);姜黄素组大鼠学习和记忆能力明显改善,海马CA1区神经元损伤减轻,海马RANTES蛋白表达下调(P〈0.05)。结论:缺血/再灌注更易导致SHR海马神经元损伤。姜黄素减轻SHR脑缺血/再灌注海马神经元损伤,其机制可能与抑制RANTES蛋白的表达有关。  相似文献   

13.
14.
Zhang  Heng-Sheng  Ouyang  Bo  Ji  Xiong-Ying  Liu  Mei-Fang 《Neurochemical research》2021,46(7):1747-1758

Cerebral ischaemia/reperfusion (I/R) injury-induced irreversible brain injury is a major cause of mortality and functional impairment in ageing people. Gastrodin (GAS), derived from the traditional Chinese herbal medicine Tianma, has been reported to inhibit the progression of stroke, but the mechanism whereby GAS modulates the progression of cerebral I/R remains unclear. The middle cerebral artery occlusion method was used as a model of I/R in vivo. Rats were pretreated with GAS by intraperitoneal injection 7 days before I/R surgery and were then treated with GAS for 7 days after I/R surgery. Additionally, an oxygen–glucose deprivation/reoxygenation model using neuronal cells was established in vitro to simulate I/R injury. 2,3,5-Triphenyltetrazolium chloride and Nissl staining were used to evaluate infarct size and neuronal damage, respectively. Lactate dehydrogenase release and cell counting kit-8 assays were used to assess neuronal cell viability. Enzyme-linked immunosorbent assay, qPCR, flow cytometry and western blotting were performed to analyse the expression levels of inflammatory factors (IL-1β, IL-18), lncRNA NEAT1, miR-22-3p, NLRP3 and cleaved caspase-1. Luciferase reporter experiments were performed to verify the association between lncRNA NEAT1 and miR-22-3p. The results indicated that GAS could significantly improve the neurological scores of rats and reduce the area of cerebral infarction. Meanwhile, GAS inhibited pyroptosis by downregulating NLRP3, inflammatory factors (IL-1β, IL-18) and cleaved caspase-1. In addition, GAS attenuated I/R-induced inflammation in neuronal cells through the modulation of the lncRNA NEAT1/miR-22-3p axis. GAS significantly attenuated cerebral I/R injury via modulation of the lncRNA NEAT1/miR-22-3p axis. Thus, GAS might serve as a new agent for the treatment of cerebral I/R injury.

  相似文献   

15.
The expression and potential role of phospholipase D1 (PLD1) were studied in the cerebral cortex of rats after freeze injury. Histopathologically, cryoinjury, by exposing cerebral cortex to a prechilled rod for 1 minute, produced consistent pathological lesions, specifically neuronal death, infiltration of macrophages into the center of the cryoinjury, and reactive astrogliosis at the periphery, which caused the lesion site to become encased. Western blot analysis showed that PLD1 expression in the ipsilateral cerebral cortex increased significantly during days 1 to 3 after cryoinjury and declined slightly at post-injury day 7. PLD1 immunoreactivity was very low in the brains of sham-operated control adults. After cryoinjury, there was substantial PLD1 immunostaining of numerous inflammatory cells in the ipsilateral cortex, which were identical to ED1-positive macrophages. In addition, PLD1 immunoreactivity was increased in some neurons and astrocytes at the periphery of the cryoinjury at post-injury days 3 and 7. These findings suggest that cryoinjury by means of prechilled rods induced consistent histopathological changes in the cerebral cortex. In addition, expression of a cell activation signal, PLD1, was upregulated in macrophages and astrocytes in the ipsilateral cerebral cortex after cryoinjury.  相似文献   

16.
1. The expression of monocyte chemoattractant protein-1 (MCP-1) was examined in stroke-prone spontaneously hypertensive rats with transient global ischemia in order to study the involvement of the infiltration of blood monocytes in the mechanism of ischemia-related neuronal death.2. The brains of the animals with occlusion of the bilateral carotid arteries for 10 min were removed at 8 h, 1, 2, 4 and 7 days after reperfusion. Frozen sections were used for in situ hybridization and tissue specimens from the hippocampus and the cerebral cortex were used to measure the concentration of MCP-1 by ELISA.3. No MCP-1 mRNA was detected in the hippocampus of the sham group animals. One day after ischemia-reperfusion, MCP-1 mRNA was clearly expressed in the CA4 subfield and the molecular layer of the dentate gyrus, while it was slightly expressed in the lacnosum moleculare of the CA1 subfield. A dramatic expression was demonstrated in the entire CA1 subfield at 2 days after the operation. Most of the cells expressing MCP-1 were astrocytes. At 4 and 7 days after reperfusion, no MCP-1 mRNA was detected in the hippocampus. The concentration of MCP-1 protein dramatically increased in the hippocampus at 2 days after reperfusion.4. Taken together with the findings of our previous study showing an increased permeability of the blood-brain barrier in the hippocampus from 12 h after ischemia-reperfusion, the astrocytes expressing MCP-1 might therefore induce the migration of monocytes into the brain parenchyma. As a result, such astrocytes expressing MCP-1 may therefore be related to the pathological events of delayed neuronal death in the pyramidal neurons.  相似文献   

17.
Extracellular superoxide dismutase (EC-SOD) is neuroprotective, but its role in cerebral ischemia remains to be determined. We herein describe the topographical localization and quantitative changes in EC-SOD and its mRNA expression following cerebral ischemia in mice. Mice were subjected to transient forebrain ischemia and varied intervals of reperfusion. The measurements of EC-SOD using ELISA showed increased brain EC-SOD after 24 h of reperfusion and an increase in EC-SOD brain/serum ratio after 3 h. The immunohistochemical examination in normal mice showed strong EC-SOD immunoreactivity in the choroid plexus, pia mater, and ventral tuberal area of the hypothalamus. EC-SOD immunoreactivity in cortical and striatal capillary wall was conspicuous after 3 h. EC-SOD immunoreactivity was also noted in cortical neurons after 24 h. Northern blot analysis showed an increased EC-SOD mRNA expression in the brain after 24 h. An in situ hybridization study in normal mice demonstrated the mRNA expression of EC-SOD in choroid plexus and neurons through the brain especially in the cortex or ventral tuberal area of the hypothalamus, but demonstrated no mRNA expression of EC-SOD in the capillary wall. These findings suggest that EC-SOD accumulates on endothelial cells in response to this injury by an unknown mechanism, while cortical neurons produce EC-SOD themselves after cerebral ischemia with reperfusion.  相似文献   

18.
Dexmedetomidine (Dex) was reported to reduce ischemia-reperfusion (I/R) injury in kidney and brain tissues. Thus, we aimed to study the role and mechanism of Dex in cerebral I/R injury by inhibiting hypoxia-inducible factor-1α (HIF-1α) and apoptosis. First, I/R injury models were established. Six groups were assigned after different treatments: sham, I/R, I/R+Dex, I/R+2-methoxyestradiol (2ME2) (HIF-1α inhibitor), I/R+CoCl 2 (HIF-1α activator), and I/R+Dex+CoCl 2 groups. Neurological function, cerebral infarction volume, survival, and apoptosis of brain cells were then analyzed. Besides, immunohistochemistry and Western blot analysis were used to detect the expression of HIF-1α, BCL-2[B-cell leukemia/lymphoma 2] adenovirus E1B interacting protein 3 (BNIP3), B-cell leukemia/lymphoma 2 (BCL2), BCL2[B-cell leukemia/lymphoma 2] associated X (Bax), and cleaved-caspase3 proteins in brain tissues. I/R rats showed cerebral infarction, increased neurological function score, number of terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL)-positive cells and HIF-1α–positive cells as well as decreased neurons. Inhibition of HIF-1α can reduce the apoptosis induced by I/R, and overexpression of HIF-1α can aggravate apoptosis in brain tissue of I/R rats. Furthermore, activation of HIF-1α expression blocks the inhibitory effect of Dex on neuronal apoptosis in I/R rats. Dex may inhibit the neuronal apoptosis of I/R rats by inhibiting the HIF-1α pathway and then improve the cerebral I/R injury in rats.  相似文献   

19.
Cerebral ischemia/reperfusion (I/R) typically occurs after mechanical thrombectomy to treat ischemic stroke, generation of reactive oxygen species (ROS) after reperfusion may result in neuronal insult, ultimately leading to disability and death. Regulated in development and DNA damage responses 1 (REDD1) is a conserved stress response protein under various pathogenic conditions. Recent research confirms the controversial role of REDD1 in injury processes. Nevertheless, the role of REDD1 in cerebral I/R remains poorly defined. In the current study, increased expression of REDD1 was observed in neurons exposed to simulated I/R via oxygen glucose deprivation/reoxygenation (OGD/R) treatment. Knockdown of REDD1 enhanced OGD/R-inhibited cell viability, but suppressed lactate dehydrogenase (LDH) release in neurons upon OGD/R. Simultaneously, suppression of REDD1 also antagonized OGD/R-evoked cell apoptosis, Bax expression, and caspase-3 activity. Intriguingly, REDD1 depression abrogated neuronal oxidative stress under OGD/R condition by suppressing ROS, MDA generation, and increasing antioxidant SOD levels. Further mechanism analysis corroborated the excessive activation of autophagy in neurons upon OGD/R with increased expression of autophagy-related LC3 and Beclin-1, but decreased autophagy substrate p62 expression. Notably, REDD1 inhibition reversed OGD/R-triggered excessive neuronal autophagy. More importantly, depression of REDD1 also elevated the expression of p-mTOR. Preconditioning with mTOR inhibitor rapamycin engendered not only a reduction in mTOR activation, but also a reactivation of autophagy in REDD1 knockdown-neurons upon OGD/R. In addition, blocking the mTOR pathway muted the protective roles of REDD1 inhibition against OGD/R-induced neuron injury and oxidative stress. Together these data suggested that REDD1 may regulate I/R-induced oxidative stress injury in neurons by mediating mTOR-autophagy signaling, supporting a promising therapeutic strategy against brain ischemic diseases.  相似文献   

20.
Xuan A  Long D  Li J  Ji W  Hong L  Zhang M  Zhang W 《Life sciences》2012,90(11-12):463-468
AimsA growing number of studies demonstrate that valproic acid (VPA), an anti-convulsant and mood-stabilizing drug, is neuroprotective against various insults. This study investigated whether treatment of ischemic stroke with VPA ameliorated hippocampal cell death and cognitive deficits. Possible mechanisms of action were also investigated.Main methodsGlobal cerebral ischemia was induced to mimic ischemia/reperfusion (I/R) damage. The pyramidal cells within the CA1 field were stained with cresyl violet. Cognitive ability was measured 7 days after I/R using a Morris water maze. The anti-inflammatory effects of VPA on microglia were also investigated by immunohistochemistry. Pro-inflammatory cytokine production was determined using enzyme-linked immunosorbent assays (ELISA). Western blot analysis was performed to determine the levels of acetylated H3, H4 and heat shock protein 70 (HSP70) in extracts from the ischemic hippocampus.Key findingsVPA significantly increased the density of neurons that survived in the CA1 region of the hippocampus on the 7th day after transient global ischemia. VPA ameliorated severe deficiencies in spatial cognitive performance induced by transient global ischemia. Post-insult treatment with VPA also dramatically suppressed the activation of microglia but not astrocytes, reduced the number of microglia, and inhibited other inflammatory markers in the ischemic brain. VPA treatment resulted in a significant increase in levels of acetylated histones H3 and H4 as well as HSP70 in the hippocampus.SignificanceOur results indicated that VPA protected against hippocampal cell loss and cognitive deficits. Treatment with VPA following cerebral ischemia probably involves multiple mechanisms of action, including inhibition of ischemia-induced cerebral inflammation, inhibition of histone deacetylase (HDAC) and induction of HSP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号