首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Irisin protects the cardiovascular system against vascular diseases. However, its role in chronic kidney disease (CKD) -associated vascular calcification (VC) and the underlying mechanisms remain unclear. In the present study, we investigated the potential link among Irisin, pyroptosis, and VC under CKD conditions. During mouse vascular smooth muscle cell (VSMC) calcification induced by β-glycerophosphate (β-GP), the pyroptosis level was increased, as evidenced by the upregulated expression of pyroptosis-related proteins (cleaved CASP1, GSDMD-N, and IL1B) and pyroptotic cell death (increased numbers of PI-positive cells and LDH release). Reducing the pyroptosis levels by a CASP1 inhibitor remarkably decreased calcium deposition in β-GP-treated VSMCs. Further experiments revealed that the pyroptosis pathway was activated by excessive reactive oxygen species (ROS) production and subsequent NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in calcified VSMCs. Importantly, Irisin effectively inhibited β-GP-induced calcium deposition in VSMCs in vitro and in mice aortic rings ex vivo. Overexpression of Nlrp3 attenuated the suppressive effect of Irisin on VSMC calcification. In addition, Irisin could induce autophagy and restore autophagic flux in calcified VSMCs. Adding the autophagy inhibitor 3-methyladenine or chloroquine attenuated the inhibitory effect of Irisin on β-GP-induced ROS production, NLRP3 inflammasome activation, pyroptosis, and calcification in VSMCs. Finally, our in vivo study showed that Irisin treatment promoted autophagy, downregulated ROS level and thereby suppressed pyroptosis and medial calcification in aortic tissues of adenine-induced CKD mice. Together, our findings for the first time demonstrated that Irisin protected against VC via inducing autophagy and inhibiting VSMC pyroptosis in CKD, and Irisin might serve as an effective therapeutic agent for CKD-associated VC.Subject terms: Calcification, Chronic kidney disease  相似文献   

2.
Venous calcification has been observed in post‐thrombotic syndrome (PTS) patients; yet, the cell types and possible mechanisms regulating this process are still unclear. We evaluated the calcium deposition within the venous wall, the cell type involved in the calcified remodelling of the venous wall after thrombosis and explored possible mechanisms in vitro. Calcium deposition was found in human specimens of superficial thrombotic veins and was co‐localized with VSMCs markers αSMA and TAGLN (also known as SM22α). Besides, the expression of osteogenesis‐related genes was dramatically changed in superficial thrombotic veins. Moreover, the inhibition of the TGFβ signalling pathway after TNFα treatment effectively induced the expression of osteogenic phenotype markers, the calcium salt deposits and the obvious phosphorylation of ERK1/2 and JNK2 in the VSMCs calcification model. Supplementing TGFβ2 or blocking the activation of the ERK/MAPK signalling pathway prevented the transformation of VSMCs into osteoblast‐like cells in vitro. Taken together, VSMCs have an important role in venous calcification after thrombosis. Supplementing TGFβ2 or inhibiting the ERK/MAPK signalling pathway can reduce the appearance of VSMCs osteogenic phenotype. Our findings may present a novel therapeutic approach to prevent of vascular calcification after venous thrombosis.  相似文献   

3.
Characterized by abnormal proliferation and migration of vascular smooth muscle cells (VSMCs), neointima hyperplasia is a hallmark of vascular restenosis after percutaneous vascular interventions. Vaccinia-related kinase 1 (VRK1) is a stress adaption-associated ser/thr protein kinase that can induce the proliferation of various types of cells. However, the role of VRK1 in the proliferation and migration of VSMCs and neointima hyperplasia after vascular injury remains unknown. We observed increased expression of VRK1 in VSMCs subjected to platelet-derived growth factor (PDGF)-BB by western blotting. Silencing VRK1 by shVrk1 reduced the number of Ki-67-positive VSMCs and attenuated the migration of VSMCs. Mechanistically, we found that relative expression levels of β-catenin and effectors of mTOR complex 1 (mTORC1) such as phospho (p)-mammalian target of rapamycin (mTOR), p-S6, and p-4EBP1 were decreased after silencing VRK1. Restoration of β-catenin expression by SKL2001 and re-activation of mTORC1 by Tuberous sclerosis 1 siRNA (siTsc1) both abolished shVrk1-mediated inhibitory effect on VSMC proliferation and migration. siTsc1 also rescued the reduced expression of β-catenin caused by VRK1 inhibition. Furthermore, mTORC1 re-activation failed to recover the attenuated proliferation and migration of VSMC resulting from shVrk1 after silencing β-catenin. We also found that the vascular expression of VRK1 was increased after injury. VRK1 inactivation in vivo inhibited vascular injury-induced neointima hyperplasia in a β-catenindependent manner. These results demonstrate that inhibition of VRK1 can suppress the proliferation and migration of VSMC and neointima hyperplasia after vascular injury via mTORC1/β-catenin pathway.  相似文献   

4.
Autophagy is a conserved process that contributes to cell homeostasis. It is well known that induction mainly occurs in response to nutrient starvation, such as starvation of amino acids and insulin, and its mechanisms have been extensively characterized. However, the mechanisms behind cellular glucose deprivation-induced autophagy are as of now poorly understood. In the present study, we determined a mechanism by which glucose deprivation induced the PKC-dependent proteasomal degradation of β-catenin, leading to autophagy. Glucose deprivation was shown to cause a sub-G1 transition and enhancement of the LC3-II protein levels, whereas β-catenin protein underwent degradation in a proteasome-dependent manner. Moreover, the inhibition of GSK3β was unable to abolish the glucose deprivation-mediated β-catenin degradation or up-regulation of LC3-II protein levels, which suggested GSK3β-independent protein degradation. Intriguingly, the inhibition of PKCα using a pharmacological inhibitor and transfection of siRNA for PKCα was observed to effectively block glucose deprivation-induced β-catenin degradation as well as the increase in LC3-II levels and the accumulation of a sub-G1 population. Together, our results demonstrated a molecular mechanism by which glucose deprivation can induce the GSK3β-independent protein degradation of β-catenin, leading to autophagy.  相似文献   

5.
Vascular calcification is the heterotopic accumulation of calcium phosphate salts in the vascular tissue and is highly correlated with increased cardiovascular morbidity and mortality. In this study, we found that the expression of neuromedin B (NMB) and NMB receptor is upregulated in phosphate-induced calcification of vascular smooth muscle cells (VSMCs). Silencing of NMB or treatment with NMB receptor antagonist, PD168368, inhibited the phosphate-induced osteogenic differentiation of VSMCs by inhibiting Wnt/β-catenin signaling and VSMC apoptosis. PD168368 also attenuated the arterial calcification in cultured aortic rings and in a rat model of chronic kidney disease. The results of this study suggest that NMB–NMB receptor axis may have potential therapeutic value in the diagnosis and treatment of vascular calcification.  相似文献   

6.
7.
β-Catenin is a key component that connects transmembrane cadherin with the actin cytoskeleton at the cell-cell interface. However, the role of the β-catenin/cadherin interaction in smooth muscle has not been well characterized. Here stimulation with acetylcholine promoted the recruitment of β-catenin to N-cadherin in smooth muscle cells/tissues. Knockdown of β-catenin by lentivirus-mediated shRNA attenuated smooth muscle contraction. Nevertheless, myosin light chain phosphorylation at Ser-19 and actin polymerization in response to contractile activation were not reduced by β-catenin knockdown. In addition, the expression of the β-catenin armadillo domain disrupted the recruitment of β-catenin to N-cadherin. Force development, but not myosin light chain phosphorylation and actin polymerization, was reduced by the expression of the β-catenin armadillo domain. Furthermore, actin polymerization and microtubules have been implicated in intracellular trafficking. In this study, the treatment with the inhibitor latrunculin A diminished the interaction of β-catenin with N-cadherin in smooth muscle. In contrast, the exposure of smooth muscle to the microtubule depolymerizer nocodazole did not affect the protein-protein interaction. Together, these findings suggest that smooth muscle contraction is mediated by the recruitment of β-catenin to N-cadherin, which may facilitate intercellular mechanotransduction. The association of β-catenin with N-cadherin is regulated by actin polymerization during contractile activation.  相似文献   

8.
Matrix Gla protein (MGP) is a phosphorylated and γ-carboxylated protein that has been shown to prevent the deposition of hydroxyapatite crystals in the walls of blood vessels. MGP is also expressed in kidney and may inhibit the formation of kidney stones, which mainly consist of another crystalline phase, calcium oxalate monohydrate. To determine the mechanism by which MGP prevents soft-tissue calcification, we have synthesized peptides corresponding to the phosphorylated and γ-carboxylated sequences of human MGP in both post-translationally modified and non-modified forms. The effects of these peptides on hydroxyapatite formation and calcium oxalate crystallization were quantified using dynamic light scattering and scanning electron microscopy, respectively. Peptides YGlapS (MGP1-14: YγEpSHEpSMEpSYELNP), YEpS (YEpSHEpSMEpSYELNP), YGlaS (YγESHESMESYELNP) and SK-Gla (MGP43-56: SKPVHγELNRγEACDD) inhibited formation of hydroxyapatite in order of potency YGlapS > YEpS > YGlaS > SK-Gla. The effects of YGlapS, YEpS and YGlaS on hydroxyapatite formation were on both crystal nucleation and growth; the effect of SK-Gla was on nucleation. YGlapS and YEpS significantly inhibited the growth of calcium oxalate monohydrate crystals, while simultaneously promoting the formation of calcium oxalate dihydrate. The effects of these phosphopeptides on calcium oxalate monohydrate formation were on growth of crystals rather than nucleation. We have shown that the use of dynamic light scattering allows inhibitors of hydroxyapatite nucleation and growth to be distinguished. We have also demonstrated for the first time that MGP peptides inhibit the formation of calcium oxalate monohydrate. Based on the latter finding, we propose that MGP function not only to prevent blood-vessel calcification but also to inhibit stone formation in kidney.  相似文献   

9.
10.
11.
Wu SY  Zhang BH  Pan CS  Jiang HF  Pang YZ  Tang CS  Qi YF 《Peptides》2003,24(8):1149-1156
We observed changes of endothelin content and endothelin mRNA in vivo in vascular calcification and in vitro in calcification of vascular smooth muscle cells to explore the role of endothelin in vascular calcification. Calcification model in vivo was induced by administration of Vitamin D(3) plus nicotine. Calcification of vascular smooth muscle cells (VSMCs) was induced by beta-glycerophosphate. Endothelin content was measured by using radioimmunoassay. Endothelin mRNA amount was determined by using competitive quantitative RT-PCR. The results showed that calcium content, 45Ca(2+) uptake and alkaline phosphatase (ALP) activity were increased in calcified VSMCs, compared with controls, but were decreased, compared with calcified VSMCs plus BQ123 group. The endothelin content in the medium and endothelin mRNA in VSMCs were elevated by 35 and 120% (P<0.05), respectively, compared with those normal VSMCs. Calcium content, 45Ca(2+) accumulation and ALP activity in calcified arteries increased by 5.0-, 1.4-, and 1.4-fold. The endothelin levels in plasma and aorta as well as the amount of endothelin mRNA in calcified aorta were increased by 102, 103, and 22%, respectively, compared with control group. However, calcium content, 45Ca(2+) uptake and ALP activity in VDN plus bosentan group was 33, 36.7, and 40.4% lower than those in VDN group. These results indicated an upregulated endothelin gene expression as well as an increased production of endothelin in calcified aorta and VSMCs with BQ123 and bosentan significantly reducing vascular calcification. This suggested that endothelin might be involved in pathogenesis of vascular calcification.  相似文献   

12.
Wnt/β-catenin signaling induced by the Norrin/Frizzled-4 pathway has been shown to improve capillary repair following oxygen induced retinopathy (OIR) in the mouse, a model for retinopathy of prematurity. Here we investigated if treatment with the monovalent cation lithium that has been shown to augment Wnt/β-catenin signaling in vitro and in vivo has similar effects. In cultured human microvascular endothelial cells, LiCl as well as SB 216763, another small molecule that activates Wnt/β-catenin signaling, induced proliferation, survival and migration, which are all common parameters for angiogenic properties in vitro. Moreover, treatment with both agents caused an increase in the levels of β-catenin and their translocation to nuclei while quercetin, an inhibitor of Wnt/β-catenin signaling, completely blocked the effects of LiCl on proliferation. In mice with OIR, intraperitonal or intravitreal treatment with LiCl markedly increased the retinal levels of β-catenin, but did not improve capillary repair. In contrast, repair was significantly improved following intravitreal treatment with Norrin. The effects of LiCl on HDMEC in vitro have minor relevance for OIR in vivo, and the influence of the Norrin/Frizzled-4 pathway on capillary repair in OIR is not reproducible upon enhancing Wnt/β-catenin signaling by LiCl treatment strongly indicating the presence of additional and essential mechanisms.  相似文献   

13.
Expression of matrix GLA protein (MGP), an alleged calcification inhibitor, is increased in calcified arteries. We used calcifying vascular cells (CVC) that form calcified nodules in vitro to clarify the importance of MGP in vascular cell calcification and differentiation. Unexpectedly, MGP dose-dependently increased calcification in CVC. It also increased expression of the osteogenic marker Cbfal, while decreasing expression of the smooth muscle marker alpha-actin as assessed by immunoblotting. Bone morphogenetic protein-2 (BMP-2), a known osteoinductive factor also increased calcification and osteogenic differentiation in CVC. We hypothesized that the effect of MGP was linked to that of BMP-2 since previous studies show that MGP modulates BMP-2 activity. Therefore, we compared the effect of MGP at different levels of exogenous BMP-2. Results showed that high BMP-2 levels significantly increased the stimulatory effect of low levels of MGP. A relative inhibition of calcification was observed at intermediate levels of MGP and a trend towards renewed stimulation at high levels of MGP. Thus, addition of MGP either promoted or inhibited calcification, depending on the relative amounts of BMP-2 and MGP. This was confirmed in human CVC with different relative expression of BMP-2 and MGP. Calcification in CVC with high relative expression of BMP-2 was inhibited by MGP, while calcification in CVC with low relative expression of BMP-2 was stimulated by MGP. MGP and BMP-2 both accelerated nodule formation, but had opposite effects on nodule size; MGP decreased while BMP-2 increased nodule size. The effect of BMP-2 may partly be explained by a BMP-2 induced decrease in MGP expression. Together, our results suggest that the effect of MGP on calcification and osteogenic differentiation is determined by availability of BMP-2.  相似文献   

14.
The pathogenesis of pancreatic ductal adenocarcinoma (PDAC) remains poorly understood. S100 calcium-binding protein A6 (S100A6) has been associated with PDAC; however, the effect of S100A6 on PDAC migration and invasion has not yet been explored. In this study, Panc-1 cells were transfected with a plasmid to induce overexpression of S100A6, and β-catenin was knocked down using a specific short hairpin RNA (shRNA). The wound-healing and Transwell assays demonstrated that S100A6 promoted PDAC cell migration and invasion. Furthermore, β-catenin shRNA inhibited the migration and invasion of PDAC cells. We confirmed that S100A6 induces PDAC cell migration and invasion via activation of β-catenin in vitro. Assessment of mRNA and protein levels revealed that S100A6 induces increased expression of β-catenin, N-cadherin and vimentin, and decreased expression of E-cadherin in PDAC cells. β-catenin shRNA also altered the expression of epithelial-mesenchymal transition (EMT)-related markers in PDAC cells. Specifically, expression of E-cadherin was increased, whereas expression of N-cadherin and vimentin was decreased. Finally, we demonstrated that S100A6 alters the expression of EMT-related markers via β-catenin activation. In conclusion, S100A6 induces EMT and promotes cell migration and invasion in a β-catenin-dependent manner. S100A6 may therefore represent a novel potential therapeutic target for the treatment of pancreatic cancer.  相似文献   

15.
Vitamin K is essential for activation of γ-carboxyglutamate (Gla)-proteins including the vascular calcification inhibitor matrix Gla-protein (MGP). Insufficient vitamin K intake leads to production of uncarboxylated, mostly inactive proteins and contributes to an increased cardiovascular risk. In kidney transplant recipients, cardiovascular risk is high but vitamin K intake and status have not been defined. We investigated dietary vitamin K intake, vascular vitamin K status and its determinants in kidney transplant recipients. We estimated vitamin K intake in a cohort of kidney transplant recipients (n = 60) with stable renal function (creatinine clearance 61 [42–77] (median [interquartile range]) ml/min), who were 75 [35–188] months after transplantation, using three-day food records and food frequency questionnaires. Vascular vitamin K status was assessed by measuring plasma desphospho-uncarboxylated MGP (dp-ucMGP). Total vitamin K intake was below the recommended level in 50% of patients. Lower vitamin K intake was associated with less consumption of green vegetables (33 vs 40 g/d, p = 0.06) and increased dp-ucMGP levels (621 vs 852 pmol/L, p<0.05). Accordingly, dp-ucMGP levels were elevated (>500 pmol/L) in 80% of patients. Multivariate regression identified creatinine clearance, coumarin use, body mass index, high sensitivity-CRP and sodium excretion as independent determinants of dp-ucMGP levels. In a considerable part of the kidney transplant population, vitamin K intake is too low for maximal carboxylation of vascular MGP. The high dp-ucMGP levels may result in an increased risk for arterial calcification. Whether increasing vitamin K intake may have health benefits for kidney transplant recipients should be addressed by future studies.  相似文献   

16.
Inflammation is a key instigator of the immune responses that drive atherosclerosis and allograft rejection. IL-1α, a powerful cytokine that activates both innate and adaptive immunity, induces vessel inflammation after release from necrotic vascular smooth muscle cells (VSMCs). Similarly, IL-1α released from endothelial cells (ECs) damaged during transplant drives allograft rejection. However, IL-1α requires cleavage for full cytokine activity, and what controls cleavage in necrotic ECs is currently unknown. We find that ECs have very low levels of IL-1α activity upon necrosis. However, TNFα or IL-1 induces significant levels of active IL-1α in EC necrotic lysates without alteration in protein levels. Increased activity requires cleavage of IL-1α by calpain to the more active mature form. Immunofluorescence and proximity ligation assays show that IL-1α associates with interleukin-1 receptor-2, and this association is decreased by TNFα or IL-1 and requires caspase activity. Thus, TNFα or IL-1 treatment of ECs leads to caspase proteolytic activity that cleaves interleukin-1 receptor-2, allowing IL-1α dissociation and subsequent processing by calpain. Importantly, ECs could be primed by IL-1α from adjacent damaged VSMCs, and necrotic ECs could activate neighboring normal ECs and VSMCs, causing them to release inflammatory cytokines and up-regulate adhesion molecules, thus amplifying inflammation. These data unravel the molecular mechanisms and interplay between damaged ECs and VSMCs that lead to activation of IL-1α and, thus, initiation of adaptive responses that cause graft rejection.  相似文献   

17.
Numerous liver diseases are associated with extensive oxidative tissue damage. It is well established that Wnt/β-catenin signaling directs multiple hepatocellular processes, including development, proliferation, regeneration, nutrient homeostasis, and carcinogenesis. It remains unexplored whether Wnt/β-catenin signaling provides hepatocyte protection against hepatotoxin-induced apoptosis. Conditional, liver-specific β-catenin knockdown (KD) mice and their wild-type littermates were challenged by feeding with a hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet to induce chronic oxidative liver injury. Following the DDC diet, mice with β-catenin-deficient hepatocytes demonstrate increased liver injury, indicating an important role of β-catenin signaling for liver protection against oxidative stress. This finding was further confirmed in AML12 hepatocytes with β-catenin signaling manipulation in vitro using paraquat, a known oxidative stress inducer. Immunofluorescence staining revealed an intense nuclear FoxO3 staining in β-catenin-deficient livers, suggesting active FoxO3 signaling in response to DDC-induced liver injury when compared with wild-type controls. Consistently, FoxO3 target genes p27 and Bim were significantly induced in β-catenin KD livers. Conversely, SGK1, a β-catenin target gene, was significantly impaired in β-catenin KD hepatocytes that failed to inactivate FoxO3. Furthermore, shRNA-mediated deletion of FoxO3 increased hepatocyte resistance to oxidative stress-induced apoptosis, confirming a proapoptotic role of FoxO3 in the stressed liver. Our findings suggest that Wnt/β-catenin signaling is required for hepatocyte protection against oxidative stress-induced apoptosis. The inhibition of FoxO through its phosphorylation by β-catenin-induced SGK1 expression reduces the apoptotic function of FoxO3, resulting in increased hepatocyte survival. These findings have relevance for future therapies directed at hepatocyte protection, regeneration, and anti-cancer treatment.  相似文献   

18.
19.
Mutations in matrix Gla protein (MGP) have been correlated with vascular calcification. In the mouse model, MGP null vascular disease presents as calcifying cartilaginous lesions and mineral deposition along elastin lamellae (elastocalcinosis). Here we examined the mechanisms underlying both of these manifestations. Genetic ablation of enzyme transglutaminase 2 (TG2) in Mgp−/− mice dramatically reduced the size of cartilaginous lesions in the aortic media, attenuated calcium accrual more than 2-fold, and doubled longevity as compared with control Mgp−/− animals. Nonetheless, the Mgp−/−;Tgm2−/− mice still died prematurely as compared with wild-type and retained the elastocalcinosis phenotype. This pathology in Mgp−/− animals was developmentally preceded by extensive fragmentation of elastic lamellae and associated with elevated serine elastase activity in aortic tissue and vascular smooth muscle cells. Systematic gene expression analysis followed by an immunoprecipitation study identified adipsin as the major elastase that is induced in the Mgp−/− vascular smooth muscle even in the TG2 null background. These results reveal a central role for TG2 in chondrogenic transformation of vascular smooth muscle and implicate adipsin in elastin fragmentation and ensuing elastocalcinosis. The importance of elastin calcification in MGP null vascular disease is highlighted by significant residual vascular calcification and mortality in Mgp−/−;Tgm2−/− mice with reduced cartilaginous lesions. Our studies identify two potential therapeutic targets in vascular calcification associated with MGP dysfunction and emphasize the need for a comprehensive approach to this multifaceted disorder.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号