首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Phycobilisomes (PBS) are antenna complexes that harvest light for photosystem (PS) I and PS II in cyanobacteria and some algae. A process known as far-red light photoacclimation (FaRLiP) occurs when some cyanobacteria are grown in far-red light (FRL). They synthesize chlorophylls d and f and remodel PS I, PS II, and PBS using subunits paralogous to those produced in white light. The FaRLiP strain, Leptolyngbya sp. JSC-1, replaces hemidiscoidal PBS with pentacylindrical cores, which are produced when cells are grown in red or white light, with PBS with bicylindrical cores when cells are grown in FRL. This study shows that the PBS of another FaRLiP strain, Synechococcus sp. PCC 7335, are not remodeled in cells grown in FRL. Instead, cells grown in FRL produce bicylindrical cores that uniquely contain the paralogous allophycocyanin subunits encoded in the FaRLiP cluster, and these bicylindrical cores coexist with red-light-type PBS with tricylindrical cores. The bicylindrical cores have absorption maxima at 650 and 711 nm and a low-temperature fluorescence emission maximum at 730 nm. They contain ApcE2:ApcF:ApcD3:ApcD2:ApcD5:ApcB2 in the approximate ratio 2:2:4:6:12:22, and a structural model is proposed. Time course experiments showed that bicylindrical cores were detectable about 48 h after cells were transferred from RL to FRL and that synthesis of red-light-type PBS continued throughout a 21-day growth period. When considered in comparison with results for other FaRLiP cyanobacteria, the results here show that acclimation responses to FRL can differ considerably among FaRLiP cyanobacteria.  相似文献   

2.
3.
Cyanobacterial Acclimation to Photosystem I or Photosystem II Light   总被引:9,自引:4,他引:5       下载免费PDF全文
The organization and function of the photochemical apparatus of Synechococcus 6301 was investigated in cells grown under yellow and red light regimes. Broadband yellow illumination is absorbed preferentially by the phycobilisome (PBS) whereas red light is absorbed primarily by the chlorophyll (Chl) pigment beds. Since PBSs are associated exclusively with photosystem II (PSII) and most of the Chl with photosystem I (PSI), it follows that yellow and red light regimes will create an imbalance of light absorption by the two photosystems. The cause and effect relationship between light quality and photosystem stoichiometry in Synechococcus was investigated. Cells grown under red light compensated for the excitation imbalance by synthesis/assembly of more PBS-PSII complexes resulting in high PSII/PSI = 0.71 and high bilin/Chl = 1.30. The adjustment of the photosystem stoichiometry in red light-grown cells was necessary and sufficient to establish an overall balanced absorption of red light by PSII and PSI. Cells grown under yellow light compensated for this excitation imbalance by assembly of more PSI complexes, resulting in low PSII/PSI = 0.27 and low bilin/Chl = 0.42. This adjustment of the photosystem stoichiometry in yellow light-grown cells was necessary but not quite sufficient to balance the absorption of yellow light by the PBS and the Chl pigment beds. A novel excitation quenching process was identified in yellow light-grown cells which dissipated approximately 40% of the PBS excitation, thus preventing over-excitation of PSII under yellow light conditions. It is hypothesized that State transitions in O2 evolving photosynthetic organisms may serve as the signal for change in the stoichiometry of photochemical complexes in response to light quality conditions.  相似文献   

4.
Far-red light photoacclimation exhibited by some cyanobacteria allows these organisms to use the far-red region of the solar spectrum (700–800 nm) for photosynthesis. Part of this process includes the replacement of six photosystem I (PSI) subunits with isoforms that confer the binding of chlorophyll (Chl) f molecules that absorb far-red light (FRL). However, the exact sites at which Chl f molecules are bound are still challenging to determine. To aid in the identification of Chl f-binding sites, we solved the cryo-EM structure of PSI from far-red light-acclimated cells of the cyanobacterium Synechococcus sp. PCC 7335. We identified six sites that bind Chl f with high specificity and three additional sites that are likely to bind Chl f at lower specificity. All of these binding sites are in the core-antenna regions of PSI, and Chl f was not observed among the electron transfer cofactors. This structural analysis also reveals both conserved and nonconserved Chl f-binding sites, the latter of which exemplify the diversity in FRL-PSI among species. We found that the FRL–PSI structure also contains a bound soluble ferredoxin, PetF1, at low occupancy, which suggests that ferredoxin binds less transiently than expected according to the canonical view of ferredoxin-binding to facilitate electron transfer. We suggest that this may result from structural changes in FRL-PSI that occur specifically during FRL photoacclimation.  相似文献   

5.
The photochemical apparatus organization in Synechococcus 6301 (Cyanophyceae) was investigated under various experimental conditions. Wild type (WT) Synechococcus produced phycobilisomes (PBSs) containing normal levels of phycocyanin (Phc) and allophycocyanin (Aphc). The ratio of reaction centers(RC) RCII/RCI of 0.4 was the same in WT and the mutant strain AN112, whereas RCH/PBS was 1.9:1 in WT and 1:1 in AN112. Excitation of WT cells with broad-band 620 nm light, which is absorbed primarily by Phc and Aphc and to a much lesser extent by chlorophyll (Chl), sensitized the RC of photosystem (PS) II at about 15 times the rate it sensitized RCI. This implies that PBSs are associated exclusively with PSII complexes and that PBS excitation is not transferred to PSI. The AN112 mutant of Synechococcus produced smaller PBSs consisting of the Aphc-containing core and of only six Phc-containing hexamers, respectively. It lacked about 65% of the Phccontaining rod substractures. Under our experimental conditions, the effective absorption cross section of the mutant PBS was only about half that of the WT. In agreement, the rate of RCII excitation by 620 nm light was also about half of that measured in the WT. Thus, the rate of light absorption by PSII depends directly on PBS size and composition. The low rate of RCI excitation with 620 nm light was the same in WT and AN112 cells, apparently independent of the PBS effective absorption cross section. We propose a strict structural-functional association between PBS and PSII complex. PSI is a structurally distinct entity and it receives excitation independently from its own Chl light-harvesting antenna.Abbreviations PBS phycobilisome - Phc phycocyanin - Aphc allophycocyanin - PS photosystem - RC reaction center - P700 reaction center of PSI - Q primary electron acceptor of PSII - Chl chlorophyll - MV methyl viologen - Tris Tris(hydroxymethyl)-aminomethane - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

6.
Synechococcus ATCC 29403 (PCC 7335) is a unicellular cyanobacterium isolated from Puerto Peñasco, Sonora Mexico. This cyanobacterium performs complementary chromatic acclimation (CCA), far-red light photoacclimation (FaRLiP), and nitrogen fixation. The Synechococcus PCC 7335 genome contains at least 31 genes for proteins of the phycobilisome (PBS). Nine constitutive genes were expressed when cells were grown under white or red lights and the resulting proteins were identified by mass spectrometry in isolated PBS. Five inducible genes were expressed under white light, and phycoerythrin subunits and associated linker proteins were detected. The proteins of five inducible genes expressed under red light were identified, the induced phycocyanin subunits, two rod linkers and the rod-capping linker. The five genes for FaRLiP phycobilisomes were expressed under far-red light together with the apcF gene, and the proteins were identified by mass spectrometry after isoelectric focusing and SDS-PAGE. Based on in silico analysis, Phylogenetic trees, and the observation of a highly conserved amino acid sequence in far-red light absorbing alpha allophycoproteins encoded by FaRLiP gene cluster, we propose a new nomenclature for the genes. Based on a ratio of ApcG2/ApcG3 of six, a model with the arrangement of the allophycocyanin trimers of the core is proposed.  相似文献   

7.
Far-red light (FRL) photoacclimation in cyanobacteria provides a selective growth advantage for some terrestrial cyanobacteria by expanding the range of photosynthetically active radiation to include far-red/near-infrared light (700–800 nm). During this photoacclimation process, photosystem II (PSII), the water:plastoquinone photooxidoreductase involved in oxygenic photosynthesis, is modified. The resulting FRL-PSII is comprised of FRL-specific core subunits and binds chlorophyll (Chl) d and Chl f molecules in place of several of the Chl a molecules found when cells are grown in visible light. These new Chls effectively lower the energy canonically thought to define the “red limit” for light required to drive photochemical catalysis of water oxidation. Changes to the architecture of FRL-PSII were previously unknown, and the positions of Chl d and Chl f molecules had only been proposed from indirect evidence. Here, we describe the 2.25 Å resolution cryo-EM structure of a monomeric FRL-PSII core complex from Synechococcus sp. PCC 7335 cells that were acclimated to FRL. We identify one Chl d molecule in the ChlD1 position of the electron transfer chain and four Chl f molecules in the core antenna. We also make observations that enhance our understanding of PSII biogenesis, especially on the acceptor side of the complex where a bicarbonate molecule is replaced by a glutamate side chain in the absence of the assembly factor Psb28. In conclusion, these results provide a structural basis for the lower energy limit required to drive water oxidation, which is the gateway for most solar energy utilization on earth.  相似文献   

8.
Changes in intracellular levels of Chl a precursors were examinedin relation to changes in the PSI/PSII stoichiometry in thecyanophyte Synechocystis PCC 6714. Protochlorophyllide (Pchlide)accumulated markedly in cells with a low PSI/PSII stoichiometrygrown under light that is absorbed by Chl a (PSI light) whereasno accumulation occurred in cells with a high PSI/PSII stoichiometrygrown under light absorbed by phycobilisomes (PSII light). Levelsof Pchlide in cells grown under PSI light decreased rapidlyupon a shift to PSII light. The rapid decrease in Pchlide accompanieda transient increase in chlorophyllide a, indicating that reductionof Pchlide was enhanced by shift to PSII light. The action spectrumindicated that the Pchlide decrease upon the shift to PSII lightdepended on excitation of Pchlide, suggesting that the accumulationof Pchllide was due to limited excitation of Pchlide, so thatPchlide photoreduction, under PSI light. However, comparisonof levels of Pchlide and the photosystem complexes in wild-typePlectonema boryanum with those in a mutant that lacked the darkPchlide reductase (YFC 1004) indicated that dark reduction compensatedfor the limited photoreduction under PSI light. Similar compensationby dark reduction was confirmed with Synechocystis PCC 6714.In cultures of Synechocystis under conditions where Pchlidecould not be photoreduced, accumulation of Pchlide and low PSI/PSIIstoichiometry occurred only when cells were illuminated withlight that preferentially excited PSI. The results indicatethat the low PSI/PSII stoichiometry in cells grown under PSIlight is not a result of inefficient synthesis of Chl a witha reduced rate of Pchlide photoreduction. They suggest furtherthat accumulation of Pchlide under PSI light results from retardationof the Chl a synthesis due to suppression of PSI synthesis. 1Present address: Tsurukawa 5-15-11, Machida, Tokyo, 195 Japan.  相似文献   

9.
Ley AC  Butler WL 《Plant physiology》1980,65(4):714-722
Cells of Porphyridium cruentum were grown in different colors of light which would be absorbed primarily by chlorophyll (Chl) (red and blue light) or by the phycobilisomes (green or two intensities of cool-white fluorescent light), and samples of these cells were frozen to −196 C for measurements of absorption and fluorescence emission spectra. Cells grown in the high intensity white light had least of all of the photosynthetic pigments, a higher ratio of carotenoid/Chl, but essentially the same ratio of phycobilin to Chl as cells grown in the low intensity white light. The ratio of photosystem II (PSII) to photosystem I (PSI) pigments was affected by light quality; the ratios of phycobilin to Chl and of short wavelength (PSII) Chl to long wavelength (PSI) Chl were both greater in the cells grown in red or blue light.  相似文献   

10.
《BBA》2020,1861(8):148206
The heterologous expression of the far-red absorbing chlorophyll (Chl) f in organisms that do not synthesize this pigment has been suggested as a viable solution to expand the solar spectrum that drives oxygenic photosynthesis. In this study, we investigate the functional binding of Chl f to the Photosystem I (PSI) of the cyanobacterium Synechococcus 7002, which has been engineered to express the Chl f synthase gene. By optimizing growth light conditions, one-to-four Chl f pigments were found in the complexes. By using a range of spectroscopic techniques, isolated PSI trimeric complexes were investigated to determine how the insertion of Chl f affects excitation energy transfer and trapping efficiency. The results show that the Chls f are functionally connected to the reaction center of the PSI complex and their presence does not change the overall pigment organization of the complex. Chl f substitutes Chl a (but not the Chl a red forms) while maintaining efficient energy transfer within the PSI complex. At the same time, the introduction of Chl f extends the photosynthetically active radiation of the new hybrid PSI complexes up to 750 nm, which is advantageous in far-red light enriched environments. These conclusions provide insights to engineer the photosynthetic machinery of crops to include Chl f and therefore increase the light-harvesting capability of photosynthesis.  相似文献   

11.
Changes in the PSII fluorescence upon shift of light qualitywere studied with the red alga Porphyridium cruentum IAM R-1and supplementarily with P. cruentum ATCC 50161, the cyanophytesSynechocystis spp. PCC6714 and PCC6803 and Synechococcus sp.NIBB1071. When Porphyridium cruentum grown under a weak redlight (PSI light) preferentially absorbed by Chl a was illuminatedwith a weak orange light (PSII light) mainly absorbed by phycobilisomes(PBS), a change of PSII fluorescence at room temperature wasinduced. The ratio of Fvm (Fm— Fo) to Fm was reduced rapidlyaccompanying the increase in Fo (T1/2 ca. 3 min). The effectsof DCMU and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinoneindicated that the fluorescence change is induced when plastoquinonepool is highly reduced. The fluorescence change after a shortPSII light illumination was reversible; it rapidly recoveredin the dark (T 1/2 ca. 3 min). The reversibility was graduallyreduced and disappeared after 40 h under PSII light accompanyingdecrease in PSII activity per PBS down to almost 50%. Sincethe pattern of the fluorescence change resembles that observablewhen PSII is photoinactivated, PSII light probably induces thephotoinactivation of PSII, possibly reversibly at first andirreversibly after prolonged illumination. Such a rapid fluorescencechange was insignificant in Synechocystis sp. either PCC6714or PCC6803. Only a slow and small decrease in Fvm/Fm level appearedafter prolonged PSII light illumination (the reduction of PSIIactivity per PBS was around 20%). In Porphyridium, shift fromPSII light to PSI light caused a rapid and chloramphenicol-sensitiveFvm/Fm elevation during the first 10 h while the increase inPSH activity per PBS was only 10% of that before the light shift.Then, a gradual elevation followed up to the level at the steadystate under PSI light. A similar rapid increase in Fvm/Fm wasobserved with Synechocystis PCC6714, in which the synthesisof PSII is not regulated, suggesting that a rapid increase inFvm/Fm does not reflect the acceleration of the synthesis ofPSII. Results were interpreted as that (1) PSII light causesphotoinactivation of PSII. Such a photoinactivation is markedin Prophyridium cells grown under PSI light. (2) In Porphyridium,changes in the abundance of PSII upon shift of light qualityare largely attributed to the photoinactivation of this type. (Received February 19, 1999; Accepted June 14, 1999)  相似文献   

12.
In this study, we have compared photosynthetic performance of barley leaves (Hordeum vulgare L.) grown under sun and shade light regimes during their entire growth period, under field conditions. Analyses were based on measurements of both slow and fast chlorophyll (Chl) a fluorescence kinetics, gas exchange, pigment composition; and of light incident on leaves during their growth. Both the shade and the sun barley leaves had similar Chl a/b and Chl/carotenoid ratios. The fluorescence induction analyses uncovered major functional differences between the sun and the shade leaves: lower connectivity among Photosystem II (PSII), decreased number of electron carriers, and limitations in electron transport between PSII and PSI in the shade leaves; but only low differences in the size of PSII antenna. We discuss the possible protective role of low connectivity between PSII units in shade leaves in keeping the excitation pressure at a lower, physiologically more acceptable level under high light conditions.  相似文献   

13.
The light environment during plant growth determines the structural and functional properties of higher plant chloroplasts, thus revealing a dynamically regulated developmental system. Pisum sativum plants growing under intermittent illumination showed chloroplasts with fully functional photosystem (PS) II and PSI reaction centers that lacked the peripheral chlorophyll (Chi) a/b and Chl a light-harvesting complexes (LHC), respectively. The results suggest a light flux differential threshold regulation in the biosynthesis of the photosystem core and peripheral antenna complexes. Sun-adapted species and plants growing under far-red-depleted illumination showed grana stacks composed of few (3–5) thylakoids connected with long intergrana (stroma) thylakoids. They had a PSII/PSI reaction center ratio in the range 1.3–1.9. Shade-adapted species and plants growing under far-red-enrichcd illumination showed large grana stacks composed of several thylakoids, often extending across the entire chloroplast body, and short intergrana stroma thylakoids. They had a higher PSII/PSI reaction center ratio, in the range of 2.2–4.0. Thus, the relative extent of grana and stroma thylakoid formation corresponds with the relative amounts of PSII and PSI in the chloroplast, respectively. The structural and functional adaptation of the photosynthetic membrane system in response to the quality of illumination involves mainly a control on the rate of PSII and PSI complex biosynthesis.  相似文献   

14.
Cells of two species of single-celled marine algae, the diatom Skeletonema costatum (Greve), Cleve, and the chlorophyte Dunaliella tertiolecta Butcher, were cultured in white light of high (500-600 microeinsteins per square meter per second) and low (30 microeinsteins per square meter per second) intensity. For both algal species, cells grown at low light levels contained more chlorophyll a and had a lower ratio of chlorophyll a to chlorophylls b or c than did cells grown at high light levels. When photosynthetic unit sizes were measured on the basis of either oxygen flash yields or P700 photooxidation, different results were obtained with the different species. In the chlorophyte, the cellular content of photosystem I (PSI) and photosystem II (PSII) reaction centers increased in tandem as chlorophyll a content increased so that photosynthetic unit sizes changed only slightly and the ratio PSI:PSII reaction centers remained constant at about 1.1. In the diatom, as the chlorophyll content of the cells increased, the number of PSI reaction centers decreased and the number of PSII reaction centers increased so that the ratio of PSI:PSII reaction centers decreased from about unity to 0.44. In neither organism did photosynthetic capacity correlate with changes in cellular content of PSI or PSII reaction centers. The results are discussed in relationship to the physical and biological significance of the photosynthetic unit concept.  相似文献   

15.
The effects of high temperature (30-52.5 degrees C) on excitation energy transfer from phycobilisomes (PBS) to photosystem I (PSI) and photosystem II (PSII) in a cyanobacterium Spirulina platensis grown at 30 degrees C were studied by measuring 77 K chlorophyll (Chl) fluorescence emission spectra. Heat stress had a significant effect on 77 K Chl fluorescence emission spectra excited either at 436 or 580 nm. In order to reveal what parts of the photosynthetic apparatus were responsible for the changes in the related Chl fluorescence emission peaks, we fitted the emission spectra by Gaussian components according to the assignments of emission bands to different components of the photosynthetic apparatus. The 643 and 664 nm emissions originate from C-phycocyanin (CPC) and allophycocyanin (APC), respectively. The 685 and 695 nm emissions originate mainly from the core antenna complexes of PSII, CP43 and CP47, respectively. The 725 and 751 nm band is most effectively produced by PSI. There was no significant change in F725 and F751 during heat stress, suggesting that heat stress had no effects on excitation energy transfer from PBS to PSI. On the other hand, heat stress induced an increase in the ratio of Chl fluorescence yield of PBS to PSII, indicating that heat stress inhibits excitation energy transfer from PBS to PSII. However, this inhibition was not associated with an inhibition of excitation energy transfer from CPC to APC since no significant changes in F643 occurred at high temperatures. A dramatic enhancement of F664 occurring at 52.5 degrees C indicates that excitation energy transfer from APC to the PSII core complexes is suppressed at this temperature, possibly due to the structural changes within the PBS core but not to a detachment of PBS from PSII, resulting in an inhibition of excitation energy transfer from APC to PSII core complexes (CP47 + CP43). A decrease in F685 and F695 in heat-stressed cells with excitation at 436 nm seems to suggest that heat stress did not inhibit excitation energy transfer from the Chl a binding proteins CP47 and CP43 to the PSII reaction center and the decreased Chl fluorescence yields from CP43 and CP47 could be explained by the inhibition of the energy transfer from APC to PSII core complexes (CP47 + CP43).  相似文献   

16.
The features of the two types of short-term light-adaptations of photosynthetic apparatus, State 1/State 2 transitions, and non-photochemical fluorescence quenching of phycobilisomes (PBS) by orange carotene-protein (OCP) were compared in the cyanobacterium Synechocystis sp. PCC 6803 wild type, CK pigment mutant lacking phycocyanin, and PAL mutant totally devoid of phycobiliproteins. The permanent presence of PBS-specific peaks in the in situ action spectra of photosystem I (PSI) and photosystem II (PSII), as well as in the 77 K fluorescence excitation spectra for chlorophyll emission at 690 nm (PSII) and 725 nm (PSI) showed that PBS are constitutive antenna complexes of both photosystems. The mutant strains compensated the lack of phycobiliproteins by higher PSII content and by intensification of photosynthetic linear electron transfer. The detectable changes of energy migration from PBS to the PSI and PSII in the Synechocystis wild type and the CK mutant in State 1 and State 2 according to the fluorescence excitation spectra measurements were not registered. The constant level of fluorescence emission of PSI during State 1/State 2 transitions and simultaneous increase of chlorophyll fluorescence emission of PSII in State 1 in Synechocystis PAL mutant allowed to propose that spillover is an unlikely mechanism of state transitions. Blue–green light absorbed by OCP diminished the rout of energy from PBS to PSI while energy migration from PBS to PSII was less influenced. Therefore, the main role of OCP-induced quenching of PBS is the limitation of PSI activity and cyclic electron transport under relatively high light conditions.  相似文献   

17.
Influence of the modification of the cyanobacterial light‐harvesting complex [i.e. phycobilisomes (PBS)] on the surface electric properties and the functions of photosynthetic membranes was investigated. We used four PBS mutant strains of Synechocystis sp. PCC6803 as follows: PAL (PBS‐less), CK (phycocyanin‐less), BE (PSII‐PBS‐less) and PSI‐less/apcE? (PSI‐less with detached PBS). Modifications of the PBS content lead to changes in the cell morphology and surface electric properties of the thylakoid membranes as well as in their functions, such as photosynthetic oxygen‐evolving activity, P700 kinetics and energy transfer between the pigment–protein complexes. Data reveal that the complete elimination of PBS in the PAL mutant causes a slight decrease in the electric dipole moments of the thylakoid membranes, whereas significant perturbations of the surface charges were registered in the membranes without assembled PBS–PSII macrocomplex (BE mutant) or PSI complex (PSI‐less mutant). These observations correlate with the detected alterations in the membrane structural organization. Using a polarographic oxygen rate electrode, we showed that the ratio of the fast to the slow oxygen‐evolving PSII centers depends on the partial or complete elimination of light‐harvesting complexes, as the slow operating PSII centers dominate in the PBS‐less mutant and in the mutant with detached PBS.  相似文献   

18.
Stoichiometry among 3 thylakoid components, PSI and PSII andCyt b6-f complexes, was determined with the red alga Porphyrayezoensis with special reference to the regulation of PSI/PSIIstoichiometry in response to light regime. The ratio of PSIto PSII abundance was four times greater in thalli grown underorange light which excites mainly phycobilisome, thus PSII,than that under red light which excites preferentially Chl a,thus PSI. Cyt b6-f abundance remained almost constant. The PSIand PSII content was regulated separately under the two growthlight conditions as was also observed with the red alga Porphyridiumcruentum by Cunningham et al. [(1990) Plant Physiol. 93: 888].This differs from the cyanophyte Synechocystis PCC 6714 whereadjustment occurs only in the PSI content [(1987) Plant CellPhysiol. 28: 1547]. However, results on the marine cyanophyteSynechococcus NIBB 1071 indicate that changes in the PSI/PSIIsoichiometry is similar to red algae. In this species, as inthe red algae, more than one PSII is associated with each phycobilisome.The light regime also induced changes in the phycobiliproteincomposition in Porphyra yezoensis. Under PSII light, phycoerythrinincreased, and phycocyanin decreased, while under PSI lightthe response was reversed. The change suggests an occurrenceof complementary chromatic adaptation. (Received April 8, 1994; Accepted June 1, 1994)  相似文献   

19.
The effect of anthocyanic cells of the epidermal layer was investigated on photosynthetic activity of the higher plant Tradescantia pallida. To determine the possible indirect role of anthocyanin in photosynthesis, analysis was done on intact leaves and leaves where anthocyanic epidermal layer was removed. Energy dissipation processes related to Photosystem II (PSII) and Photosystem I (PSI) activity was done using simultaneously Chlorophyll a (Chl a) fluorescence and P700 transmittance signals change. In anthocyanic epidermal-less leaves, PSII photochemical activity was more decreased in dependence to increasing light irradiance exposure. We found that photoinhibition of PSII decreased PSI activity by reducing the electron flow toward PSI, especially under high light intensities. Under those conditions, it resulted in the accumulation of oxidized PSI reaction centers, which was stronger in leaves where the anthocyanic epidermal layer was removed. In conclusion, our results showed that the anthocyanic epidermal layer had a photoprotective effect only on the PSII and not on the PSI of T. pallida leaves, supporting the role of anthocyanin pigments in the regulation of photosynthesis for excess absorbed light irradiance.  相似文献   

20.
Weimin Ma 《BBA》2007,1767(6):742-749
Phycobilisomes (PBS) are the major accessory light-harvesting complexes in cyanobacteria and their mobility affects the light energy distribution between the two photosystems. We investigated the effect of PBS mobility on state transitions, photosynthetic and respiratory electron transport, and various fluorescence parameters in Synechocystis sp. strain PCC 6803, using glycinebetaine to immobilize and couple PBS to photosystem II (PSII) or photosystem I (PSI) by applying under far-red or green light, respectively. The immobilization of PBS at PSII inhibited the increase in cyclic electron flow, photochemical and non-photochemical quenching, and decrease in respiration that occurred during the movement of PBS from PSII to PSI. In contrast, the immobilization of PBS at PSI inhibited the increase in respiration and photochemical quenching and decrease in cyclic electron flow and non-photochemical quenching that occurred when PBS moved from PSI to PSII. Linear electron transport did not change during PBS movement but increased or decreased significantly during longer illumination with far-red or green light, respectively. This implies that PBS movement is completed in a short time but it takes longer for the overall photosynthetic reactions to be tuned to a new state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号