首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane FasL is the natural trigger of Fas-mediated apoptosis. A soluble homotrimeric counterpart (sFasL) also exists which is very weakly active, and needs oligomerization beyond its trimeric state to induce apoptosis. We recently generated a soluble FasL chimera by fusing the immunoglobulin-like domain of the leukemia inhibitory factor receptor gp190 to the extracellular region of human FasL, which enabled spontaneous dodecameric homotypic polymerization of FasL. This polymeric soluble human FasL (pFasL) displayed anti-tumoral activity in vitro and in vivo without systemic cytotoxicity in mouse. In the present work, we focused on the improvement of pFasL, with two complementary objectives. First, we developed more complex pFasL-based chimeras that contained a cell-targeting module. Secondly, we attempted to improve the production and/or the specific activity of pFasL and of the cell-targeting chimeras. We designed two chimeras by fusing to pFasL the extracellular portions of the HLA-A2 molecule or of a human gamma-delta TCR, and analyzed the consequences of co-expressing these molecules or pFasL together with sFasL on their heterotopic cell production. This strategy significantly enhanced the production of pFasL and of the two chimeras, as well as the cytotoxic activity of the two chimeras but not of pFasL. These results provide the proof of concept for an optimization of FasL-based chimeric proteins for a therapeutic use.  相似文献   

2.
FasL and TRAIL are apoptotic ligands of the TNF-like cytokines family, acting via activation of the transmembrane death domain containing receptors Fas for FasL, and DR4 or DR5 for TRAIL. A glycosylphosphatidylinositol-linked TRAIL receptor called DcR1 behaves as a decoy receptor inhibiting TRAIL-mediated cell death in several cellular systems. We engineered and stably expressed a chimeric GPI-linked Fas receptor (Fas-GPI) in T-lymphocyte cell lines constitutively expressing functional transmembrane Fas. Surprisingly, despite lacking the death domain region of functional Fas, Fas-GPI was able to significantly increase Fas-mediated cell death triggered by membrane bound or soluble FasL, whereas engagement of Fas-GPI alone did not trigger apoptosis. This potentiating effect, but not transmembrane Fas activation, was selectively inhibited by protein kinase C activation with phorbol esters, demonstrating that Fas-GPI activated a specific synergistic signal transduction pathway. Fas-GPI and transmembrane Fas were localized in distinct membrane compartments, since Fas-GPI, but not transmembrane Fas, was found in the glycolipid-rich membrane microdomains. These results suggest that apoptosis induced by members of this ligand/receptors family may be differentially modulated through other and parallel signalling pathways.  相似文献   

3.
Apoptosis is a highly regulated cell death mechanism involved in many physiological processes. A key component of extrinsically activated apoptosis is the death receptor Fas which, on binding to its cognate ligand FasL, oligomerize to form the death-inducing signaling complex. Motivated by recent experimental data, we propose a mathematical model of death ligand-receptor dynamics where FasL acts as a clustering agent for Fas, which form locally stable signaling platforms through proximity-induced receptor interactions. Significantly, the model exhibits hysteresis, providing an upstream mechanism for bistability and robustness. At low receptor concentrations, the bistability is contingent on the trimerism of FasL. Moreover, irreversible bistability, representing a committed cell death decision, emerges at high concentrations which may be achieved through receptor pre-association or localization onto membrane lipid rafts. Thus, our model provides a novel theory for these observed biological phenomena within the unified context of bistability. Importantly, as Fas interactions initiate the extrinsic apoptotic pathway, our model also suggests a mechanism by which cells may function as bistable life/death switches independently of any such dynamics in their downstream components. Our results highlight the role of death receptors in deciding cell fate and add to the signal processing capabilities attributed to receptor clustering.  相似文献   

4.
5.
6.
《Cytokine》2015,76(2):228-233
Rheumatoid Arthritis (RA) is a chronic inflammatory disease affecting synovial joints. Tumor necrosis factor (TNF) α is a key component of RA pathogenesis and blocking this cytokine is the most common strategy to treat the disease. Though TNFα blockers are very efficient, one third of the RA patients are unresponsive or present side effects. Therefore, the development of novel therapeutic approaches is required. RA pathogenesis is characterized by the hyperplasia of the synovium, closely associated to the pseudo-tumoral expansion of fibroblast-like synoviocytes (FLS), which invade and destroy the joint structure. Hence, depletion of RA FLS has been proposed as an alternative therapeutic strategy. The TNF family member Fas ligand (FasL) was reported to trigger apoptosis in FLS of arthritic joints by binding to its receptor Fas and therefore suggested as a promising candidate for targeting the hyperplastic synovial tissue. However, this cytokine is pleiotropic and recent data from the literature indicate that Fas activation might have a disease-promoting role in RA by promoting cell proliferation. Therefore, a FasL-based therapy for RA requires careful evaluation before being applied. In this review we aim to overview what is known about the apoptotic and non-apoptotic effects of Fas/FasL system and discuss its relevance in RA.  相似文献   

7.
While investigating the mechanism of action of the novel antitumor drug Aplidin, we have discovered a potent and novel cell-killing mechanism that involves the formation of Fas/CD95-driven scaffolds in membrane raft clusters housing death receptors and apoptosis-related molecules. Fas, tumor necrosis factor-receptor 1, and tumor necrosis factor-related apoptosis-inducing ligand receptor 2/death receptor 5 were clustered into lipid rafts in leukemic Jurkat cells following Aplidin treatment, the presence of Fas being essential for apoptosis. Preformed membrane-bound Fas ligand (FasL) as well as downstream signaling molecules, including Fas-associated death domain-containing protein, procaspase-8, procaspase-10, c-Jun amino-terminal kinase, and Bid, were also translocated into lipid rafts, connecting death receptor extrinsic and mitochondrial intrinsic apoptotic pathways. Blocking Fas/FasL interaction partially inhibited Aplidin-induced apoptosis. Aplidin was rapidly incorporated into membrane rafts, and drug uptake was inhibited by lipid raft disruption. Actin-linking proteins ezrin, moesin, RhoA, and RhoGDI were conveyed into Fas-enriched rafts in drug-treated leukemic cells. Disruption of lipid rafts and interference with actin cytoskeleton prevented Fas clustering and apoptosis. Thus, Aplidin-induced apoptosis involves Fas activation in both a FasL-independent way and, following Fas/FasL interaction, an autocrine way through the concentration of Fas, membrane-bound FasL, and signaling molecules in membrane rafts. These data indicate a major role of actin cytoskeleton in the formation of Fas caps and highlight the crucial role of the clusters of apoptotic signaling molecule-enriched rafts in apoptosis, acting as concentrators of death receptors and downstream signaling molecules and as the linchpin from which a potent death signal is launched.  相似文献   

8.
Proapoptotic receptor agonists cause cellular demise through the activation of the extrinsic and intrinsic apoptotic pathways. Inhibitor of apoptosis (IAP) proteins block apoptosis induced by diverse stimuli. Here, we demonstrate that IAP antagonists in combination with Fas ligand (FasL) or the death receptor 5 (DR5) agonist antibody synergistically stimulate death in cancer cells and inhibit tumor growth. Single-agent activity of IAP antagonists relies on tumor necrosis factor-α signaling. By contrast, blockade of tumor necrosis factor-α does not affect the synergistic activity of IAP antagonists with FasL or DR5 agonist antibody. In most cancer cells, proapoptotic receptor agonist-induced cell death depends on amplifying the apoptotic signal via caspase-8-mediated activation of Bid and subsequent activation of the caspase-9-dependent mitochondrial apoptotic pathway. In the investigated cancer cell lines, induction of apoptosis by FasL or DR5 agonist antibody can be inhibited by knockdown of Bid. However, knockdown of X chromosome-linked IAP (XIAP) or antagonism of XIAP allows FasL or DR5 agonist antibody to induce activation of effector caspases efficiently without the need for mitochondrial amplification of the apoptotic signal and thus rescues the effect of Bid knockdown in these cells.  相似文献   

9.
Cell death induced by the Fas/Fas ligand pathway and its role in pathology.   总被引:12,自引:0,他引:12  
Engagement of the cell death surface receptor Fas by Fas ligand (FasL) results in apoptotic cell death, mediated by caspase activation. Cell death mediated via Fas/FasL interaction is important for homeostasis of cells in the immune system and for maintaining immune-privileged sites in the body. Killing via the Fas/FasL pathway also constitutes an important pathway of killing for cytotoxic T cells. Fas ligand is induced in activated T cells, resulting in activation-induced cell death by the Fas/FasL pathway. Recently it has been shown that the Fas receptor can also be up-regulated following a lesion to the cell, particularly that induced by DNA-damaging agents. This can then result in killing of the cell by a Fas/FasL-dependent pathway. Up-regulation of Fas receptor following DNA damage appears to be p53 dependent.  相似文献   

10.
Issues remain to be elucidated in the developmental regulation of erythropoiesis. In particular the role of Fas, a member of the tumor necrosis factor family of receptors despite much work remains unclear. During erythropoiesis, Fas is expressed at low levels on erythroblasts. For most cell types, Fas to FasL interaction causes apoptotic cell death via caspase activation. Here, we show that in humans, early erythroid progenitors are refractory to apoptosis triggered through Fas. Further during early human erythropoiesis, Fas triggered caspase activation provides a positive stimulus for erythroid maturation, and does not alter cellular proliferation or trigger apoptosis.  相似文献   

11.
Resveratrol, a polyphenol found in grape skin and various other food products, may function as a cancer chemopreventive agent for colon and other malignant tumors and possesses a chemotherapeutic potential through its ability to trigger apoptosis in tumor cells. The present study analyses the molecular mechanisms of resveratrol-induced apoptosis in colon cancer cells, with special attention to the role of the death receptor Fas in this pathway. We show that, in the 10-100 microm range of concentrations, resveratrol activates various caspases and triggers apoptosis in SW480 human colon cancer cells. Caspase activation is associated with accumulation of the pro-apoptotic proteins Bax and Bak that undergo conformational changes and relocalization to the mitochondria. Resveratrol does not modulate the expression of Fas and Fas-ligand (FasL) at the surface of cancer cells, and inhibition of the Fas/FasL interaction does not influence the apoptotic response to the molecule. Resveratrol induces the clustering of Fas and its redistribution in cholesterol and sphingolipid-rich fractions of SW480 cells, together with FADD and procaspase-8. This redistribution is associated with the formation of a death-inducing signaling complex (DISC). Transient transfection of either a dominant-negative mutant of FADD, E8, or MC159 viral proteins that interfere with the DISC function, decreases the apoptotic response of SW480 cells to resveratrol and partially prevents resveratrol-induced Bax and Bak conformational changes. Altogether, these results indicate that the ability of resveratrol to induce the redistribution of Fas receptor in membrane rafts may contribute to the molecule's ability to trigger apoptosis in colon cancer cells.  相似文献   

12.
Oligomerization of Fas receptor by its ligand, FasL, activates a signaling cascade that leads to apoptosis of Fas bearing cells. Interestingly, many epithelia coexpress Fas and FasL, yet FasL does not trigger Fas present on the same or neighboring cells to induce spontaneous apoptosis. Here, we show that Fas and FasL are segregated from each other to different cellular compartments in kidney epithelial MDCK cells. While Fas is restricted to the basolateral surface, FasL is sequestered to an intracellular compartment and, a lesser extent, the apical surface. This spatial segregation of Fas and FasL may explain how epithelial cells can constitutively express a functional Fas pathway but avoid auto- or paracrine cell death. Compromising this spatial segregation in physiological or pathological situations may play a so far underestimated role in initiating apoptosis of epithelial cells.  相似文献   

13.
Activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway is known to protect tumor cells from apoptosis and more specifically from the Fas-mediated apoptotic signal. The antitumoral agent edelfosine sensitizes leukemic cells to death by inducing the redistribution of the apoptotic receptor Fas into plasma membrane subdomains called lipid rafts. Herein, we show that inhibition of the PI3K signal by edelfosine triggers a Fas-mediated apoptotic signal independently of the Fas/FasL interaction. Furthermore, similarly to edelfosine, blockade of the PI3K activity, using specific inhibitors LY294002 and wortmannin, leads to the clustering of Fas whose supramolecular complex is colocalized within the lipid rafts. These findings indicate that the antitumoral agent edelfosine down-modulates the PI3K signal to sensitize tumor cells to death through the redistribution of Fas into large platform of membrane rafts.  相似文献   

14.
T cells can undergo activation-induced cell death (AICD) upon stimulation of the T cell receptor-CD3 complex. We found that the extracellular signal-regulated kinase (ERK) pathway is activated during AICD. Transient transfection of a dominant interfering mutant of mitogen-activated/extracellular signal-regulated receptor protein kinase kinase (MEK1) demonstrated that down-regulation of the ERK pathway inhibited FasL expression during AICD, whereas activation of the ERK pathway with a constitutively active MEK1 resulted in increased expression of FasL. We also found that pretreatment with the specific MEK1 inhibitor PD98059 prevented the induction of FasL expression during AICD and inhibited AICD. However, PD98059 had no effect on other apoptotic stimuli. We found only very weak ERK activity during Fas-mediated apoptosis (induced by Fas cross-linking). Furthermore, preincubation with the MEK1 inhibitor did not inhibit Fas-mediated apoptosis. Finally, we also demonstrated that pretreatment with the MEK1 inhibitor could delay and decrease the expression of the orphan nuclear steroid receptor Nur77, which has been shown to be essential for AICD. In conclusion, this study demonstrates that the ERK pathway is required for AICD of T cells and appears to regulate the induction of Nur77 and FasL expression during AICD.  相似文献   

15.
The membrane-bound form of Fas ligand (FasL) signals apoptosis in target cells through engagement of the death receptor Fas, whereas the proteolytically processed, soluble form of FasL does not induce cell death. However, soluble FasL can be rendered active upon cross-linking. Since the minimal extent of oligomerization of FasL that exerts cytotoxicity is unknown, we engineered hexameric proteins containing two trimers of FasL within the same molecule. This was achieved by fusing FasL to the Fc portion of immunoglobulin G1 or to the collagen domain of ACRP30/adiponectin. Trimeric FasL and hexameric FasL both bound to Fas, but only the hexameric forms were highly cytotoxic and competent to signal apoptosis via formation of a death-inducing signaling complex. Three sequential early events in Fas-mediated apoptosis could be dissected, namely, receptor binding, receptor activation, and recruitment of intracellular signaling molecules, each of which occurred independently of the subsequent one. These results demonstrate that the limited oligomerization of FasL, and most likely of some other tumor necrosis factor family ligands such as CD40L, is required for triggering of the signaling pathways.  相似文献   

16.
Microcystin-LR (MC-LR) is the most frequent and most toxic microcystin identified. This natural toxin has multiple features, including inhibitor of protein phosphatases 1 and 2A, inducer of oxidative stress, as well as, tumor initiator and promoter. One unique character of MC-LR is this chemical can accumulate into liver after contacting and lead to severe damage to hepatocytes, such as apoptosis. Fas receptor (Fas) and Fas ligand (FasL) system is a critical signaling system initiating apoptosis. In current study, we explored whether MC-LR could induce Fas and FasL expression in HepG2 cells, a well used in vitro model for the study of human hepatocytes. The data showed MC-LR induced Fas and FasL expression, at both mRNA and protein levels. We also found MC-LR induced apoptosis at the same incubation condition at which it induced Fas and FasL expression. The data also revealed MC-LR promoted nuclear translocation and activation of p65 subunit of NF-κB. By applying siRNA to knock down p65 in HepG2 cells, we successfully impaired the activation of NF-κB by MC-LR. In these p65 knockdown cells, we also observed significant reduction of MC-LR-induced Fas expression, FasL expression, and apoptosis. These findings demonstrate that the NF-κB mediates the induction of Fas and FasL as well as cellular apoptosis by MC-LR in HepG2 cells. The results bring important information for understanding how MC-LR induces apoptosis in hepatocytes.  相似文献   

17.
The 45 kDa Fas or CD95 receptor triggers apoptosis via the caspase cascade when stimulated by its ligand FasL or by agonistic Abs. Activated Fas receptors seem to oligomerize very early into SDS-stable and reducing agent-resistant microaggregates of 200-250 kDa on SDS-PAGE. However, these microaggregates have so far only been reported using agonistic anti-Fas Abs, and no results have been reported using FasL. Here, we demonstrate that the microaggregates do not form in response to FasL, while they always appear in response to the agonistic Ab, in four different cell lines and in normal lymphocytes from human blood. Therefore, the Fas microaggregates are not required for the induction of apoptosis via FasL. These results also suggest that subtle differences exist in the apoptotic pathways triggered by anti-Fas agonistic Abs and by FasL.  相似文献   

18.
Fas (Apo-1, CD95) and Fas-Ligand (FasL, CD95L) are typical members of the TNF receptor and TNF ligand family, respectively, with a pivotal role in the regulation of apoptotic processes, including activation-induced cell death, T-cell-induced cytotoxicity, immune privilege and tumor surveillance. Impairment of the FasL/Fas system has been implicated in liver failure, autoimmune diseases and immune deficiency. Thus, the FasL/Fas system was mainly appreciated with respect to its death-inducing capabilities. However, there is increasing evidence that activation of Fas can also result in non-apoptotic responses like cell proliferation or NF-kappaB activation. While the apoptotic features of the FasL/Fas system and the pathways involved are comparably well investigated, the pathways that are utilized by Fas to transduce proliferative and activating signals are poorly understood. This review is focused on the non-apoptotic functions of the FasL/Fas system. In particular, the similarities and differences of the molecular mechanisms of apoptotic and non-apoptotic Fas signaling are addressed.  相似文献   

19.
Phenylketonuria (PKU), an autosomal recessive disorder of amino acid metabolism caused by mutations in the phenylalanine hydroxylase (PAH) gene, leads to childhood mental retardation by exposing neurons to cytotoxic levels of phenylalanine (Phe). A recent study showed that the mitochondria-mediated (intrinsic) apoptotic pathway is involved in Phe-induced apoptosis in cultured cortical neurons, but it is not known if the death receptor (extrinsic) apoptotic pathway and endoplasmic reticulum (ER) stress-associated apoptosis also contribute to neurodegeneration in PKU. To answer this question, we used specific inhibitors to block each apoptotic pathway in cortical neurons under neurotoxic levels of Phe. The caspase-8 inhibitor Z-IETD-FMK strongly attenuated apoptosis in Phe-treated neurons (0.9 mM, 18 h), suggesting involvement of the Fas receptor (FasR)-mediated cell death receptor pathway in Phe toxicity. In addition, Phe significantly increased cell surface Fas expression and formation of the Fas/FasL complex. Blocking Fas/FasL signaling using an anti-Fas antibody markedly inhibited apoptosis caused by Phe. In contrast, blocking the ER stress-induced cell death pathway with salubrinal had no effect on apoptosis in Phe-treated cortical neurons. These experiments demonstrate that the Fas death receptor pathway contributes to Phe-induced apoptosis and suggest that inhibition of the death receptor pathway may be a novel target for neuroprotection in PKU patients.  相似文献   

20.
The monolayer of endothelial cells that coats the luminal surface of the vessel wall has numerous physiological functions, including the prevention of coagulation, control of vascular permeability, maintenance of vascular tone and regulation of leukocyte extravasation. Recently, we detected functional Fas ligand (FasL) expression on the endothelial lining of blood vessels. FasL induces apoptotic cell death in the multitude of cell types that express its receptor, Fas. Here, we review the function of vascular endothelium in controlling leukocyte extravasation, and illustrate how the regulation of endothelial FasL expression might contribute to this process. We also describe the role of leukocyte extravasation in angiogenesis and atherosclerosis, and we suggest that FasL gene transfer might provide a means of treating diseases of the proliferative vessel wall, particularly those that result from the detrimental infiltration of inflammatory cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号