首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The mesothelium, the lining of the coelomic cavities, and the urothelium, the inner lining of the urinary drainage system, are highly specialized epithelia that protect the underlying tissues from mechanical stress and seal them from the overlying fluid space. The development of these epithelia from simple precursors and the molecular characteristics of the mature tissues are poorly analyzed. Here, we show that uroplakin 3B (Upk3b), which encodes an integral membrane protein of the tetraspanin superfamily, is specifically expressed both in development as well as under homeostatic conditions in adult mice in the mesothelia of the body cavities, i.e., the epicardium and pericardium, the pleura and the peritoneum, and in the urothelium of the urinary tract. To analyze Upk3b function, we generated a creERT2 knock-in allele by homologous recombination in embryonic stem cells. We show that Upk3bcreERT2 represents a null allele despite the lack of creERT2 expression from the mutated locus. Morphological, histological and molecular analyses of Upk3b-deficient mice did not detect changes in differentiation or integrity of the urothelium and the mesothelia that cover internal organs. Upk3b is coexpressed with the closely related Upk3a gene in the urothelium but not in the mesothelium, leaving the possibility of a functional redundancy between the two genes in the urothelium only.  相似文献   

3.
4.
Wnt proteins are secreted molecules that play multiple roles during hair follicle development and postnatal hair cycling. Wntless (Wls) is a cargo protein required for the secretion of various Wnt ligands. However, its role during hair follicle development and hair cycling remains unclear. Here, we examined the expression of Wls during hair follicle induction and postnatal hair cycling. We also conditionally deleted Wls with K14-cre to investigate its role in hair follicle induction. K14-cre;Wlsc/c mice exhibited abnormal hair follicle development, which is possibly caused by impaired canonical Wnt signaling. Meanwhile, Wnt5a is also expressed in embryonic epidermis, but Wnt5a null mice showed no significant defect in embryonic hair follicle morphogenesis. Therefore, Wls may regulate hair follicle induction by mediating the Wnt/β-catenin pathway.  相似文献   

5.
The neural crest is a population of multipotent cells that migrates extensively throughout vertebrate embryos to form diverse structures. Mice mutant for the de novo DNA methyltransferase DNMT3b exhibit defects in two neural crest derivatives, the craniofacial skeleton and cardiac ventricular septum, suggesting that DNMT3b activity is necessary for neural crest development. Nevertheless, the requirement for DNMT3b specifically in neural crest cells, as opposed to interacting cell types, has not been determined. Using a conditional DNMT3b allele crossed to the neural crest cre drivers Wnt1-cre and Sox10-cre, neural crest DNMT3b mutants were generated. In both neural crest-specific and fully DNMT3b-mutant embryos, cranial neural crest cells exhibited only subtle migration defects, with increased numbers of dispersed cells trailing organized streams in the head. In spite of this, the resulting cranial ganglia, craniofacial skeleton, and heart developed normally when neural crest cells lacked DNMT3b. This indicates that DNTM3b is not necessary in cranial neural crest cells for their development. We conclude that defects in neural crest derivatives in DNMT3b mutant mice reflect a requirement for DNMT3b in lineages such as the branchial arch mesendoderm or the cardiac mesoderm that interact with neural crest cells during formation of these structures.  相似文献   

6.

Background

Ezrin/radixin/moesin (ERM) proteins are highly homologous proteins that function to link cargo molecules to the actin cytoskeleton. Ezrin and moesin are both expressed in mature lymphocytes, where they play overlapping roles in cell signaling and polarity, but their role in lymphoid development has not been explored.

Methodology/Principal Findings

We characterized ERM protein expression in lymphoid tissues and analyzed the requirement for ezrin expression in lymphoid development. In wildtype mice, we found that most cells in the spleen and thymus express both ezrin and moesin, but little radixin. ERM protein expression in the thymus was differentially regulated, such that ezrin expression was highest in immature thymocytes and diminished during T cell development. In contrast, moesin expression was low in early thymocytes and upregulated during T cell development. Mice bearing a germline deletion of ezrin exhibited profound defects in the size and cellularity of the spleen and thymus, abnormal thymic architecture, diminished hematopoiesis, and increased proportions of granulocytic precursors. Further analysis using fetal liver chimeras and thymic transplants showed that ezrin expression is dispensable in hematopoietic and stromal lineages, and that most of the defects in lymphoid development in ezrin−/− mice likely arise as a consequence of nutritional stress.

Conclusions/Significance

We conclude that despite high expression in lymphoid precursor cells, ezrin is dispensable for lymphoid development, most likely due to redundancy with moesin.  相似文献   

7.
Classical cadherins are cell-surface glycoproteins that mediate calcium-dependent cell adhesion. The cytoplasmic domain of these glycoproteins is linked to the cytoskeleton through the catenins (α, β and γ). The catenins are intracellular polypeptides that are part of a complex sub-membranous network modulating the adhesive ability of the cells. One approach to elucidate the role of these molecules in the cell is to investigate their distribution during mouse development and in adult tissues. This study reports that catenins are widely expressed but in varying amounts in embryos and adult tissues. The expression of all three catenins is most prominent in the adult heart muscle and in epithelia of all developmental stages. In other embryonic and adult tissues, lower expression of catenins was detected, e.g., in smooth muscle or connective tissue. Catenins are coexpressed with various cadherins in different tissues. Gastrulation is the first time during embryogenesis when a discrepancy occurs between the expression of catenins and E-cadherin. E-cadherin expression is suppressed in mesodermal cells but not the expression of catenins. This discrepancy suggests that another cadherin may interact with catenins. Similarly, E-cadherin is generally expressed in adult liver but not in the regions surrounding the central veins. In contrast, catenins are uniformly expressed in the liver, suggesting that they are associated with other cadherins in E-cadherin negative cells. Finally, the three catenins are not always concurrently expressed. For example, in peripheral nerves, only β-catenin is observable, and in smooth muscle plakoglobin is not detectable.  相似文献   

8.
9.
10.

Background

The DAZ family genes boule, daz and dazl encode RNA binding proteins essential for fertility of diverse animals including human. dazl has bisexual expression in both mitotic and meiotic germ cells, whereas daz has male premeiotic expression, and boule is largely a unisexual meiotic regulator. Although boule has been proposed as the ancestor for dazl/daz by gene duplication, it has been identified only in invertebrates and mammals. It has, however, remained unclear when and how the DAZ family has evolved in vertebrates.

Methodology and Principal Findings

This study was aimed at identifying and characterizing the DAZ family genes in fish as the basal vertebrate. We show that boule and dazl coexist in medaka and stickleback. Similar to the medaka dazl (Odazl), the medaka boule (Obol) is maternally supplied and segregates with primordial germ cells. Surprisingly, Obol is expressed in adult germ cells at pre-meiotic and meiotic stages of spermatogenesis and oogenesis. However, the maximal meiotic Obol expression in spermatocytes contrasts with the predominant pre-meiotic Odazl expression in spermatogonia, and the diffuse cytoplasmic Obol distribution in early oocytes contrasts with the Odazl concentration in the Balbinani''s body.

Conclusions

The identification of fish boule and dazl genes provides direct evidence for the early gene duplication during vertebrate evolution. Our finding that Obol exhibits bisexual expression in both embryonic and adult germ cells considerably extends the diversity of boule expression patterns and offers a new insight into the evolutions of DAZ family members, expression patterns and functions in animal fertility.  相似文献   

11.
The kidney, the metanephros, is formed by reciprocal interactions between the metanephric mesenchyme and the ureteric bud, the latter of which is derived from the Wolffian duct that elongates in the rostral-to-caudal direction. Sall1 expressed in the metanephric mesenchyme is essential for ureteric bud attraction in kidney development. Sall4, another member of the Sall gene family, is required for maintenance of embryonic stem cells and establishment of induced pluripotent stem cells, and is thus considered to be one of the stemness genes. Sall4 is also a causative gene for Okihiro syndrome and is essential for the formation of many organs in both humans and mice. However, its expression and role in kidney development remain unknown, despite the essential role of Sall1 in the metanephric mesenchyme. Here, we report that mouse Sall4 is expressed transiently in the Wolffian duct-derived lineage, and is nearly complementary to Sall1 expression. While Sall4 expression is excluded from the Wolffian duct at embryonic (E) day 9.5, Sall4 is expressed in the Wolffian duct weakly in the mesonephric region at E10.5 and more abundantly in the caudal metanephric region where ureteric budding occurs. Sall4 expression is highest at E11.5 in the Wolffian duct and ureteric bud, but disappears by E13.5. We further demonstrate that Sall4 deletion in the Wolffian duct and ureteric bud does not cause any apparent kidney phenotypes. Therefore, Sall4 is expressed transiently in the caudal Wolffian duct and the ureteric bud, but is dispensable for kidney development in mice.  相似文献   

12.
Research on in vitro spermatogenesis is important for elucidating the spermatogenic mechanism. We previously developed an organ culture method which can support spermatogenesis from spermatogonial stem cells up to sperm formation using immature mouse testis tissues. In this study, we examined whether it is also applicable to mature testis tissues of adult mice. We used two lines of transgenic mice, Acrosin-GFP and Gsg2-GFP, which carry the marker GFP gene specific for meiotic and haploid cells, respectively. Testis tissue fragments of adult GFP mice, aged from 4 to 29 weeks old, which express GFP at full extension, were cultured in medium supplemented with 10% KSR or AlbuMAX. GFP expression decreased rapidly and became the lowest at 7 to 14 days of culture, but then slightly increased during the following culture period. This increase reflected de novo spermatogenesis, confirmed by BrdU labeling in spermatocytes and spermatids. We also used vitamin A-deficient mice, whose testes contain only spermatogonia. The testes of those mice at 13-21 weeks old, showing no GFP expression at explantation, gained GFP expression during culturing, and spermatogenesis was confirmed histologically. In addition, the adult testis tissues of Sl/Sld mutant mice, which lack spermatogenesis due to Kit ligand mutation, were cultured with recombinant Kit ligand to induce spermatogenesis up to haploid formation. Although the efficiency of spermatogenesis was lower than that of pup, present results showed that the organ culture method is effective for the culturing of mature adult mouse testis tissue, demonstrated by the induction of spermatogenesis from spermatogonia to haploid cells.  相似文献   

13.
14.
PiggyBac system has been shown to have a high efficiency to mediate gene transfer. However, there are no reports on its efficiency to mediate multiplex transgenes in mouse embryonic stem cells. Here we first established an immortalized feeder cell line by introducing four antibiotic resistance genes simultaneously into the original SNL 76/7 feeder cell line utilizing the PiggyBac system. This is the feeder cell line with the most diverse types of antibiotic resistance genes reported so far, which will enable researchers to perform simultaneous multiplex gene transfer or gene targeting experiments in ES cells. With such feeder cell line, we were able to quantitatively characterize the transposition efficiency of PiggyBac system in mouse ES cells using five transposons carrying different inducible fluorescence proteins and antibiotic resistance genes, and the efficiency ranged from about 2% for one transposon to 0.5% for five transposons. The highly efficient multiplex gene transfer mediated by PiggyBac will no doubt provide researchers with more choices in biomedical research and development.  相似文献   

15.
MgtC is a virulence factor involved in intramacrophage growth that has been reported in several intracellular pathogens, including Mycobacterium tuberculosis and Salmonella enterica serovar Typhimurium. MgtC participates also in adaptation to Mg2+ deprivation. Herein, we have constructed a mgtC mutant in Mycobacterium marinum to further investigate the role of MgtC in mycobacteria. We show that the M. marinum mgtC gene (Mma mgtC) is strongly induced upon Mg2+ deprivation and is required for optimal growth in Mg2+-deprived medium. The behaviour of the Mma mgtC mutant has been investigated in the Danio rerio infection model using a transgenic reporter zebrafish line that specifically labels neutrophils. Although the mgtC mutant is not attenuated in the zebrafish embryo model based on survival curves, our results indicate that phagocytosis by neutrophils is enhanced with the mgtC mutant compared to the wild-type strain following subcutaneous injection. Increased phagocytosis of the mutant strain is also observed ex vivo with the murine J774 macrophage cell line. On the other hand, no difference was found between the mgtC mutant and the wild-type strain in bacterial adhesion to macrophages and in the internalization into epithelial cells. Unlike the role reported for MgtC in other intracellular pathogens, Mma MgtC does not contribute significantly to intramacrophage replication. Taken together, these results indicate an unanticipated function of Mma MgtC at early step of infection within phagocytic cells. Hence, our results indicate that although the MgtC function is conserved among pathogens regarding adaptation to Mg2+ deprivation, its role towards phagocytic cells can differ, possibly in relation with the specific pathogen''s lifestyles.  相似文献   

16.
Embryo implantation into the maternal uterus is a decisive step for successful mammalian pregnancy. Osteopontin (OPN) is a member of the small integrin-binding ligand N-linked glycoprotein family and participates in cell adhesion and invasion. In this study, we showed that Opn mRNA levels are up-regulated in the mouse uterus on day 4 and at the implantation sites on days 5 and 8 of pregnancy. Immunohistochemistry localized the OPN protein to the glandular epithelium on day 4 and to the decidual zone on day 8 of pregnancy. OPN mRNA and proteins are induced by in vivo and in vitro decidualization. OPN expression in the endometrial stromal cells is regulated by progesterone, a key regulator during decidualization. As a secreted protein, the protein level of OPN in the uterine cavity is enriched on day 4, and in vitro embryo culturing has indicated that OPN can facilitate blastocyst hatching and adhesion. Knockdown of OPN attenuates the adhesion and invasion of blastocysts in mouse endometrial stromal cells by suppressing the expression and enzymatic activity of matrix metalloproteinase-9 in the trophoblast. Our data indicated that OPN expression in the mouse uterus during early pregnancy is essential for blastocyst hatching and adhesion and that the knockdown of OPN in mouse endometrial stroma cells could lead to a restrained in vitro trophoblast invasion.  相似文献   

17.
To examine the roles of TGFβ isoforms on corneal morphogenesis, the eyes of mice that lack TGFβs were analyzed at different developmental stages for cell proliferation, migration and apoptosis, and for expression patterns of keratin 12, lumican, keratocan and collagen I. Among the three Tgfb−/− mice, only Tgfb2−/− mice have abnormal ocular morphogenesis characterized by thin corneal stroma, absence of corneal endothelium, fusion of cornea to lens (a Peters'-like anomaly phenotype), and accumulation of hyaline cells in vitreous. In Tgfb2−/− mice, fewer keratocytes were found in stroma that has a decreased accumulation of ECM; for example, lumican, keratocan and collagen I were greatly diminished. The absence of TGFβ2 did not compromise cell proliferation, nor enhance apoptosis. The thinner stroma resulting from decreased ECM synthesis may account for the decreased cell number in the stroma of Tgfb2 null mice. Keratin 12 expression was not altered in Tgfb2−/− mice, implicating normal corneal type epithelial differentiation. Delayed appearance of macrophages in ocular tissues was observed in Tgfb2−/− mice. Malfunctioning macrophages may account for accumulation of cell mass in vitreous of Tgfb2 null mice.  相似文献   

18.
19.
The primary cilium is a sensory organelle, defects in which cause a wide range of human diseases including retinal degeneration, polycystic kidney disease and birth defects. The sensory functions of cilia require specific receptors to be targeted to the ciliary subdomain of the plasma membrane. Arf4 has been proposed to sort cargo destined for the cilium at the Golgi complex and deemed a key regulator of ciliary protein trafficking. In this work, we show that Arf4 binds to the ciliary targeting sequence (CTS) of fibrocystin. Knockdown of Arf4 indicates that it is not absolutely required for trafficking of the fibrocystin CTS to cilia as steady-state CTS levels are unaffected. However, we did observe a delay in delivery of newly synthesized CTS from the Golgi complex to the cilium when Arf4 was reduced. Arf4 mutant mice are embryonic lethal and die at mid-gestation shortly after node formation. Nodal cilia appeared normal and functioned properly to break left-right symmetry in Arf4 mutant embryos. At this stage of development Arf4 expression is highest in the visceral endoderm but we did not detect cilia on these cells. In the visceral endoderm, the lack of Arf4 caused defects in cell structure and apical protein localization. This work suggests that while Arf4 is not required for ciliary assembly, it is important for the efficient transport of fibrocystin to cilia, and also plays critical roles in non-ciliary processes.  相似文献   

20.
Calponins form an evolutionary highly conserved family of actin filament-associated proteins expressed in both smooth muscle and non-muscle cells. Whereas calponin-1 and calponin-2 have already been studied to some extent, little is known about the role of calponin-3 under physiological conditions due to the lack of an appropriate animal model. Here, we have used an unbiased screen to identify novel proteins implicated in signal transduction downstream of the precursor B cell receptor (pre-BCR) in B cells. We find that calponin-3 is expressed throughout early B cell development, localizes to the plasma membrane and is phosphorylated in a Syk-dependent manner, suggesting a putative role in pre-BCR signaling. To investigate this in vivo, we generated a floxed calponin-3-GFP knock-in mouse model that enables tracking of cells expressing calponin-3 from its endogenous promoter and allows its tissue-specific deletion. Using the knock-in allele as a reporter, we show that calponin-3 expression is initiated in early B cells and increases with their maturation, peaking in the periphery. Surprisingly, conditional deletion of the Cnn3 revealed no gross defects in B cell development despite this regulated expression pattern and the in vitro evidence, raising the question whether other components may compensate for its loss in lymphocytes. Together, our work identifies calponin-3 as a putative novel mediator downstream of the pre-BCR. Beyond B cells, the mouse model we generated will help to increase our understanding of calponin-3 in muscle and non-muscle cells under physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号